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PREFACE

Eighteen years have passed since the publication of the Handbook of Natural Gas
Engineering, the premier work on the subject of gas technology. This has been a period not
only of considerable increase in the value of gas but of substantial progress in the theory
and practice of completing and producing gas wells and reservoirs.

The SPE Reprint Booklets on Gas Technology are intended to pick up where the
Handbook left off, and bring to the reader the most up-to-date treatment of the subject.

The majority of the papers included in these volumes are application oriented. A few
excellent papers are presented that treat the basic physics of gas flow and behavior.

The papers cover techniques suitable for both desk-calculator treatment and reservoir
simulators. The simulation papers are presented, not with the idea of delving deeply into
the formulation of models, but rather to show their practical application so that they might
become a valuable tool to any engineer.

Space limits the number of papers that can be reprinted. The reader is directed to the
bibliographies for the titles of many other fine papers, reprint booklets, and monographs on
the subject of gas technology.
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Part 1 — Reservoir Engineering

The selection of gas reservoir engineering papers for
reprinting was made with the intent to present new and
un-republished material that would be of immediate,
practical use. The papers selected are essentially of two
types: (1) techniques for use at the ‘‘desk-calculator’’
level, and (2) descriptions of how reservoir simulator
programs for use on digital computers can be applied to
gas reservoir studies. Three papers are ‘‘case history”’
studies.

One reprinted paper, ‘‘Calculations of Unsteady-State
Gas Flow Through Porous Media,”” published in 1953 by
Bruce et al., does not properly belong in either of the
above categories. This outstanding paper is included
because it contains useful fundamental information about
the application of finite-difference techniques to gas
reservoir flow problems. It should thus serve as an
introduction to reservoir simulation for practicing
reservoir engineers.

The paper ‘‘Flow of Real Gases Through Porous

Media,”” published in 1966 by Al-Hussainy er al.,
introduced the concept of the real gas flow potential that
greatly facilitated applying slightly compressible
pressure transient theory to gas flow problems.

Frequently encountered problems discussed in other
papers are (1) the calculation of bottom-hole pressures,
(2) use of performance data to estimate gas in place,
(3) significance and calculation of water influx in gas
reservoirs, and (4) useful results that indicate how per-
meability is reduced by overburden pressure and wa-
ter saturation in tight sandstones, thus relating core
analysis permeability values to probable reservoir per-
meability values.

Papers dealing with the application of digital computer
reservoir simulators show how such programs can be
applied via trial-and-error history matching to the
analysis and future performance prediction of wells and
reservoirs. Two of the three ‘‘case history’’ papers deal
with gas-cycling project studies.






Effect of Assumptions Used to Calculate
Bottom-Hole Pressures in Gas Wells

KEITH L. YOUNG
JUNIOR MEMBER AIME

ABSTRACT

The general energy equation, including change in kinetic
energy, was solved by numerical integration and used to
evaluate simplifying assumptions and application practices
over a wide range of conditions. When extreme conditions
were encountered, sizable errors were caused by large in-
tegration intervals, application of Simpson’s rule and ne-
glecting change in kinetic energy. A maximum error of
only 1.31 percent was caused by assuming temperature and
compressibility constants at their average value. It was
discovered that a discontinuity can develop in the integral
for the injection case. This discontinuity indicates a point
of zero pressure change and is an inflection point in the
pressure traverse.

INTRODUCTION

When a pressure in a gas well is to be calculated, one of
the first decisions is to select a method of calculation. In
many instances, this selection becomes a problem because
the literature, at best, provides an evaluation of any meth-
od for only a limited range of conditions. Once a method
has been selected, a question often arises as to the size
of the caleulation interval which should be used. The ques-
tion regarding calculation interval arises because an ana-
lytic solution is not obtainable and approximate solutions
must be used.

This paper presents an evaluation of major assumptions
and application practices of probably the two most widely
used methods for calculating steady-state single-phase gas
well pressures. The two methods are Cullender and Smith'*
(numerical integration), and average temperature and com-
pressibility.”*" The Cullender-Smith method assumes that
change in kinetic energy is negligible and is normally ap-
plied in two steps with a Simpson’s rule correcton. The
average temperature and compressibility method, in addi-
tion to neglecting kinetic energy change, asumes that tem-
perature and compressibility are constant at their average
values. This method is normally applied for wellhead shut-
in pressures of less than 2,000 psi, and in one step.

Computer programs were written to compute bottom-
hole pressure with and without the assumptions, using

Original manuscript received in Society of Petroleum Engineers office
Sept. 8, 1966. Revised manusecript received Jan. 25, 1967. Paper (SPE
1626) was presented at SPE Gas Technology Symposium held in Oma-
ha, Nebr., Sept. 15-16, 1966; and at SPE Amarillo Regional Meeting
held in Amarillo, Tex., Oct. 27-28, 1966. ©@Copyright 1967 American
Institute of Mining, Metallurgical, and Petroleum Engineers, Inc.

IReferences given at end of paper.

NORTHERN NATURAL GAS CO.
LIBERAL, KANS.

various approaches. Values of input parameters investigat-
ed are shown in Table 1. Flow rate was limited to a maxi-
mum of 5,000 and 10,000 Mcf/D for tubing sizes of 1.610
and 1.995 in. ID, respectively. Flow rate was also limited
to 10,000 Mcf/D for a tubing size of 2.441 in. ID when
wellhead flowing pressure was 100 psia. These limitations
were imposed on flow rate so as not to exceed sonic ve-
locity. The z factor routine available necessitated limiting
bottom-hole temperature to 240F and wellhead pressure to
3,000 psia.

Pressures were compared on the basis of percent devi-
ation from the trapezoidal integration of Eq. 1 or 2 at
100-ft intervals. A preliminary investigation indicated that
a 1,000-ft interval solution would differ from a 50-ft in-
terval solution by less than 0.25 percent; therefore, the 100-
ft interval was chosen for a base. For the purpose of com-
parison, deviations less than 1 percent were considered in-
significant.

EQUATIONS

Cullender and Smith give the equation for calculating
pressure in a dry gas well, neglecting kinetic energy change,
as

Pwy
=t dp) . . (1
20 @ L 1,000

If change in kinetic energy is considered, Eq. 1 becomes

53.33 p 111.1 q,.2
i Tz  dp
Y
1 = = ——d 5 < 2
,000 L J 26665 7. /T ® 2
Pu gt L 1,000

where 111.14,.°/d'p = kinetic energy term. Eqs. 1 and
2 can be evaluated numerically at specific depths using
the trapezoidal rule as shown by Cullender and Smith.

If change in kinetic energy is neglected and temperature
and compressibility are assumed constant at their average
values, Eq. 1 can be integrated to give the average tempera-
ture and compressibility equation,

L [2.6665f =-]*
Pus" = € p, + D —‘Tq” TZ] -1, » @
where pressure squared is in thousands. Eq. 3 can be
7



TABLE 1—VALUES OF PARAMETERS USED IN INVESTIGATION

Parameter
Flow rate, Mcf/D 0
Wellhead pressure, psia 100
Flow string ID, in. 1.610
Specific gravity 0.550
Wellhead temperature, °F 40
Temperature gradient, °/ft 0.006
Integration interval, ft 100
Total depth, ft 10,000

Values Used in Investigation

500 1,000 5,000 10,000 20,000
500 1,000 2,000 3,000

1.995 2.441 4.000 4.950

0 650 0.750

100

0.014

500 1,000 2,000 5,000

solved by making a one-step trial-and-error solution on z.

Assumptions common to all three equations as used in
this investigation are (1) steady-state turbulent flow, (2)
gas as the single-phase flowing fluid, (3) straight-line tem-
perature gradient and (4) friction factor constant over to-
tal length of pipe.

EFFECT OF SIZE OF INTEGRATION INTERVAL

Pressures were calculated using Eq. 2 for trapezoidal in-
tegration intervals of 100, 500, 1,000, 2,000 and 5,000 ft
for a total of 228,336 pressures. The interval size of 100
ft accounted for 162,408 of these. Intervals larger than
100 ft accounted for the remaining 65,928 pressures.

Only 414 or 0.63 percent of the 65,928 pressures showed
deviations greater than 1 percent. These deviations oc-
curred at interval sizes of 2,000 and 5,000 ft and at well-
head pressures of 1,000 psia and less. The maximum devia-
tion was 8.62 percent. In general, deviation is a maximum
at high flow rate, low wellhead pressure, high specific
gravity, low temperature and high temperature gradient.
Fig. 1 is an example of how percent deviation increases
with increasing integration interval size. Figs. 2 through
4 are examples of how percent deviation due to integra-
tion interval is influenced by flow rate, wellhead pressure
and depth, respectively. Fig. 4 demonstrates that maximum
deviation occurs at the first interval, regardless of the size.

EFFECT OF APPLYING SIMPSON’S RULE

In flowing gas wells, pressure is not always a linear
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Fic. 1—EFFecT OF INTEGRATION INTERVAL.

function of depth. The nonlinear function occurs at low
pressures and relatively high flow rates. This is caused
by the second term in the denominator of Eq. 1 or 2 be-
ing insignificant at the surface but becoming significant
with depth. When a nonlinear function exists, the size
of the integration interval for Eqgs. 1 and 2 should be re-
duced. Cullender and Smith suggested that application of
Simpson’s rule to a two-step calculation would give the
approximate equivalent of a four-step calculation, even
though pressure intervals may be unequal.

This investigation shows that application of Simpson’s
rule to a nonlinear pressure function tends to produce a
pressure lower than a trapezoidal integration with small
intervals. Fig. 5 shows an example of such a situation. The
low reservoir pressure is caused by unequal pressure inter-
vals. Pressure intervals in the upper portion of the well-
bore will be larger than pressure intervals in the lower
portion. In this situation, Simpson’s rule improperly
weights values of the integrand in Eq. 1 or 2. Cullender
and Smith were apparently dealing with conditions where
the error caused by Simpson’s rule was approximately
equal to the error caused by large intervals in the trape-
zoidal integration. These errors are opposite in sign.

EFFECT OF KINETIC ENERGY

If the kinetic energy term is neglected in Eq. 2, the in-
tegrand will be too small and the calculated pressure
change too large. An example of neglecting Kinetic energy
change is given in Table 2. Using an integration interval
of 100 ft, pressures with and without kinetic energy were
calculated for all combinations of other parameters shown

»
=
6

E I I I T I
'-Z- py¢ =100 psia
: d =1995in

- P
w 5[ r -o07s0 R
8 Ty = 40°F 2
- AD = 5,000ft.
< 4f-p =10,000ft. e -
w
[+
=2
w
w
& 3k / n
o
=
o
o
&l :
z
(=]
=
<
s L ]
w
o
-
&
€ o | | | | | | | | |
w oo 2000 4000 6000 8000 10000

FLOW RATE MCF/D

Fic. 2—Errect oF FLow RaTE oN Deviarion DUt To
INTEGRATION INTERVAL.



%)

-l

e T T T

[+ 4

= Qs =5,000 mct/d

£ d =160in. |
il | T =0750

8 Ty = 40°F

. AY/D= 0.014%/f1.

= & AD = 5,000 ft. ~1
x D =10,000ft.

w

]

x 3 -
o

=

o

i

-~ 2 — ——
4

=]

=

g

> —
w

o

-

-

S | | b ]
x O

w o 1000 2000 3000

WELL HEAD PRESSURE PSIA

Fic. 3—Errect oF Pressure oN DeviaTion DUE TO
INTEGRATION INTERVAL SizE.

in Table 1 for 162,408 pressures. Of these pressures, 1,405
(0.87 percent) showed a deviation greater than 1 percent.
Deviations greater than 1 percent did not occur below
4,000 ft, nor at wellhead pressures above 100 psia. The
maximum deviation of 9.12 percent occurred at

Depth 100 ft

Flow rate 10,000 Mcf/D
Wellhead pressure 100 psia
Tubing diameter 1.995 in.
Specific gravity 0.750
Wellhead temperature 100F
Temperature gradient 0.014F/ft

3 T T T T T T T T T
Pys =100 psia
gl 9sc=5000met/d _
d =1610in. \
r =0.750 AD=5000
Ty =40°F

AY/D=0014°/11.

PERCENT DEVIATION (FROM PRESSURE AT 100 FT.INTERVALS)
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o pidt bt e o f ciolgeletipe ek | i
0 2000 4000 6000 8000
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Fic. 4—Errect oF DepTH oN DeviatioN DUE TO
INTECRATION INTERVAL SIZE.
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TABLE 2—BOTTOM-HOLE PRESSURE COMPARISON
WITH AND WITHOUT KINETIC ENERGY
FROM 100-FT INTERVAL CALCULATIONS

qsc = 10,000 Mcf/D TbgID = 1.995in. T,, = 100F
pis = 100 psia y = 0.750 %T — 0.014°/ft
Pressure With Pressure Without
Depth Kinetic Energy  Kinetic Energy Percent
(ft) (psia) (psia) ~ Deviation
6] 100.0 100.0 =
100 221.3 241.5 9.12
200 305.7 325.8 6.57
300 372.8 392.0 5.15
400 430.1 448.3 4.23
500 480.8 498.3 3.63
1,000 681.7 696.5 2.17
2,000 973.0 985.4 1.27
3,000 1,207.0 1,218.2 0.92
4,000 1,414.7 1,425.2 0.74
5,000 1,607.6 1,617.7 0.62
6,000 1,791.2 1,801.0 0.54
7,000 1,968.6 1,978.3 0.49
8,000 2,141.8 2,151.3 0.44
9,000 2,311.9 2,321.3 0.40
10,000 2,479.6 2,489.1 0.38
Bottom-hole flowing pressure:
With kinetic energy 221.3 psia
Without kinetic energy 241.5 psia.

The deviation in this example became less than 1 percent
at a depth of 2,800 ft. This set of conditions is not likely
to be encountered in actual practice.

Eq. 2 shows that the kinetic energy term is proportional
to flow rate squared and inversely proportional to pressure
and the fourth power of diameter,

EFFECT OF AVERAGE TEMPERATURE
AND COMPRESSIBILITY

Eq. 3 was solved for depths of 4,000, 6,000, 8,000 and
10,000 ft. Values of other parameters used are shown in

0
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e 6000 py =100 psia g
w | 4,; =5000 mef/d 1
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Fic. 5—CompaRisoN oF SoLuTioNs FOR Borrom-HoLE PRESSURE.
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Table 1. A total of 6,432 pressures were calculated from
Eq. 3. When compared with pressures from the trapezoidal
integration at 100-ft intervals and neglecting kinetic en-
ergy, 42 (0.65 percent) of the pressures deviated by more
than 1 percent. All of these deviations except one oc-
curred for conditions of

Wellhead pressure 2,000 and 3,000 psia

Wellhead temperature 40F
Temperature gradient 0.014 F/ft
Specific gravity 0.750
Depth 10,000 ft.

The maximum deviation of 1.31 percent occurred at a
wellhead pressure of 2,000 psia and a flow rate of zero.
Deviations for a wellhead pressure of 3,000 psia were less
than those for 2,000 psia. This indicates that deviations
will probably not increase for pressures above 3,000 psi.
It should be noted that the maximum deviation caused by
assuming average temperature and compressibility is con-
siderably less than that caused by neglecting kinetic energy,
large integration intervals or application of Simpson’s rule
(Fig. 5).

INJECTION CASE

For injection, D/L in Eqs. 1 and 2 is negative. In this
case, the denominator of the integrand can become zero
and the integrand goes to infinity. Fig. 6 is a plot of inte-
grand [/ as a function of depth and shows the discontinuity
which can develop. When a discontinuity occurs, change
in pressure over that one interval may be assumed equal
to zero and becomes an inflection point in the pressure
traverse.

CONCLUSIONS

1. An integration interval of 1,000 ft should be used to
assure accurate trapezoidal integration of Eq. 2 or 3.

2. Simpson’s rule should not be applied in an effort to
correct for large trapezoidal integration intervals.

3. If flowing pressure at total depth is the desired quan-
tity, change in kinetic energy may be ignored when depth
is greater than 4,000 ft or wellhead flowing pressure is
above 100 psia. If an accurate pressure traverse is desired,
change in kinetic energy should be considered when well-
head flowing pressure is below 500 psia.

4. A discontinuity can develop when numerically inte-
grating Eq. 2 or 3 for the injection case. When a discon-
tinuity occurs, pressure change in that interval should be
set equal to zero. Also, it should be noted that Simpson’s
rule cannot be applied in this situation.

5. Temperature and compressibility can be assumed
constant at their average values for depths up to 8,000 ft.
The average temperature and compressibility method,
however, should not be applied unless change in kinetic
energy is insignificant.

For all normal field situations, Eq. 3 should be used to
calculate bottom-hole pressure in gas wells. When depth
exceeds 8,000 ft, the calculation may be broken into two
or more intervals. When unusual conditions, such as sig-
nificant kinetic energy change, prohibit use of Eq. 3, then
Eq. 2 should be used.

NOMENCLATURE

d = internal diameter of flow string, in.

10

o T
200 Inj.qq = 6175 mcf/d 1
460 Tbg. 1.D.=2.4410 in
_ Py =1000 psia
600} T =0655
Tif = 100°F
800f .
Tw = 80°F
1000}
1200}
1400 1
x
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w
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IXI0
F1c. 6—DisconTiNuITY FOR INJECTION CASE.
e = 27183
D = vertical depth, ft

AD = trapezoidal integration interval, ft
I = integrand of Eq. 2
L = length of flow string, ft
p = pressure, psia
q,. = flow rate, MMcf/D at 14.65 psia and 60F

s = 003752
Tz

T = temperature, °R

AT ;
= temperature gradient, °/ft

z = compressibility factor
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CALCULATIONS OF UNSTEADY-STATE GAS FLOW
THROUGH POROUS MEDIA

G. H. BRUCE, D. W. PEACEMAN AND H. H. RACHFORD, JR., JUNIOR MEMBER AIME, HUMBLE OIL AND REFINING

CO., HOUSTON, TEX.; AND J. D. RICE, THE RICE INSTITUTE, HOUSTON, TEX.

ABSTRACT

The problem of unsteady-state gas flow through porous
media leads to a second-order non-linear partial differential
equation for which no analytical solution has been found. In
this paper a stable numerical procedure is developed for
solving the equation for production of gas at constant rate
from linear and radial systems. An electronic digital computer
is used to perform the numerical integration using an implicit
form of an approximating difference equation. Solutions are
presented in graphical form for various values of dimension-
less parameters. The solutions are compared with the labora-
tory study of gas depletion in a linear system.

INTRODUCTION

Production of fluids from porous rock reservoirs is essen-
tially a transient process. Transient gradients develop as soon
as production begins, and further withdrawals continue to
cause disturbances which propagate throughout the reservoir,
each adding in some way to the prior ones.

A correct mathematical analysis of this behavior is compli-
cated by the fact that the transient or unsteady-state flow of
compressible fluids must be described by difficult second-order
partial differential equations. As a practical matter, three
distinctly different cases arise:

1. Flow of single-phase liquid
2. Flow of gases
3. Multiphase flow

The first of these has been found to give a linear second-

order equation similar to the well-known heat flow equation.

07

V"y:ag...........(l)

where v is fluid density, 8 is time, and « a constant for the
system, provided d v = v cdp, where the compressibility, ¢, is
constant over the range of pressure, p, considered. Solutions
of Equation (1) for both linear and radial flow are available
in several forms.*®*

1References given at end of paper.

Manuscript received in the Petroleum Branch office Aug. 12, 1952. Paper
presented at the Petroleum Branch Fall Meeting in Houston, Tex., Oct.
1-3, 1952.

On the other hand, the second case, which is the flow of gas,

gives a non-linear second-order equation,
22 OP
Vp_aao...........(z)
the solution of which is not known. Although a number of
approximate solutions have been proposed,"*® each is limited
in value by the associated simplifying assumptions.

Inasmuch as the analysis of transient flow is limited to liquid
systems, a solution of the second case is necessary if further
progress is to be made in studying underground fluid move-
ment. For this reason a solution of Equation (2) was under-
taken by means of numerical integration of approximating
difference equations.

BASIC DIFFERENTIAL EQUATION

Equation (2) is derived by combining the equation of
continuity,

o) == i 2V
Viive) = ¢80 e e o ow e e s o (8)
the perfect gas law,
p
=t R R T O ™ S Y | |
v = (4)
and Darcy’s law
= K
VY==—FP v o w w o v s & w (B)
"

to give the basic differential equation

2 0
vr=2r 2 (2)
K 06
Strictly speaking, the fluids present in a gas reservoir are
not perfect gases. Furthermore, there are indications that over
certain velocity ranges, Darcy’s law is not applicable. It would
not be practicable, however, to attempt to obtain numerical
solutions which would take into account all the possible varia-
tions from these laws which could occur in actual systems. The

11
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methods which are developed here for the solution of Equation
(2) in the ideal case can be extended to the solution of spe-
cific problems where the gases exhibit more complicated be-
havior. Two cases are considered in this paper, linear flow
and radial flow, both with constant production rate.

LINEAR FLOW

For linear flow, Equation (2') reduces to

o°p* 2¢p 0
Bl PR s S (6)
ox* K 26
with initial condition
6=0 P =D «7)
and the boundary conditions
Ka ©op
=0, = — 8
g 4= uRT P ox @)
)
x=L, p—o=0 (9)
ox

where g is the molar rate of production, @ is the cross-sec-
tional area, and L is the length of the reservoir. Equation (8)
follows from the application of Equations (4) and (5) to the
producing boundary, while Equation (9) follows from the
absence of flow across the closed boundary.
Dimensionless Differential Equation

By making the substitutions

P:L

(10)
D
® P k+1
T
A©
| Pi-1k | Pk Pis1, k
e AR e AKX -
o —
0 1.0

X

FIG. 1 — INTEGRATION NET FOR LINEAR RESERVOIR.
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x=2 11
= an
p. Ko
9 = ¥ M R s v e w wm e & e
2Lion (12)
dN
de 2qLuRT
= = 13
Q N Ka (13)

i 1

where N is the number of mols remaining in the reservoir at

any time, Equations (6) through (9) are reduced to dimen-
sionless form

o oP
e = Ty (14)
with initial condition

6=0, P=1 (15)

and boundary conditions
x=o £ _g (16)

oX
X =1, 8P2:O T

oX

The dimensionless rate parameter, Q, is sufficient to character-
ize the problem. Its significance may be understood more
clearly by considering that Q6 represents the fraction of the
original gas which has been removed at any dimensionless
time, ©.

Difference Equation

Approximate solutions of differential equations may be ob-
tained by evaluating the derivatives in terms of finite differ-
ences and integrating numerically by means of the resulting
difference equations. To formulate a difference equation for
Equation (14), a net of mesh-width AX and A® is established
as shown in Fig. 1. Subscripts j and k are used to denote dis-
tance and time positions, respectively, as P; .. Approximations
to X-derivatives at j,k are found by the Taylor expansions of
P* about point j,k:

opP* o'P*

B =Pt aX b S0 e (18)
po=p L ax g A% 19
= Do T g A ox- 2t 7 .

Addition of Equations (18) and (19), neglecting terms of the

*P* AKX , .
order of —— and higher, gives
oX* 4!
aps A5 (P)
AX
where Azj,k (P*) implies P tP -2 P

Expanding P; i+ about P;, and neglecting the second- and
higher-order terms gives

P _ Piuu-P,
06 A®

(21)
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Predictive Form

Equating Equations (20) and (21) in accordance with
Equation (14) and solving for P+, yields the predictive
relation

1
Pl.kﬂZTAJ-k (P) +P1.k (22)
_XZ
where p = A_
A©

Equation (22) is explicit for P+, in terms of the pressures
at time step k. For a known P(X,0) the set P, ... P., may
be computed by Equation (22). The boundary P,, and Plsiia
may be computed from a difference form of the boundary
conditions

Pi-p:

e =Q (23)
:n —Pi |

=0 (24)

Equations (22), (23) and (24) with k=0 produce a
P (X, ©,). Repetition of this purely predictive calculation for
succeeding time steps yields the solution, P (X, ®). Unfortu-
nately, use of these simple equations is severely restricted for
practical calculations as will be shown in the following
section.

Errors

Two independent errors arise in the foregoing solution;
truncation of the series of Equations (18) and (19) by omission
of the high-order terms, and growth of the elemental rounding
errors in repeated applications of Equations (22), (23) and
(24). Truncation errors can be estimated by studying the size
of the neglected high-order terms. Errors from this source may
be limited by choice of small mesh-widths or inclusion of
higher-order differences in Equations (22), (23) and (24).

Growth of elemental rounding errors is a more serious mat-
ter, for this may occur in any calculation where results of one
calculation are subjected repeatedly to subsequent applications
of difference equations. An analysis similar to that used by
O’Brien, Hyman and Kaplan® for studying error growth is
presented in the Appendix and shows the limitations in using
Equation (22). This analysis leads to the conclusion that a
sufficient condition to prevent error growth is

p>4P, (25)
This implies that in addition to choosing a mesh size small

enough to limit truncation error, the mesh ratio,

X
1 must

also be chosen properly. Violation of the inequality of Equation
(25) leads to the unstable situation in which the growth of
small rounding errors swamps the calculations. Ti:’s « undition
is referred to as “computational instability.”

It is interesting to compare the solution P(X,0) computed
for Q =1 by Equation (22) for several values of p. Fig. 2
is a plot of P(0.75,0) for three values of p. The critical ratio
pe is 4P. For p = 2, the solution shows violent instability. For
p = 8, a stable solution is obtained. For p = 3.64, a mild oscil-
lation develops, but as P diminishes p. falls below 3.64, the
errors decay, and the solution converges back toward the stable
solution.

T.P. 3518
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FIG. 2 — COMPARISON OF P (0.75,0) FOR THE LINEAR RESERVOIR CAL-
CULATED USING THE PREDICTIVE EQUATION (22) WITH THREE VALUES
OF MESH-RATIO.

The existence of p, is inconvenient for practical computing,
for if a small AX is chosen to give low truncation error, a
small A® is required for stability. For example, with a AX
of 0.1, the permissible A6 is 0.0025. If Q = 0.01, 20,000 time
steps would be required to remove half the gas.

Implicit Form
If Equation (20) is rewritten
A (PP) + Ak (P)
E : C L (26)
27X

aZ.D'_’
X’

the second derivative of Equation (26) is centered at a time
step k+%, and Equation (21) becomes second-order correct.
Combining Equation (26) with Equation (21) gives
l 2 2 1 2
Pj,ku— Z B (7) :Pj.k+ 2—p AL (P) (27)
which is now implicit in the unknowns at step k+1. Von Neu-
mann has shown the stability of implicit formulas. The analysis
of error growth, which is presented in the Appendix, shows
that a sufficient condition for the prevention of error growth
in Equation (27) is
P

Po-Pea < (28)

where P is the average pressure at ©,. That is, the average
2 P . .
pressure may decline no more than Y for the associated time

step A®. Since QAO =2 P, — Py, the condition of Equation
13
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(28) is met if AO® = For a Q = 0.01 and AX = 0.1,

1
A6 = ——, and only 71 equal time steps would be required

to remove half the gas while satisfying this condition of sta-
bility. Further, the magnitude of the error amplification can

- ; if this maximum
kt1

amplification operates at every time step, the cumulative am-
plification may not exceed the ratio of the initial to final
pressure. In removing half the original gas, this ratio is two
and error growth from amplification is about 1/70 the expected
growth from statistical accumulation of rounding errors in
20,000 steps using the predictive equation, (22). Therefore,
in integrating with Equation (27) the choice of A® may be
made with minor regard for error amplification.

be at worst no larger than the ratio

Solution of the Implicit Form

In applying the implicit Equation (27), an integration net
is set up so that the producing boundary (X = 0) is at the
midpoint of the interval between X, and X, while the closed
boundary (X = 1) is at the midpoint of the interval between
X, and X,+. The two boundary equations, (23) and (24), to-
gether with the implicit equation, (27), written for each of
the points, X, X; . . . X,, form a set of n+2 simultaneous,
non-linear equations which must be solved for P+, Pixtiy « « »
Pat1x+:. In the remainder of this section, it will be understood
that time step k+1 is under discussion, and the subscript k+1
will be omitted. Elimination of P,., and rearrangement give
the following n-+1 equations:

P-P'=-QaX

-P, + 2P, + 2P~ P, = D, 1<j<n-1 (29)
-P:, + P,+ 2P, =D,
where D; and D, are defined by

D, = 2P, + P}, = 2P+ Py (30)

D, = 2oP,, + Pi,u—Pii (31)

The method used here for solving these equations consists
of factoring the non-linear terms into a product of assumed
values of P and unknown values of P. The resulting linear
simultaneous equations may be solved for the unknown P’s.
These values may then be used as assumed values of P for the
next iteration. The iterations are continued until the unknown
values are equal to the assumed values.

Let P} be the assumed value of P.. The non-linear terms
in Equation (29) are all present as differences of squares,
which may be factored in three different ways. For example

P,-P,, =P P-P, P, (32a)
P-p, =P +F,)(F-P,) (32b)
Pi—Pil:(PI—P;.)(P,-+P“) (32¢)

The choice of the method of factoring depends upon the
rapidity with which the iterations of the resulting equations
converge. As shown in the Appendix, the first method may
converge or diverge slowly, the second method, in general,
converges rapidly, while the third method diverges rapidly.
Accordingly, the second method, (32b), of factoring is used

14
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V\Zith all the equations of (29). The following set of linear
simultaneous equations results:

P,(P; +P}) -P,(P; + P]) =-QAX ]

—P,, (P, + P}) + PP}, +2P} +P}, +2)~
P, (P +P,,)=D 1<j<n-1

~P, (P, + P;) + PP, + P +2) =D,

(33)

The problem remains of solving the simultaneous equations,
(33). L. H. Thomas of the Watson Scientific Computing Lab-
oratory has suggested a method for solving this type of system
of linear equations. While the method is equivalent to plain
Gaussian elimination, it avoids the error growth associated
with the back solution of the elimination method and also
minimizes the storage problems in machine computation. The
method may be summarized as follows. For a system of
equations,

BP,+CP =D,

AP, .+ BP, + CP,, = D, 1<j<n-1 (34)
‘4‘1 Pn-\ + B)\Pn = Dn
let
w, = B,
w,=B-Apb, 1<j<n } (35}
C, .
by =—— 0<j<n-1 (36)
w;j
and
])o
8o =
w, (37)
gJ—(DJ“Ajgjl)/ws I<j<n
The solution is
P, = g
P, =g~ bP,,, 0<j<n-1 (38)

Thus w, b and g are computed in order of increasing j, and P
is then computed in order of decreasing j. The proof of the
method is shown in the Appendix.

Comparing Equations (34) with Equations (33), and apply-
ing Equations (35), (36) and (37), yields

b, =-1 1
P} +Pg,
b, = - 1<j<n-1
Pk 2P; + P, 2+ (Ps, = P )by
(39
. orX W
‘T P+ P
D + (P, + Plg
g = ¥ 1<j<n-11
Pt + 2P} + P, + 20+ (P}, + P},
P+ (P, + P&,
g =
P, +P.+2+ (P, +P)b,,

(40)
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From Equation (39), it can be seen that the values of — b;
are equal to or less than one. Consequently, the computation
of the successive values of b; and g, will be free from error
growth. By referring to Equation (38), it can be seen that
the computation of the successive values of P; will also be free
from error growth.

The numerical procedure, then, consists in starting with
P; =1 for all j at ® = 0, calculating P, ,, using these values
to calculate P; ., and so on. The procedure for using P;at0=6,
to calculate the P, at 6=6,., is as follows: The constants
P, QAX, D,, . . . D, are evaluated from their definitions. The
predictive equation, (22), is used to calculate trial values of
P,.., which are used as the first assumed values for P} in
Equations (39) and (40) to calculate b’s and g’s; these, in turn,
are used in Equation (38) to calculate new values of P, ..
These are then substituted for P’ in Equations (39) and (40)
and the calculation of &’s, g’s, and finally of P’s is repeated.
This process is repeated until there is no significant change
in the P’s. Generally, five iterations are sufficient.

Results

Using the procedures developed in the preceding section, the
numerical integration of Equation (14) was carried out using
an IBM Card-Programmed Calculator which was wired to
perform eight-digit, floating-decimal arithmetic. Pressure dis-
tributions for linear unsteady-state gas flow were calculated
for seven values of Q: 2, 1, 0.5, 0.2, 0.1, 0.05, and 0.02. For
the case of Q = 1, results obtained with the implicit difference

T.P. 3518

equations, using Equations (38), (39) and (40), were found
to compare well with results obtained with the predictive equa-
tion, (22). In both cases, 10 distance increments were used.
In addition, to examine the truncation error in the distance
direction, results obtained with the predictive equation for 10
distance increments were compared with those obtained with
the predictive equation for 20 distance increments, and again
good agreement was obtained. For the case of Q = 2, the pre-
dictive equation with 20 distance increments was used. For
all the remaining values of Q, the implicit difference equa-
tions with 10 distance increments were used. In carrying
out the solutions, small time steps were used at the begin-
ning, where the time derivatives were highest, and contin-
ually increased as the solution progressed. For example,
for the case of Q = 0.5, 35 time steps were used; AO had the
value 0.0001 for five steps, 0.0005 for three steps, 0.002 for
four steps, 0.01 for nine steps, 0.05 for eight steps, and 0.1
for the last six steps. Results for the seven values of Q are
presented in Figs. 3a through 3g. As an independent check
on the calculations, a total material balance was made after
each time step by evaluating numerically the integral
J7 (1-P)dX and comparing with Q6. Agreement was within

0.15 per cent of the gas remaining.

In Fig. 4, comparison is made between calculated solutions
and experimental data obtained in the laboratory. The labora-
tory test equipment consisted of a linear system of one-in.
standard galvanized steel pipe packed with sand. Pressure
gauges were located at the outflow and closed ends and at
four positions along the pipe. The overall length of the system
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was 20.58 ft. For the particular experiment considered, the
porosity of the sand was 36.7 per cent; the permeability as
determined by steady-state experiments was 13.2 md, with a
variation of about 10 per cent from one end to the other.
Nitrogen, originally at 108.1 psia, was produced from the sand
at a constant rate of 0.000101 Ib-mols per hour. The tempera-
ture was 78°F. For these conditions, Q = 1.721, and © =
0.0011525 6, where 6 is expressed in minutes. The pressure
distributions were calculated with the predictive equation,
using 20 distance increments and A© = 0.0005. These are
shown as smooth curves in Fig. 4. Comparison of these curves
with the experimentally determined points shows the difference
to be well within the experimental error.

RADIAL FLOW

The second case considered in this paper is that of radial
flow with constant production rate. Equation (2') reduces to
o°p’ 1 op* 2¢u Op

= 41
or* r or K 06 i

with initial condition of Equation (7) and boundary conditions

K(2rrqt) op

- 42
wRT P or t42)

r =Ty, g =
op _

=0 . . . .o o. . (43
P (43)

r =Ty,

where r, is the radius at which constant production rate is
maintained, and r, is the outer radius of the closed reservoir.
By making substitutions

p

pP=— (10)
Di
U = log (1/r) (44)
Ko
o=P20 L. (88)
2ry pp
dN
de 2quRT Q
Q’ = = 2 2 P 2 2 (4'6)
N, mp Kt (1—rl/1)) 1-r}/rs
Equations (41) - (43) reduce to the dimensionless form
P’ . 9P
=g T L e e s s s (40)
oU? 00
with initial condition
0 =0, P=1 (15)
and boundary conditions
e Tl ol = (48)
U=U,=log (r,/m), ~ T
P
U=0, —=0 (49)
oU

Difference Equation

To approximate Equation (47) by a difference equation, a
net of AU and A is chosen as before, with subscripts j and &
used to denote mesh points in the U and © directions, respec-
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tively. Approximations to derivatives at j,k are found by the
Taylor expansions of P* about j,k, as in Equations (18) and
(19), with U substituted as the distance variable. If these
modified equations are added, the result is

*P AU

ot 2!

. o’ AU
al, =2 =+ (50)

oU' 4!

The AU of interest for a reasonable number of incre-
ments is larger than the corresponding AX of the linear case,
and the U-derivatives are generally higher than the correspond-
ing derivatives in X. For this reason, the approximations used
for Equation (20) must be made higher-order correct. The
higher-order terms in Equation (50) may be evaluated by
differentiating Equation (47) with respect to U. The Z-th
derivative may be expressed as

oLp: gt gav oP L2 (Z-2) & >*P
—_— = ettt — — *
au” 20 ( ¢ Quoe
2*(Z-2)(Z-3) , P
L Y oy 51
2! ¢ dU*06 i (51)
By letting
_ 21'.72 7
7=2,4
. 2V 242 -2) _UV, (53
T AUA® Z Z! . )
Z=2,4 ...
and
23 924(Z-2)(Z-3) _z
2, = \2-2)(2-3) g (54)

— Z!
AU A® 72537
. o'pP . . .
and neglecting the terms PYITYY and higher in Equation (51),
combination of Equation (50) and Equation (51) yields the
difference approximation at j,k,
P . P
- =0, AUA® =
oU%0e

o‘P*
y——. (55)
ot

AL (P) -\ AUAG
oU0®

Equation (55) may be combined with Equation (21) and
Equation (47) to give a predictive difference equation. In this
form, however, approximation of the crossed partial derivatives
of Equation (55) is impossible. Moreover, the predictive form
here has even more unfavorable mesh-ratio conditions than in
the linear case, Equation (22), and is of little practical value.
As shown in the Appendix, the condition sufficient to prevent
error growth in the radial predictive case is approximately

AU

~o e'’s > 4P, (56)
For a practical case, r,/r, may be 1/200, so that U, is

0.975 log (1/200) or -5.17 in a 20-increment net, and AU =

—(1/20) log (1/200) or 0.265. The value of A-UzezUl is 2.26 x
10° or A® < 5.65x 10" when P is 1.0. With such a small
A®, at Q = 0.01, over 88 million time steps would be required
to remove half the gas.



