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TRANSPORT PHENOMENA



Preface

This book is intended to be an introduction to the field of transport
phenomena for students of engineering and applied science. Herein we
present the subjects of momentum transport (viscous flow), energy
transport (heat conduction, convection, and radiation), and mass trans-
port (diffusion). In this treatment the media in which the transport
phenomena are occurring are regarded as continua, and very little is
said about the molecular explanation of these processes. Surely the
continuum approach is of more immediate interest to engineering stu-
dents, although it should be emphasized that both approaches are needed
for complete mastery of the subject.

Because of the current demand in engineering education to put more
emphasis on understanding basic physical principles than on the blind
use of empiricism, we feel there is a very definite need for a book of this
kind. Obviously the subject matter is sufficiently basic that it cuts
across traditional departmental lines. Our thought has been that the
subject of transport phenomena should rank along with thermodynamics,
mechanics, and electromagnetism as one of the key ‘‘engineering sci-
ences.” Knowledge of the basic laws of mass, momentum, and energy
transport has certainly become important, if not indispensable, in en-
gineering analysis. In addition, the material in this text may be of
interest to some who are working in physical chemistry, soil physics,
meteorology, and biology.
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Since the field of transport phenomena has not heretofore been recog-
nized as a distinct engineering subject, it seems worthwhile for us to
tell the reader how we have organized the material. Diverse methods
of organization were studied, and, with the help of our departmental
colleagues, we settled on the outline shown in Table I. Each topic has
been assigned a pigeonhole in a two-dimensional array in order to
emphasize the relation of each subject to other subjects in the same
row or column. Division of the material into columns labeled mass,
momentum, and energy transport allows for one method of classification,
based on the entity being transported. In the various rows another mode
of classification, based on the type of transport, is indicated. Clearly, on
the basis of this chart, one can organize a course on transport phenomena
in one of two ways: by working down the columns (Chapters 1, 2, 3, 4,
5, etc.) or by working across the rows (Chapters 1, 8, 16, 2, 9, 17, 3, etc.).
Actually, the text material is arranged in such a way that either method
may be used. The “‘column” approach is probably better for beginners,
whereas the “‘row” approach may be more suited to advanced students.

Each chapter is provided with illustrative examples which show how
to use various techniques or which give further elaboration on the text.
Discussion questions at the end of the chapter are included in an effort
to catalyze thinking about the material from several different viewpoints.
The problems at the end of each chapter have been grouped into four
classes (designated by a subscript after the problem number):

Class 1: Problems that illustrate direct numerical applications of the
formulas in the text.

Class 2: Problems that require elementary analysis of physical situa-
tions, based on the subject material in the chapter.

Class 3: Problems that require somewhat more mature analysis, some-
times involving information from several chapters or material not specifi-
cally covered in the text.

Class 4: Problems that require mathematical analysis involving Bessel
functions, partial differential equations, Laplace transforms, complex
variable, and tensor analysis.

Of these four classes of problems the first three should be appropriate
for junior and senior courses in transport phenomena; none of the prob-
lems in these classes involves mathematics beyond ordinary differential
equations.

Obviously there is more material in this book than can be conveniently
used in an introductory course. As a guide to prospective teachers of
transport phenomena, we have indicated with an asterisk (*) those sec-
tions that we feel are suitable for a well-balanced three- or four-credit
undergraduate course. Having some additional material in the book



TABLE 1.

SCHEMATIC DIAGRAM OF THE ORGANIZATION OF TRANSPORT PHENOMENA

Entity Being
Trafnsported _
Type of Transport —1

Momentum

Energy

Mass

TRANSPORT BY MOLECU-
LAR MOTION

1  VISCOSITY u

Newton’s law of vis-
cosity

Temperature, pressure,
and composition
dependence of u

Kinetic theory of u

8 THERMAL
CONDUCTIVITY &

Fourier’s law of heat

conduction
Temperature, pressure,

and composition

dependence of &
Kinetic theory of &

16 DIFFUSIVITY D 4B
Fick’s law of diffusion

Temperature, pressure,
and composition
dependence of D45

Kinetic theory of D4

TRANSPORT IN LAMINAR
FLOW OR IN SOLIDS, IN ONE
DIMENSION

2 SHELL MOMENTUM
BALANCES
Velocity profiles
Average velocity
Momentum flux at
surfaces

9 SHELL ENERGY
BALANCES
Temperature profiles
Average temperature
Energy flux at
surfaces

17 SHELL MASS
BALANCES
Concentration profiles
Average concentration
Mass flux at surfaces

TRANSPORT IN AN
ARBITRARY CONTINUUM

3 EQUATIONS OF
CHANGE
(ISOTHERMAL)

Equation of continuity

Equation of motion

10 EQUATIONS OF
CHANGE
(NONISOTHERMAL)

Equation of continuity

Equation of motion
for forced and free

18 EQUATIONS OF
CHANGE
(MULTICOMPONENT)

Equations of continuity
for each species

Equation of motion for
forced and free

i convection convection
Equation of energy Equation of energy Equation of energy
(isothermal) (nonisothermal) (multicomponent)
TRANSPORT IN LAMINAR 4 MOMENTUM 11 ENERGY 19 MAss

FLOW OR IN SOLIDS, WITH
TWO INDEPENDENT
VARIABLES

TRANSPORT WITH

TWO INDEPENDENT

VARIABLES
Unsteady viscous flow

Two-dimensional
viscous flow
Ideal two-dimensional

ow
Boundary-layer mo-
mentum transport

TRANSPORT WITH
TWO INDEPENDENT
VARIABLES
Unsteady heat con-
duction
Heat conduction in
viscous flow
Two-dimensional heat
conduction in solids
Boundary-layer energy
transport

TRANSPORT WITH

TWO INDEPENDENT

VARIABLES
Unsteady diffusion

Diffusion in viscous flow

Two-dimensional diffu-
sion in solids

Boundary-layer mass
transport

TRANSPORT IN TURBULENT
FLOW

5 TURBULENT
MOMENTUM
TRANSPORT

Time-smoothing of
equations of
change

Eddy viscosity

Turbulent velocity
profiles

12 TURBULENT
ENERGY
TRANSPORT

Time-smoothing of
equations of
change

Eddy thermal con-
ductivity

Turbulent temperature
profiles

20 TURBULENT
MASS
TRANSPORT

Time-smoothing of
equations of
change

Eddy diffusivity

Turbulent concentration
profiles

TRANSPORT BETWEEN TWO
PHASES

6 INTERPHASE
MOMENTUM
TRANSPORT

Friction factor f

Dimensionless correla-
tions

13 INTERPHASE
ENERGY
TRANSPORT

Heat-transfer coef-
ficient &

Dimensionless correla-
tions (forced and free
convection)

21 INTERPHASE
MASS
TRANSPORT
Mass-transfer coefficient

z
Dimensionless correla-
tions (forced and free
convection)

TRANSPORT BY
RADIATION

umbers refer to the

14 RADIANT ENERGY
TRANSPORT
Planck’s radiation law
Stefan-Boltzmann law
Geometrical problems
Radiation through ab-

sorbing media

This book may be siudied:
either by “columns’’
by “rows

TRANSPORT IN LARGE
FLOW SYSTEMS

7 MACROSCOPIC
BALANCES
(ISOTHERMAL)

Mass balance

Momentum balance

Mechanical energy
balance (Bernoulli
equation)

15 MACROSCOPIC
BALANCES
(NONISOTHERMAL)

Mass balance

Momentum balance
Mechanical and total
energy balance

22 MACROSCOPIC
BALANCES
(MULTICOMPONENT)

Mass balances for each
species

Momentum balance

Mechanical and total
energy balance
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will be helpful to instructors and advanced students and will, in addition,
serve as a warning to the undergraduate that the “‘boundaries of the
course” do not coincide with the “boundaries of the subject.”

Our notation is uniform throughout the text, and a table of notation
has been appended for the readers’ convenience. Unfortunately, it is
not possible to adopt notation in agreement with that used by all our
readers, inasmuch as the subject material includes several fields that
have developed independently. Generally, our notation represents a
compromise between that used by physicists and that used by engineers.

Early in 1957 the Chemical Engineering Department of the University
of Wisconsin decided, after considerable deliberation, to inaugurate a
required one-semester junior course in transport phenomena. No text-
book was available; hence mimeographed notes were prepared for the
students’ use and in the fall of 1958 were published as Notes on Transport
Phenomena. These notes have also been used at several other univer-
sities, and we have benefited immensely from the comments sent to us
by both students and teachers.

This book represents the result of an exhaustive revision of the Notes
on Transport Phenomena. The text has been completely rewritten, several
chapters have been entirely reorganized, and numerous problems and
examples have been added. Most of the changes were made in an effort
to provide a better text for beginning students.

R. ByroN Birp
WARREN E. STEWART
EpwiN N. LicHTFOOT

Madison, Wisconsin
June 1960
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