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to the Student

In using this book, you should give first attention to the definitions, for
they describe the terminology of mathematics; and you can no more hope
to understand mathematics without learning the vocabulary than you can
hope to understand any other foreign language without learning its vocab-
ulary. As with any other language, mathematics grows partly by acquiring
terms from neighboring languages (in this case primarily English), modify-
ing their meanings, and appropriating them into itself. These form the
technical terms of the subject. Since mathematics, in this country, is
imbedded in the English language, it is important to distinguish between
technical and nontechnical usage.

A word or phrase being defined is set in boldface type, as for example
uniform convergence. Theorems which have names, such as the fundamen-
tal theorem of calculus, will have these names set in boldface. A triple-
barred equal sign (=) is used in two ways. It will mean identity, as for
instance

x2=p?=(x—y)(x+y).
It will also mean “defines” or “is defined by.” For example,
f(x)=2x*+3  {-1<x<7)

means that the function f is being defined in the designated interval. There



i to the Student

is, I believe, little cause for confusion arising from the ambiguous uses here
indicated.

In the body of the text, occasional reference is made to exercises by
number. For instance, parenthetical remarks such as (see Exercise B7)
frequently occur. Unless a section number is indicated, the exercise in
question will be found in the first set of exercises following the reference.

A few more words about study: in trying to understand a proof, you
should look for the driving force behind it. You should try to analyze the
proof and decide that a certain idea (or ideas) involved is critical, that the
proof turns on this, and that the remaining parts are secondary calcula-
tions whose presence is clearly understood once the significant point is
seen.

It is desirable to understand the role each proposition plays in the
construction of a chapter. Which ones, you should ask yourself, are in the
nature of preliminary or secondary results, which are of prime importance,
and which are anticlimactic? The names—lemma, theorem,
corollary—provide a rough rule of thumb, but by no means an accurate
one.

Finally, after all this talk, let it be said that no amount of directions
on how to study can begin to replace a real and growing interest in the
material.

‘WATSON FULKS



to the Teacher

This book is designed to serve as an introduction to analysis. To this end I
have made an effort to present analytical proofs backed by geometrical
intuition, and to place a minimum of reliance on geometrical arguments.
In fact, some stress is laid on this in the body of the text. T have not
succeeded completely in avoiding some essential use of intuition in the
proofs, but I have localized my serious transgressions to Chapter 12
wherein are located Green’s, Gauss’, and Stokes’ theorems and some of
their consequences.

Like most who stray from the narrow path of virtue, I seek to
rationalize my action. My defense is simply that to avoid such geometrical
arguments would involve more difficult work than I feel is advisable. In
attempting to hold to a course between the heuristics of elementary
calculus on the one hand, and the rigors of function theory and topology
on the other, I have chosen to err in the direction of heuristics in Chapter
12. The motivation for this is, of course, that what I sacrifice in logic I
hope to gain in pedagogy.

So much for apologies.

In this new edition, Part 1 of the text has been revised in the following
ways. Continuity and differentiation have been separated, and all of the
material on differentiation has been collected into a single chapter preced-
ing integration. The chapter on integration has been expanded to include a
section on discontinuous functions.

vl



] to the Teacher

The middle part is concerned with calculus of several variables. The
major changes from the second edition are in this part. The discussion of
differentiation of a vector function of a vector variable has been mod-
ernized by essentially defining the derivative to be the Jacobian matrix.
The general form of the chain rule is now given, as is the general form of
the implicit transformation theorem.

In Part 3, on the theory of convergence (of sequences, series, and
improper integrals) the changes are minor, being largely a matter of
smoothing the exposition where it seemed appropriate.

The problems in each set are classified as A, B, or C Exercises. This
classification is to be taken as an approximate grading of the difficult:
the problems. The A Exercises are straightforward applications of .
theory, though the computations in some of them may be a little long. The
B Exercises are somewhat deeper, and the C Exercises in general are
intended to challenge the better students. The A Exercises have been
largely reworked, and many new B and C Exercises have been added.

I gratefully acknowledge the influence of a number of people on the
changes incorporated in this new edition. The comments of the reviewers
were particularly helpful and I take pleasure in recognizing them. In
alphabetical order they are Professors N.J. DeLillo, Manhattan College;
R.B. Guenther, Oregon State University; K.A. Heimes, [owa State Univer-
sity; and M. Vuilleumier, Ohio State University.

I present no bibliography, though I must of course acknowledge the
influence of many books, old and new, upon the shape this one has
assumed.

WATSON FULKS
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CHAPTER 1

The Number System

1.1 The Peano Axioms

Any study of mathematical analysis has its basis in the number
system. It is therefore important for students of analysis to understand how
the arithmetic can be developed from the natural numbers (another name
for the positive integers). It is not our intention to carry out such a
construction here; however, we do want to make some comments about
the logical structure of that development.

A standard starting point in the development of the real numbers is a
certain set of axioms that were first formulated by the Italian mathemati-
cian Peano. These axioms state that the natural numbers satisfy certain
properties. From only these properties, making appropriate definitions as
we proceed, we can develop all the usual rules of arithmetic. In the
terminology of formal logic, we have a set of undefined objects that we
choose to name the natural numbers, satisfying Peano’s axioms. This means
merely that the natural numbers are taken as the basic “atoms” of our
mathematical system in terms of which we express the other mathematical

3



4 Calculus of One Variable

concepts, but which are themselves not expressed in more fundamental
terms.

Perhaps an easier way to visualize the situation, since after all you
cannot claim that you never heard of arithmetic or rational numbers, is
this: We can verify that the positive integers are a system of objects that do
satisfy the Peano axioms. We can now proceed to recapture all we know of
arithmetic, by developing appropriate definitions and theorems from these
axioms, using only those properties stated explicitly in the axioms.

The five Peano axioms follow.

Axiom 1. 1 is a natural number.

Axiom 2. To every natural number n there is associated in a unique
way another natural number n' called the successor of n.

Axiom 3. The number 1 is not a successor of any natural number.

Axiom 4. If two natural numbers have equal successors, they are
themselves equal. That is, if n’=m’, then n=m.

Axiom 5. Suppose that M is a collection or set of natural numbers with
the properties

() lisin M,
(i) n' is in M whenever n is in M.

Then the collection M consists of all natural numbers.

Here equality is used in the sense of numerical identity; that is, m=n
means that m and »n are symbois standing for the same number. Thus we
take

i) m=m,
(i) m=n implies that n=m,
(ti1) m=n, n=k implies that m=xk,

as part of the underlying logic and do not list these as part of our set of
numerical axioms.



