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Chapter 1 Introduction

As commercially produced polymers become more of a commodity
product, rather than a speciality product, there is a growing
need for a more detailed understanding of the phenomena taking
place in the polymer reactor. One quantitative form of this pro-
cess understénding is the mathematical model, which can represent
the detailed behaviour of a polymer reactor. The mathematical
model is an invaluable tool for developing the optimal design
and optimal control system for these reactors.

Because polymerization reactions are usually very complex in
nature, a reasonable amount of mathematical sophistication is re-
quired for detailed modelling. This paper will be devoted to re-
viewing some of the mathematical techniques which prove useful in
constructing these models.

The second chapter deals with methods of producing the molecular
weight distribution (MWD) of both homopolymer and copolymer systems
by analysis of the kinetic mechanism. The third chapter discusses
the less detailed characterization of the polymer available through
MWD moments, and develops straightforward methods for deriving the
moment equations. Chapter four considers the prediction of co-
polymer composition distributions and chain sequence distributions
from the kinetic scheme. A number of practical examples are given
in Chapter five in order to emphasize to the reader that all of
these mathematical manipulations are in fact practical. Finally,

a number of more complicated polymerization reactor systems <=
some of which require further work to produce an adequate model

are discussed.



Chapter 2 Techniques for the Calculation of Differential Molecular

Weight Distributions

2.1 Differential Distributions

e e e et

The distribution of molecular weights in a polymeric material
may be represented as a density function or '"'differential' dis-
tribution. For example, the comcentration of polymer of chain
length n, Pn is shown as a discrete differential distribution in
Figure 2-1. Although there are no values of‘Pn except for integer
values of n, a smooth curve results from the numerous points on
the graph. Thus we shall use a continuous graph to represent the
differential distributions in this paper.

There are a number of differential distributions which fall
under the generic title "molecular weight distributions'. The
plot of P vs n shown in Figure 2-1 is more precisely the ''number
chain length distribution'" (NCLD), because it represents the
chain length distribution'with respect to the number of molecules
(perunit volume) . Simiiarly, the "weight chain length distribution"
(WCLD), shown in Figure 2-2, represents the chain length dis-
tribution with respect to the weight of molecules (per unit volume),
nwP_. There is also a "number molecular weight distribution"
(NMWD) , shown in Figure'2-3, in which the number of molecules/
unit volﬁme,Pn)is given as a function of molecular weight. Finally,
the "weight molecular weight distribution" (WMWD) is shown in
Figure 2-4. '

These distributions become rather more complicated for co-

polymerization systems where there are two or more chain lengths



Figure 2.1 The number chain length distribution (NCLD)
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Figure 2.2 The weight chain length distribution (WCLD)
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Figure 2.3 The number molecular weight distribution (NMWD)
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Figﬁre 2.4 The weight molecular weight distribution (WMWD)
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and molecular weights of interest. These systems will be discussed
in more detail in section 7 of this chapter.

The next few sections will deal with a number of techniques
for calculating the differential distribution from the reactor
modelling equations. In section 6 we shall consider a statistical
approach to fhe problem which only indirectly used the kinetic
rate expressions for the system.

i very brief but excellent literature survey of these matha-
matical techniques was published recently by Amundson and Luss [1].
Amore general review paper having a good discussion of these
techniques was published by Chappelear and Simén[Z]l The mono-
graphs by Bamford et al. [ 3] and Peebles [4 ] have a very com-
prehensive compilation of case studies in which the MWD are de-
rived from the kinetic equations. The reader should refer tolthese

papers and monographs for further applications of these methods.

2.2 Numerical Integration

Let us consider the very simple mechanism which might arise
in anionic polymerization with very rapid initiation.
Pn + Ml _—p Pn+1 - ) 5 1,2.0; (2.2-1)

k
P

where P represents the growing polymer chain and M; is the

monomer. The polymer material balances for a batch reactor yield

the equations

ot .12
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dpP
n = - L =3
T kle(Pn P2} P.(0). 0 (2.2.3)

with the additional monomer balance
dM1 %
=<k M I P M, (0) =M, g (2.2.4)

dt B et

This kinetic scheme is very simple, but has the essential features
necessary to illustrate the techniques we shall be discussing.
One very obvious approach to the problém is to numerically
integrate the modelling equations (2.2.2-2.2.4) to produce the
concentrations Pn(t), Ml(t). A very detailed study of this
approach was published by Liy and Amundson [5] in which both
homopolymerization and copolymerization systems were simulated by
direct numerical integration. A general purpose program, REMECH,
has been developed by Detar [6] and applied to the numerical in-
tegration of a number of polymer systems [7-8]. There have been
a large number of other applications of this approach to a wide
vafiety of polymer systems (eg; 9-11). \

A simplication arises when Eq'ns 2.2.2-2.2.3 are summed to

produce

& .o 2.2.5)
" Y (

“ .
where P = § ) B Thus for this problem P = P;4 at all times. The
fact that P can be determined independently means that Eqn's (2.2.2~-

2.2.3) can now be solved sequentially rather than requiring

gimultaneous solution. This type of simplification can be applied
rlooked in a number

to most polymerization systems and has been ove

of the papers cited above.
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Another transformation which is useful is the stretching of

the time variable by the relation

@
re ]k (2.2.6)
(o)

This reduces 2.2.2-2.2.3 to

dPl
ride iy pl(O) = PlO (2.2+7)
dPn
g - "(Pn - Pn-l) Pn(O) w ) " “ne0 (2.2.8)

which can be solved in terms of the stretched variable 7. The
influence of monomer changes, temperature variations, etc. only
appear in the relationship (2.2.6) between 7 and batch time, t.
One could now solve Eq'ns (2.2.7,2.2.8) sequentially for n
as large as desired. A detailed example of this approach will be

given in Chapter 5.

2:3. Generating Functions

An approach which has wide use in polymer kinetics and which

can be used to produce the differential MWD is the generating
function technique. Scanlan [12] appears to be the first to sug-
gest it's use in polymer systems. Bamford and Jenkins [13] and
Liu and Amundson [14] give rather good discussions of its applica-

tion to polymerization.

Let us consider the system (2.2.7,2.2.8) written in terms

of t (we suppress the tau for the moment).



£33

dp '

1 ¥ 2+3.%
vl P1(0) = Pyg ( )
dP
_.—n- = - = 2.3.2
. o e o Pn(O) 0 n=22 ( )

The generating function for this system is defined as

G(s,t) = T s" P (t) (2.3.3)
P

T
The equations for G(s,t) in the batch reactor for the simple
system (2.3.1-2) can be gotten by multiplying each equation by s”

and summing over n to yield

QQ&%;El = (s-1) G(s,t) ; G(s,0) = sP . (2.3.4):
This can be immediately solved to yield
G(s,t) = exp (-t) sP10 exp (st) (2.3.5)
which when expanded in a power series in s gives
A @ n-1
G(s,t) = Pgexp &) I {EL_— o° (2.3.6)
n=1 (n-1)!
by comparison of this | with the definition (2.3.3)‘'one gets
e n-1 -
P_(t) = Py exp(-t) B __ ;=1 (2.3.7)
n 10 ERLY .

It is not always necessary to expand G(s,t) in a power series to
get the solution Pn(t) because a table of generating functions and
their inverses can be found in Erdelyi [15]. ‘

A number of recent papers have used generating functions to
generate the differential distribution [eg. 16-17]. Some further
applications of this technique will be discussed later in this

paper.
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2.4. Z Transforms

A technique which is nearly identical to the generating function

technique involves the use of Z transforms [18] which are defined as

F(z) = é Wi o Gt 1

and which can be applied in the same way as the generating function.
If we consider again the simple example (2.3.1-2), then by taking the

Z-transform one obtains

df(z.0) - (- 1) F(z,t) 5 F(2,0) = E%Q (2.4.2)
whose solution is ‘
F(z,t) = E%Q exp (-t) exp (%) (2.4.3)
expanding into a power series in 1/z
© n<k P
Fiz,t) = P, exp(-t) & -cyer 2 (2.4.4)

n=1

and comparing coefficients, one obtains the differential distribution

-1
P_(t) = Plo exp (-t) ﬂ:ln——— e - (2.4.5)

One possible advantage of Z-transforms over the generating function
is the existence of more extensive tables of the Z-transform and-
inverses [18]. Abraham [i9-20] and Kilkson [21-22] have applied
this method to a number of practical problems. The most interesting
recent application of this method was reported by Chen and Spencer

[23]. Their work shows that it is possible to extract numerical



