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PREFACE

The subject matter of this book might be labelled fairly accurately Intrin-
sic geometry of uniform spaces. { For an impatient reader, this means elements
(25%), dimension theory (40%,), function spaces (12} 9,), and special topics
‘in topology. } As the term “geometry”’ suggests,'we shall not be concerned
with applications to functional analysis and topological algebra. However,
applications to topology and specializations to metric spaces are of central
concern; in fact, these are the two pillars on which the general theory stands.
This dictum brings up a second exclusion: the book is not much concerned
with restatements of the basic definitions or generalizations of the funda-
mental concepts. These exclusions are matters of principle. A third exclusion
is dictated mainly by the ignorance of the author, excused perhaps by the
poverty of the literature, and at any rate violated in several places in the
book: this is extrinsic (combinatorial and differential) geometry or topology.

More than 809, of the material is taken from published papers. The pur-
pose of the notes and bibliography is not to itemize sources but to guide fur-
ther reading, especially in connection with the exercises; so the following
historical sketcn serves also as the principal acknowledgement of sources.

The theory of uniform spaces was created in.1936 by Weil [W]. All the
basic results, especially the existence of sufficiently many pseudometrics, are
in Weil’s monograph. However, Weil’s original axiomatization is not at all
convenient, and was soon succeeded by two other versions: the orthodox
(Bourbaki [Bo]) and the heretical (Tukey [T]). The present author is a notor-
ious heretic, and here advances the claim that in this book each system is
used where it is most convenient, with the result that Tukey’s system of uni-
form coverings is used nine-tenths of the time.

In the 1940’s nothing of interest happened in uniform spaces. But three
interesting things happened. Dieudonné [1]invented paracompactness and
crystallized certain important metric methods in general topology, mainly
the partition of unity. Stone [1] showed that all metrizable spaces are para-
compact, and in doing so, established two important covering theorems
whose effects are still spreading through uniform geometry. Working in
another area, Eilenberg and MacLane defined the notions of category, func-
tor, and naturality, and pointed out that their spirit is the spirit of Klein’s
Erlanger Programm and their reach is greater.

The organization of this book is largely assisted by a rudimentary version
of the Klein-Eilenberg-MacLane program (outlined in a foreword to this
book). We are interested in the single category of uniform spaces, two or
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three of its subcategories, and a handful of functors; but to consider them
as instances of more general notions gives us a platform to stand on that is
often welcome.

In 1952 Shirota [1] established the first deep theorem in uniform spaces,
depending on theorems of Stone [1] and Ulam [1]. Except for reservations
involving the axioms of set theory, the theorem is that every topological
space admitting a complete uniformity is a closed subspace of a product of
real lines. A more influential step was taken in 1952 by Efremovi¢ (1] in
creating proximity spaces. This initiated numerous significant Soviet con-
tributions to uniform and proximity geometry (which are different but coin-
cide in the all-important metric case), central among which is Smirnov’s:
creation of uniform dimension theory (1956; Smirnov [4]). The methods of
dimension theory for uniform and uniformizable spaces are of course mainly
taken over from the classical dimension theory epitomized in the 1941 book
of Hurewicz and Wallman [HW]. Classical methods were pushed a long way
in our direction (1942-1955) by at least two authors not interested in uniform
spaces: Lefschetz [L], Dowker [1; 2; 4; 5). These methods—infinite coverings,
sequential constructions—were brought into uniform spaces mainly by Isbell
(1; 2; 3; 4] (from 1955).

Other developments in our subject in the 1950’s do not really fall into a
coherent pattern. What has been described above corresponds to Chapters i i
II, IV and V of the book. Chapter II1 treats function spaces. The material is
largely classical, with additions on injectivity and functorial questions from
Isbell [5], and some new results of the same sort. The main results of Chap-
ters VI (compactifications) and VIII (topological dimension theory) are no
more recent than 1952 (the theorem Ind=dim of Katetov [2]).

The subject in Chapters VII and VIII is special features of fine spaces,
i.e., spaces having the finest uniformity compatible with the topology. Chap-
ter VII is as systematic a treatment of this topic as our present ignorance
permits. Central results are Shirota’s theorem (already mentioned) and
Glicksberg’s [2] 1959 theorem which determines in almost satisfactory terms
when a product of fine spaces is fine. There is a connecting thread, a functor
invented by Ginsburg—Isbell [1] to clarify Shirota’s theorem, which serves
at least to make the material look more like uniform geometry rather than
plain topology. There are several new results in the chapter (VII. 1-2, 23,
25, 27-29, 31-34, 38); and a hitherto unpublished result of A. M. Gleason
appears here for the first time. Gleason’s theorem (VII. 19) extends previous
results due mainly to Marczewski [1; 2] and Bokstein [1]. He communicated
it to me after I had completed a draft of this book including the Marczewski
and Bokstein theorems; I am grateful for his permission to use it in place
of them.

iv
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Most chapters are followed by exercises adding details to the theory (in
some cases doing duty for proofs omitted in the text), starred exercises whose
results will be used later in the text, occasional unsolved problems, and a
major unsolved problem. The major unsolved problems are Problems A, B,
B,, B;, C, D. Not all are precisely posed, but all describe areas in which
there seems to be good reason to expect interesting results although the
results now known are quite unsatisfactory. The appendix might reasonably
be counted as another such problem, for it gives several characterizations
of the line and draws attention to the plane.

A preliminary version of this book was prepared as a set of lecture notes at
Purdue University in 1960. The work of writing it has been supported at
Purdue by the Office of Naval Research and at the University of Washing-
ton by the National Science Foundation. I am indebted to Professors M.
Henriksen and M. Jerison for helpful criticisms of the Purdue lecture notes.
Professors E. Alfsen, H. Corson, J. de Groot, E. Hewitt, E. Michael, D.
Scott, and J. Segal have contributed some criticisms and suggestions during
the writing of the final version. Many blemishes surviving that far were
caught and exposed by Professor P. E. Conner for the Editorial Committee.
But none of my distinguished colleagues has assumed responsibility for the
remaining errors, which are mine.




FOREWORD

Categories. A concrete category & is defined by defining a class O of sets,
called objects of %, and for each ordered pair of objects (X, Y) a set
Map(X, Y) of functions f: X—Y, called mappings, such that

(a) The identity function on each object is a mapping;

(b) Every function which is a composition of mappings is a mapping.

The analysis of this definition presents some peculiar difficulties, because
the class © may be larger than any cardinal number, and is larger in all cases
arising in this book. But the difficulties need not concern us riere. All we need
is an indication of what is superfluous in the definition, i.e., of when two con-
crete categories determine the same abstract category.

A covariant functor F: £ — 9 is given when we are given two functions,
Fyand F), as follows. F, assigns to each object X of & an object Fo(X) of 9.
F assigns to each mapping f: X—Y of & a mapping Fi(f): Fy(X)—F,(Y)
of 9. Further,

(A) For each identity mapping 1y of &, F,(1x) = 1r,00;

(B) For every composed mapping gf of &, F,(gf ) = F\(g) F.(f).

Having noted the distinction between F, and F,, we can ignore it for
applications, writing Fy(X ) as F(X), F,( f) as F(f). The short notation de-
fines a composition of covariant functors F: % — 9, G: 9— X for us:
GF(X)=G(F(X)), GF(f)=G(F(f)). Then an isomorphism is a covariant
functor F: £— 9 for which there exists a covariant functor F~—: D%
such that both FF~! and F~'F are identity functors.

A categorical property is a predicate of categories B such that if B(%) and
¥ is isomorphic with 9 then B(2). Similarly we speak of categorical def-
initions, ideas, and so on.

The notion of a mapping f: X—Y having an inverse f~: Y—X is categori-
cal. The defining conditions are just ff~'=1,, f~'f=1x. A mapping having
an inverse in % is called an isomorphism in .

The notion of a mapping f: X—Y being one-to-one is not categorical.
However, it has an important categorical consequence. If f: X—Y is one-
to-one then for any two mappings d: W—X , ¢ WX, fd=fe implies d=e.
A mapping having this left cancellation property is called a monomorphism.
Similarly a mapping f such that &f=hf implies g=h is called an epimorphism.
A mapping f: X—X satisfying ff=f is a retraction.

REMARK. If a retraction is either a monomorphism or an epimorphism then
it is an identity.

A contravariant functor F: $— 9 assigns to each object X of Zan object

ix
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F(X) of 9 or to each mapping f: X—Y of ¥ a mapping in the opposite
direction F(f) : F(Y)—F(X) of Isatisfying condition (A) above and

(B*) For every composed mapping gf of &, F(gf)=F(f)F(g). Contra-
variant functors can be composed; but the composition of two contravar-
iant functors is a covariant functor. In fact, functors of mixed variances
can be composed, with an obvious rule for the variance of the composition.

A duality F : €— D is a contravariant functor admitting an inverse, which
is a contravariant functor F~': 2—% such that both FF~' and F'F are
identity functors. It is a theorem that:

Every concrete category is the domain of a duality.

An interested reader may prove this, letting F(X) be the set of all subsets
of X and F(f)=f"". :

The principle of duality says roughly that any categorical theorem 6 for
arbitrary categories implies another theorem 6* for arbitrary categories. For
example, if 4 is a theorem about a single category &, the statement of 6 for &
is equivalent to a statement about a category 9 related to % by a duality
F:%—9 ; that statement about D is 6*, and it is true for arbitrary categories
because every category is the range of a duality.

The theorem 6 that a retraction f which is a monomorphism is an identity
can illustrate duality. The statement #* 1is that if f is a mapping in %,
F:%2—9 is a duality, and F(f) is a retraction and a monomorphism, then
F(f) is an identity. Using several translation lemmas we can simplify 6* to
the equivalent form: if f is a retraction and an epimorphism then f is an
identity.

Note that we may have ‘‘dual problems’ which are not equivalent to each
other. A typical problem in a category % is, does & have the property PB?
If Piis categorical, there is a dual property B *, and the given problem is equiv-
alent to the problem does a category dual to % have the property $*? By the
dual problem we mean: Does % have the property B*?

Finally, we need definitions of subcategory, full subcategory, and functor of
several variables. A subcategory < of ¥ is a category such that every object
of Z is an object of % and every mapping of < is a mapping of €. 2 is a
full subcategory if further, every mapping of %" whose domain and range are
objects of & is-a mapping of Z.

For several variables we want the notion of a product of finitely many cate-
gories £, - - -,%,. The product is a category whose objects may be described
as n-tuples (X, - --, X,), each X; an object of %,. To represent these as sets
the union X,- ..\ UX,would serve, if some care is taken about disjointness.
The set Map((X,, .--,X,), (Yy,---,Y,) is the product set Map(X,,Y:)

X
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X:--X Map (X,,Y,). Again, the mappings (f,,---,f,) can be represented
as functions on X,U---UX,, with (f,--+,f) | Xi=f.

A pure covariant functor on %5,+--,%, is a covariant functor defined on
the product %} X -.. X %,. A functor on %, -- -,%,, covariantin the set I
of indices and contravariant in the remaining indices, is a function F on
Z1X -+ X%, to a category 2, taking objects to objects, mappings to map-
pings, identities to identities; taking mappings f={f:}: { X;}—{ Y:} to map-
pings F(f) : F({ Z;})—F({ W.}), where for icI, Z;=X; and W;=Y,, butfor
i¢l, Z;=Y;and W;=X;; and preserving the composition operation defined
in the product category by gof=h, where h;=g; f;for icI, h;= f8: otherwise.



TABLE OF CONTENTS

BRENOE . R B R e SRR AT iii
PREBwoR R o v e s e SAEPPRARIPERER S ¢ ix
DU Soicice: gy 2o invdsinets by deSmivg @ clnas T ix
CHAPTER I. Fundamental concepts . .. ... ..coovvvnne o 1
Metric uniform spaces . . . . - HSARIASRMORARTIRIT T AU . 1
Uniformities and preuniformities. . . . ... c.ovcve e e 3
Uniform topology and uniform continuity . . . ... ........o--- 6
Bumertinetn: be dargor £ian wna.coidind FARERIGHNNS erievs e 11
Mickeshizhaok Jiut thndifcwition ntadnst-roaien i i RS 12
CuAPTER 11. Fundamental constructions . . . . .. ccvvoveeeoeee e 13
Sum, product, subspace, quotient . . . . ... s e 13
Completeness and completion . . . . ... oo 17
Compactness and compactification . . . . ... e 20
Proximity *.<.c.c. .. B e L BBORE B B 24
I S sna g - o G, T T e T 20
BXercsents i v, e b e A 2y o R S et il 32
L S T S S P R S 35
CHAPTER II1. Functionspaces . ... .. .. ..o oncerernes 36
BN RS L] G5 (e S P (3 Whigaa s ssammmpinatane e B HRIVETS 36
Baifitivh apitel s whicl. these sxisis @oeysnmeh FUnEion e o 4 39
Equiuniform continuity and semi-uniform products . . . ... ... 43
Closure Properties i wrisiiwss o eniaiosten S Al s e e B . 49
Exercises . . . . ... Fegvrs 3L N Birntlarhy. wn speah e un I f gt b2
Posthreh Brablesmll . .. .. oo et TRRIRW SRS S 0T K 54
Researeh Problem By <i: - i raviae anvr s tenamery e el . B5330% s 54
INlotens mane. ondibisms urss. st F P 12 e : vk AR Bl 55
CHAPTER IV. Mappingsintopolyhedra . . .. ....c.cooeeeoeeees 56
Uniformcomplexes . « . . .cvveoanssmoaeaesessenss: 56
Canomital BPPIREE 5. v o G0 VL s e el sie il e 61
Extensions and modifications . . . .. ... ..o 65
B bR T i), (s uf A itaeTaid ek e DR TEE mi Tun Wi 70
BREICiSes. ® ok Buliiiing . fi - § isea rolrasioa. » o e 73
Research Problem Bs .. i« s « sonamarsiasie s« o« o0 st 76
DEOBBE i1 « o ovo a0 v i aw e mas s s nme s s oo 1B




TABLE OF CONTENTS

B D enaion (1) . . ... . oo vv v c e e e e e s 78
B 06 dimension G i d T NS BE FIGAT - o o oo v ov v vinisnn 78
IR O HADDINES . oo vvn e o o s s eyt 81
Lo e R R SR e L s 85
L ainn e S R Y e S 88
L AR e T e S LR e RN PRI R 92
B ch ProblemiC .. - v it s e e RN 95
ot R e R SR S B e e e 96

@aapIER VI. Compactifications. . . . . . insssindainasennbe®. b g 97
Dimension-preserving compactifications . . . ............... a9l
i [ O R L U T 1T, 102
Metriccase . . . . . . . .. visssnes saolireibas veckacns Bma i 106
Freudenthal compactification . . . ... c.oc o o eioie i oo ivminsaste 109
B EOE o U e e e s s e R 1T
R blam D)5 o e e SR 121
BIBIEE . . . . .. e e sattidoEEtseta-ladasta e b S L aaea 121

@HAPTER V1I. Locally finespaces . .. . . . .pidslasmos bhus seerssisione s 123
T T T o, R R S e s TR T e R 123
S T o g o R e e e L e S e T e R - 127
Produets of separablespaces . . .« .oco . oia e s e admimmarokd 130
EERRERBIO STheOTeIY . . . . . . o ciiu v v civisin vio s otein o vndaimmts 133

R N DICTO BDACES . - - o e, oo oiis sin e, aloss o s bun o galoth 140
B R e N e 141
Bearch Problem By . . . . . ..o .o, sandss moeiioms % JIV ierd 144
e R N S e T 144

GCHAPTER VIII. Dimension(2) myscdices: dsesase b sticsnid e aanobiinsstisgsit 146
BRSOl COVETINGS . . . oo o o o v o o o oo oo oo s GHolUEEOINE St} 146
BEITHISNBEOL . . . . . io e ee e e e et G O 148
Ehieidencetheorems . . . . . . -« .v v oo v ol molebRntE Bos nann it 153
BRI . . e e St sialdesE dasniasa 155
I . e e e s S o R 157

AR R DIANe . . . . . . . e i e aiensiae b ST s 159

L R e e e A R R e S e e 163

TSR s e S e R S e e 173

viii



CHAPTER I
FUNDAMENTAL CONCEPTS

Some of the notions of the theory of uniform spaces are familiar from
metric spaces. It is possible to found the entire theory on the notion of a set
with a family of pseudometrics called a gage. We shall not do this here, but
we shall lead in gradually from metric notions to the idea which will be the
foundation of the development: the uniform coverings.

Metric uniform spaces. Recall that a pseudometric d on a set X is a real-
valued function on X X X satisfying d(x,y) =d(y,x) =0 and d(x,2)+d(z,y) =
d(x,y), for allx, y, zin X. It is called a metric if it separates points, i.e., x>=y
implies d(x, y) > 0. A metric space consists of a set X with a metric d on X.
Commonly we refer to ““the metric space X’ and use the letter d freely for
the distance in any metric space.

Recall that a function f: X—Y, where X and Y are metric spaces, is called
uniformly continuous if for each ¢>0 there is 4> 0 such that whenever
d(x, x’) <éin X, d(f(x),f(x’)) <e. Every uniformly continuous function is con-
tinuous, but the converse is not true.

A covering % of X is called a uniform covering provided there is a positive
number ¢ such that every subset of X of diame*er less than e is a subset of
some element of %. Such an ¢ is called a Lebesgue number for %.

1. A covering % of a metric space X is uniform if and only if there is >0
such that for each point x in X, the 5-neighborhood of x is contained in some ele-
ment of %.

Proor. If % is uniform with Lebesgue number ¢, then every (¢/2)-neigh-
borhood of a point is contained in an element of % Conversely, if elements of
% contain all §-neighborhoods then 4 is a Lebesgue number for %

2. A function f:X—>Yis uniformly continuous if and only if for every uni-
form covering 9/ of Y there is a umform covering % of X such that for each

element U of %, f(U) is contained in some element of 7.

1
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PRrOOF. Suppose f is uniformly continuous and 2" is a covering of Y having
Lebesgue number e. If § is such that any two points of X at distance less than
5 have images at distance less than ¢, then the collection of (5/2)-neighbor-
hoods of all points of X is the required uniform covering %.

Conversely, suppose the condition on coverings is satisfied and ¢>0. Let?”
be the covering of Y consisting of all sets of diameter <e¢, and % a uniform
covering of X each element of which has its image contained in a single ele-
ment of 2/ If 5 is a Lebesgue number for %/ then any two points of X at dis-
tance <6 have images at distance <e.

A uniformly continuous function f: X—Y is called a uniform equivalence if
fis one-to-one and onto and the inverse function f 1 Y—X is also uniformly
continuous.

3. If f: X—Y is a uniform equivalence, then a collection {U,} of subsets of
X is a uniform covering if and only if the collection {f(U,) }isa uniform cover-
ing of Y. The converse is also true.

The proof is left as an exercise.

Finally, we may define a metric uniform space as a set X together with a
family u of coverings of X such that for at least one distance function don X,
u is precisely the family of all uniform coverings of the metric space (X,d).
The preceding remarks and results show that every metric space determines
uniquely a metric uniform space; that two different distance functions d, e,
on the same set X, determine the same uniform space if and only if the iden-
tity mapping is a uniform equivalence between (X, d) and (X, e); and further,
if we are given the metric uniform spaces (X, ) and (Y,») and a function
f: X—Y, we can determine whether f is uniformly continuous by 1.2, without
knowing or constructing any specific distance functions.

This summary treatment of metric uniform spaces will not be used in
developing the general theory. It is included in justification; we propose to
define such terms as “uniformly continuous” and ‘“‘completion’, and we
ought to show that the notions are true generalizations of the familiar no-
tions for metric spaces. The remaining details in this showing will be swept
into exercises or omitted.

Another important point is that, while we lose the distance function in
passing from metric space to metric uniform space, we do not lose the topol-
ogy. For example,

4. For metric spaces X and Y, a function f: X—Y is continuous if and only
if for each point x in X, for each uniform covering 7 of Y, there exist an ele-
ment V of 9 and a uniform covering % of X such that for every element U of
% which contains x, f(U) CV. '
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Another important point: the metric uniform space has more structure
than the topological space. There may be two homeomorphic metric uniform
spaces which are not uniformly equivalent; and more.

5. There is an uncountable family of countable discrete metric spaces, no two
of which are uniformly equivalent to each other.

Proor. From topology we know that there is an uncountable family of
compact subspaces of the plane, no two of which are homeomorphic with
each other. « |

(Recall the construction. For any increasing sequence of positive integers,
n,<ny< ---, begin with the segment from (0,0) to (0, 1) in the plane and at
each point (0, 27°) attach n; short whiskers.)

Let { C,} be such a family of spaces in the plane. In each C, select a counta-
ble dense subset {p:}. Let the coordinates of p; be (xi,y:). Let X, be
the subset of three-space consisting of all points (x;, ¥4, 1/m), with m=n.
Then X. is a countable metric space. It is discrete since each of its points is
above the horizontal coordinate plane and for each ¢ >0 there are only finitely
many points of X, with third coordinate greater than ¢. Of course, X. is not
closed in three-space; its closure Y. consists of X, and a copy of C.. More-
over, Y. is the completion of X. . Now suppose f: X, —X is a uniform equiv-
alence. In particular, f maps X. uniformly continuously into the complete
space Y;. Hence f has a unique uniformly continuous extension g: Y,—Y,.
The same reasoning applies tof ': X;—X., which must have a uniformly
continuous extension h: Y;—Y..

Finally, consider the composed mapping hg of Y, into itself. On the dense
set X, , hg coincides with the identity mapping i. But for any two continuous
mappingsp : A—B,q: A—B, where A and B are Hausdorff spaces, the set
of all a in A such that p(a) =q(a) is a closed set. Hence hg: Y. —Y. is the
identity. Similarly gh: Y,—Y, is the identity. But then g maps C. homeo-
morphically onto C;, which is absurd. It follows that X. and X, cannot be
uniformly equivalent.

This result illustrates a. useful rule of thumb in the theory of uniform
spaces: All counterexamples are discrete.

Uniformities and preuniformities. We shall need a little of the terminology
of the theory of quasi-ordered sets. Moreover, it will be convenient to use
slightly nonstandard terminology; so every reader should note carefully the
following definitions.

A set S is said to be quasi-ordered by a relation < if < is transitive. A sub-
set Q of S is cofinal in S if for each element s of S there exists an element g of
Q such that g < s. Q is residual in S if whenever g&Q and r<g in S, rEQ. Q is
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antiresidual if for g€Q and r>q in S, r is in Q. The quasi-ordered set S is
directed if for any p and ¢ in S there exists s in S satisfying s <p and s<gq.
Such an s may be called a common successor of p and gq.

One important example of a quasi-ordered set is any family S of subsets
of a given set X, ordered by inclusion C. In this case a common successor of
p and q is a subset of their intersection.

For another example consider coverings of X. A covering { U. | is called a
refinement of a covering { V,} if each U. is a subset of at least one V; We
write | U. } <{V,}, and note that < is a quasi-ordering.

Inclusion is actually a partial ordering, i.e., besides being transitive it is
reflexive and anti-symmetric. Note that refinement is also reflexive, but not
anti-symmetric. Two coverings %, 7; may be equivalent in the sense that
U<V and P <%.

Any two coverings {U,},{ Vs }, of a set have a coarsest common refine-
ment, the covering { U, V;}. It may be denoted by { U,}JA{ V; }. Of course,
there are usually other coverings equivalent to this one. .

If% s a covering of X and A is a subset of X, the star St(A ) of A with
respect to % is the union of all elements of % which have a nonempty inter-
section with A. The collection {St(U.%): UE%} is a covering and is called
U*, the star of %. If %* is a refinement of 7, % is called a star-refinement of
%, and one writes % <*%_ The relation <* is again a quasi-ordering, gener-
ally not reflexive.

In any quasi-ordered set, a filter is a directed antiresidual subset. A filter
base is a cofinal subset of a filter, i.e., a directed set. In a partially ordered
family of sets, ordered by inclusion, a proper filter is a filter which does not
have the empty set as an element.

Now we come to the main definitions. A preuniformity p on a set X is a
family of coverings of X which forms a filter with respect to <*. A uniform-
ity u on X is a preuniformity such that for any two points, x, y, of X, there is
a covering % in u, no element of whi:h contains both x and y. A uniform space
uX is a set X with a uniformity x on X. The elements of u are called uniform
coverings.

6. A family u of coverings is a preuniformity if and only if (i) for % and YV
inu, ZAY is in u; (i) for % <2 and % in u, 7" is in p; and (iii) every
element of u has a star-refinement in p

7. For any two points, %, v, of a uniform space, there is a uniform covering
% such that St(x,%) and St(y, %) are disjoint.

In some of the literature, what we call a uniform space is called a separated uniform space,
and a set with any preuniformity on it is called a uniform space. We shall use the term “sepa-
rate”’ mainly in the following (customary) sense: a family {f.} of functions with the same do-



UNIFORMITIES AND PREUNIFORMITIES 5

main X but possibly different ranges separates points provided x>y in X implies that for some
a, f. (x) =f. (). Other uses of the word are introduced in places, particularly in Chapter VI.

The uniformities or preuniformities on any set form a partially ordered set
under inclusion. The preuniformities, like the topologies, form a complete
lattice. (This is a corollary of Proposition 9 below.) Evidently, any preuni-
formity which contains a uniformity is a uniformity. As with topologies, a
preuniformity u containing a preuniformity » is said to be finer than ». The
usage of the terms “strong” and “‘weak” is not standardized, and we shall
avoid them as far as possible.

The weak uniformity induced by a family of functions is too useful to be
avoided, and fortunately there has been little or no terminological confusion
here. We have

8. THEOREM. For any family { f.} of functions on a set X into various uni-
form spaces, there is a coarsest preuniformity on X including all the inverse
images of uniform coverings under these functions. If the functions separate
points, then this preuniformity is a uniformity.

This uniformity is the weak uniformity induced by the family {f.}. The
proof of Theorem 8 is not difficult, but we shall take some time marking out
important ideas in it.

A basis for a uniformity u is a filter base for x considered as a filter of cov-
erings; and similarly for a preuniformity: A sub-basis for a uniformity or
preuniformity is a family of coverings whose finite intersections form a basis.
Now a family » of coverings which satisfies condition (iii) of Proposition 6,
every covering in » has a starrefinement in », is called a normal family. 1t is
convenient and customary to use the term normal sequence for something
more special than a sequence which is a normal family: specifically, for a
sequence of coverings %" such tha* QY < * Q" for each n.

9. Every normal family of coverings is a sub-basis for a preuniformity.

Proo¥. The required preuniformity is the family of all coverings which
can be refined by finite intersections of coverings from the given family,
which automatically satisfies (i) and (ii) of 1.6. For (iii) we need only observe
that if 27i<*% ' for i=1, -+-, n, then 2 'A---AND"<* RT AT

ProoF oF THEOREM 8. The operation f. on coverings preserves star-
refinements; so the inverse images of uniform coverings form a normal fam-
ily. Then this is a sub-basis for a preuniformity u, which is the coarsest
possible.

We should note that a sub-basis need not be a normal family; of course, a
basis must.
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There is a complement to Proposition 9. Every union of normal families
of coverings is a normal family; so every family A of coverings contains a
largest normal subfamily x. The coverings in u are called normal in \. A
slightly broader notion is generally more useful. A covering % is said to be
normal with respect to X provided % belongs to the smallest anti-residual fam-
ily containing A and is normal in it; that is, provided % is the first term of
some normal sequence of coverings each of which has a refinement in A\. We
note that if % is known to belong to some preuniformity contained in A, it
must be normal with respect to \. The converse is true if A is a filter with re-
spect to <. '

10. If X is a family of coverings of a set which forms a filter under refinement,
then there is a finest preuniformity contained in \, and it consists of all coverings
normal with respect to \.

Proor. It suffices to show that the family x of all coverings normal with
respect to X is a preuniformity, for we have already noted that every preuni-
formity contained in \ is contained in u. We use Proposition 6. Conditions (ii)
and (iii) are obviously satisfied. It remains only to note that if % and 2~
are in y, there are normal sequences { %"} and { 2™} in the filter A with
U=, 7 =7";and|{ %" A\?™} is a normal sequence.

Uniform topology and uniform continuity. The uniform topology of a uni-
form space X is defined as follows. A subset N of X is a neighborhood of a
point x of N if for some uniform covering %, N contains St(x,#). N is open
if it is a neighborhood of each of its points.

We wish to prove

11. THEOREM. Every uniform space is a completely regular Hausdorff space
in the uniform topology.

The construction required for this proof can be made to yield another
important theorem; so we put it off for a while. Observe here that the uni-
form space X is at least a T, space; for X is an open set (obvious), any union
of open sets is open (obvious), the intersection of any two open sets is open
(easy exercise), and a point is closed (proof follows). For any point x, for any
point y#x, by definition there must be a uniform covering %, no element of
which contains both x and y. Then St(y, %)CX —{x}. Thus X—{x} is a
neighborhood of each of its points, and the point x is closed.

For the rest of the proof we shall need real-valued continuous functions.
We may as well construct uniformly continuous functions, since it is no
harder. A function f on a uniform space X to a uniform space Y is called
uniformly continuous if for every uniform covering 2 of Y there is a uniform



