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PREFACE

This volume contains the lecture notes of a Summer School
held at the University of Bergamo, Italy in September 1979. The
school was funded by both the European Economic Community,
CREST-ITG Programme on "Training in Informatics' and by the
Italian C.N.R. The director was Prof. E. Spedicato of the
University of Bergamo. Due to the success of that Summer School
the decision was made to repeat it at Hatfield Polytechnic,
England in July 1980, this time funded by the European Economic
Community, CREST-ITG Programme and the English S.R.C. The
director on this occasion was Dr. L.C.W. Dixon of the Numerical
Optimization Center, the Hatfield Polytechnic. The editors wish
to gratefully acknowledge this support, the permission of the
sponsors to publish the Proceedings and the cooperation of the
lecturers in submitting their contributions for publication.

The volume contains eighteeen papers. These can be divided
into three groups. The first eight papers on Unconstrained
Optimization include contributions from L.C.W. Dixon,

C. Lemarechal, J.J. McKeown, E.Spedicato, C.Sutti and Ph.L.
Toint, and cover mést recent research in this area. Topics
treated include convergence theory, the variable metric

method, sparsity, least squares problems including the effect
of large residuals, the conjugate gradient method and the
special nongradient methods and methods for nondifferentiable
functions. The second part on Constrained Optimization contains
five papers including contributions from M.C. Bartholomew-Biggs,
D.P. Bertsekas, M.J.D. Powell and K. Ritter. These cover the
necessary and sufficient conditions for constrained optima,
convergence and super-linear convergence on linearly constrained
problems and the performance of penalty, multiplier, variable
metric and recursive quadratic programming methods for the more
general problem. The third part contains four contributons from
F. Archetti, H.W. Kuhn, J.J. McKeown and G.P. SzegB. Topics
treated include the fixed point approach, sensitivity analysis
of the solution and the global optimization problem. The last
paper by G.P. SzegB and G. Treccani is a mathematical appendix
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in which a summary of the properties of real-valued functions
which are relevant to optimization is presented.

It is hoped these papers communicate the richness and
diversity that exist today in this vital area of research that
is being applied to more and larger practical problems every

year.

L.C.W. Dixon
E. Spedicato
G.P. SzegB
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Lecture 1

INTRODUCTION TO NUMERICAL OPTIMISATION

by

L. C. W. Dixon

The Numerical Optimisation Centre
The Hatfield Polytechnic
England



1 The Problem

In this series of lectures we will be concerned with the
problem of locating the minimum of an objective function
numerically on a-digital computer. We will be assuming that
in any problem of interest, there is an objective function f
which depends on the values of n variables X s i=1gieus
n . In any practical problem solutions of interest will have
to satisfy certain constraints which we may represent as
x € S ; then the problem could be posed.

Obtain x** such that
(i) x** ¢ S
(ii) f(x**) < f(x) all X €S (1.1)

such a point is termed the global minimum point of the prob-

lem.

However, for most of the series we will be concerned
with the easier problem of locating a local minimum point
x* , such that

(i) x* ¢ S
(i1) f(x*) < f(x) all x e N(x*,68) < S ,(1.2)
where N(x*,8§) defines a neighborhood of radius § , centre
x* , i.e., x e N(x*,8) if ||x - x*|| < &
In any practical situation, the investigation of a prob-

lem involves many stages before its solution can be attempted
on a computer. Let us consider a simple example.

The Machine Tool Problem: Hersom1

A machine tool consists of a motor P , which drives the



shaft of a rotating cutting tool which rotates with velocity
v , and also acts through a gearbox to move the workpiece.
This is illustrated in Figure 1.
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Figure 1

The objective is to cut the required metal from the
workpiece as cheaply as possible. To convert this very
simple rroblem into a numerical problem we must first deter-
mine the variables x , and express the objective function f
and feasible set S in terms of them.

There are three variables in the problem; the rotational
velocity v , the horizontal velocity ¢v and the depth of
cut d . In this particular problem, the feasible set S is
defined by a number of inequality constraints. The gearbox
had a limited range -- .005 < ¢ < .02 . The motor could
supply limited power ¢0'8d0'8v < P , and the cutting shaft
snapped if the stress was too high ¢v2 < S max . For ease
of representation, we will assume that the depth of cut is

T

fixed so that the optimization variables x° = (¢,v) , then

X € S if .005 < ¢ < .02

0.8d0.8v <P

¢
¢v2 < S max

v >0

Again, the cost of cutting a given volume of material is now
a simple function of the variables. If R is the fixed



costs with time, TC is the cost of replacing the cutting
tool, and TL is the life of the tool, then COST =

1/(ved) (R + TC/TL) . The life of the tool is a function of
its use and for one particular example, T, = 1/(d0'6¢1‘7vs).

L
The optimization problem is therefore given by

Min £(x) = —=(R + T .d% 0% 1 7x,%)
XxeS 172
[ 005 < Xq <_.02
0.8,0.8
Xq d X, < P
X € S if

This is illustrated in Figure 2.

2 Descent Methods for Unconstrained Optimization

Let us simplify the problem by assuming that S con-
sists of the complete space EN ; the problem is then termed
the unconstrained optimization problem. We will restrict our

investigation into the convergence of algorithms for solving
this problem to algorithms that are iterative in nature,
i.e., algorithms that generéte a sequence of points xk "
k = 1,2,... and hope to terminate in a neighborhood of x*
in a finite time.

We will al'so restrict our discussions to the class of

well behaved functions for minimization, namely those func-

tions for which

(1) there exists a compact bounded level set f(x) = V max;
(ii) f(x) 1is bounded below; and

'
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Figure 2
(iii) the Hessian G exists and is uniformly bounded in the
set f(x) < Vmax , i.e., |%pTGp| <M if ||p|| =1
and f(x) < V max

In order to be able to terminate an algorithm when it
reaches a neighborhood of x* , we must be able to recognise

such a neighborhood numerically.

Theorem 2.1:

The first order necessary condition for x* to be a

5



local minimum point in E" of a differentiable function
f(x) 1is that the gradient vector g or Vf 1is zero at x*
where

Theorem 2.2:

The second order necessary condition for x* to be a
local minimum point is E" of a differentiable function
f(x) is that the Hessian matrix G or sz is positive
(semi-) definite at x* , where

ij ij 9x;3x
Similarly,

Theorem 2.3:

If g=0 at x* and G 1is positive definite at x* ,
then x* 1is a local minimum point of the function f(x)

These results follow simply from the well-known one
dimensional results for a function ¢(a)

Define ¢(a) = f(x + ap) where p 1is a unit vector
and note that

¢'(0) (2.1)

]
09
el

and
plGp (2.2)

¢ll(0)



and that the one-dimensional results must hold for every

possible p
We may therefore define a neighborhood of a local mini-
mum point by ||g || E, and agree to terminate an algorithm

as having located such a point if
< k
(1) [ 1g™]] < EO ; and

(ii) Gk is positive (semi-) definite. Let us term this
stopping rule I (SRI).

If a point is found where [|gk]| < E; but 6X  has
some negative eigenvalues, then the algorithm has located a
saddlepoint (or maximum).

It is normal to include rules that terminate an algo-
rithm if it is not converging rapidly enough. Conventional
additional stopping criteria are:

SRIT: k > k max , an upper limit on the number of itera-
tions, and
SRIII: ||xk - xk_n|[ < Ej ,no effective progress.

The iterated algorithms we will consider will be re-
stricted to those that construct xk+1 from xk by first

choosing a search direction p and then a step size a
X = x + ap . (2.3)
As it is difficult to consider both choices simultaneously,

we will first concentrate on the effect of the choice of p
and will define a perfect line search as one in which a 1is

chosen to minimize ¢(a) = f(xk + ap) , i.e.,
a = arg min ¢(a) . (2.4)
a

To clarify the effect of the choice of p , we will first
discuss two inefficient algorithms.



3. The Univariate Search Routine

If we select the direction of search parallel to each
axis in turn and perform a perfect line search, we can de-
fine algorithm Al.

(1) SELECT x° , k =0, J =0

(2) IFJ =NSETJ = 0;
J=J+1, k=k +1

(3) CHOOSE p as unit vector along J

(4) a = arg min f(xk + ap)

(5) TEST FOR TERMINATION: STOP or GO TO 2.

th axis

We can sketch its performance on two simple functions:

2]
X
\
— N -
x° ¥ 1 x

From the sketches we see that

(1) convergence is very rapid on nicely scaled functions,
and

(ii) convergence is very poor on badly scaled ridges; in-
deed the step size gets so small that the search fre-
quently terminates well away from x* , due to the
stopping criterion



Arithmetic Confirmation

Consider a two-dimensional eclipse centered at the

origin

2

= %(xl2 + 2a x,x, + bzx2 )

172

Select a starting point x(o) = (xl(q) , xz(o)) .  Then,
assuming perfect line searches,

1

. o
x = ( ax,

s Xy')

2
x“ = (-axz0 , d /bzxzo)
and
x3 _ (_as/bzxzo , a2/b2S o)
X
implying

xk+2 = az/bzxk k

v
—

This is a linear rate of convergence, which improves for any

b as the coupling term a - 0 , but becomes arbitrarily
poor as a + b

An even greater disadvantage than this poor rate of
convergence is the fact that this algorithm may limit cycle,
along a path with nonzero gradient. This was discovered by
Powell2 and the simplest known example is



2

f(xl’XZ’XS) = XXy ¢ XyXg oo XoXg o * (xl -7, (-x1 = 1)2

+

2 2
s - DI x5 D e g - D (xg - D2
where
2 .
(x - ¢) 5 = 0 if X < C
_ 2 .
= (x - ) if X >c
If xk = (-1 - E, #1 + E , -1 - %E) , the subsequent steps
are:
Lo 41+ E/8 , 1+ E/2, -1 - E/4)
xK*2 - (1 + E/8 , -1 - E/15, -1 - E/4)
K*3 - (1 + E/8, -1 - E/16 , 1 + E/32)
xX*% - (-1 - E/64 , -1 - E/16 , 1 + E/32)
xK*S o (01 - E/64 , 1 + E/128 , 1 + E/32)
xK*0 - (L1 - E/e4 , 1 + E/128 , -1 - E/256)
. k+6 . k
As the point x is of the same form as x~ , the cycle

repeats and gets closer and closer to the edges of the unit
cube (+1,+1,+1), while on these edges

lgql + gyl + lggl =2, f£=-1

The iteration will therefore never satisfy SRI or SRIII and
will depend upon the failsafe measure SRII. The function

10
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