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PREFACE

Progress in the theory of nonlinear oscillations during the last
decades was based chiefly on classical methods developed in the late
19th and early 20th centuries. This is illustrated by developments
in the method of small parameter in monographs by Andronov,
Vitt, and Khaikin |5], as well as Bulgakov [31], and Malkin [111a, bl,
developments in the method of averaging based on the Van der Pol
method (Bogolyubov and Mitropolskii [22, 127d], Volosov and
Morgunov [204]), by a pew perturbation theory (Arnold [215]) based
on classical perturbation methods, and by the Kamenkov V-function
method [83, vol. II] based on fundamental results obtained by
Lyapunov and Chetaev.

At the same time, new methods penetrated the theory of nonlinear
oscillations: asymptotic methods developed by Bogolyubov, Krylov,
and Mitropolskii [22, 102, 24, 127c¢], analytic functions methods
introduced by Krasnoselskii [97a, b, 297a-d] and his school [98, 99],
the method of point transformations developed by Andronov and
Vitt [4, 5], and Neimark [137a, b], the stroboscopic method (Minor-
sky [125a, b, cl); the Gantmacher-Krein oscillation method [62],
and the method of determining conditionally periodic motions
introduced by Kolmogorov and Arnold [215, 286]. The idea of
a new method is relative, of course, if we recall that Euler, Lag-
range, and Laplace used averaging long before Van der Pol. This
remark, however, is meant for future investigators.

Part One of the book is devoted to the combination of the Lyapu-
nov, Poincaré, and averaging methods as applied to the analysis
of oscillations in Lyapunov and pearly Lyapunov systems. A topic
of interest is the investigation of oscillatory systems represented by
analytic autonomous differential equations having no small param-
eters. The Lyapunov method of finding periodic solutions is known
for the case of a conservative system (Lyapunov systems). The
periodic solution obtained by means of the Lyapunov method de-
pends, however, only on two constants of integration. Therefore it
cannot in principle be a general solution for systems with more
than two degrees of freedom; moreover, cases are known when the
Lyapunov method fails. Chapter I, Section 1 discusses a transfor-
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mation, outlined by Lyapunov, of an initial system whereby the
system’s order is lowered by two, a parameter equal to the square
root of reduced energy is introduced, and the system becomes nonau-
tonomous. If this parameter is sufficiently small, the methods of
small parameter can be applied to the transformed quasilinear
nonautonomous system.

This modification of the method proved effective in a number of
problems, in particular, the problem of energy transfer. The first
step is to determine the initial periodic mode and find its instability
regions in the space of the system’s parameters using the theory of
parametric resonance [111b, 80]. The second step consists in deter-
mining the periodic modes that appear at critical values of the param-
eters and are, of course, distinct from the initial mode. This step
uses the above-mentioned transformations and the Poincaré method
of finding periodic solutions for nonautonomous systems. Other.
methods of small parameter can also be used with the transformed
system, for instance, the method of averaging; in this case it becomes
possible to carry out the third step of analysis, namely, investigation
of the transient process, often referred to as energy transfer. All
three steps are illustrated in Chapter III for the spring-loaded
pendulum, pendulum subject to elastic suspension, and betatron
oscillations of particles in cyclic accelerators with weak focusing.
Note that the energy transfer problem is based on the general theory
of oscillatory chains presented in Chapter II.

‘The next point is the application of perturbation theory (Chap-
ter IV, Section 1). We assume that an. unperturbed Lyapunov-type
nonlinear autonomous system of order 2k -+ 2 is perturbed by an
snalytic, and sufficiently small in norm, damping. A transformation
of the perturbed system "is carried out in which the unperturbed
system is converted into a quasilinear nonautonomous system of
order 2%k. Its solution is assumed known for a sufficiently small
(compared to unity) square root of the initial value of the reduced
energy of the system. In order to find the first- and higher-order
corrections of the corresponding solution (i.e. with the same initial
conditions) of the perturbed system, we must write a complete
set of variational equations, that is, a sequence of nonhomogeneous
systems of linear differential equations of order 2k -+ 1 with variable
coefficients. The complete system is given in operator form for the
general finite-dimensional case of analytic perturbation theory.
According to Poincaré, the integration of the complete system is
reduced to quadratures provided a general integral of the unperturbed
system is known. - ~
" The last section of the first part of the book treats oscillations in
Lyapunov-type systems. We present here some of the results obtained
by Nustrov [336a, b]; the table of contents gives a fair idea of the
subjects discussed. i
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The second part of the book is also based on the results achieved
in ope of the classical methods developed in the years spanning the
late 19th and early 20th centuries, the theory of normal forms (Poin-
«, caré, Lyapunov, Dulac, Siegel, ' Moser, Arnold, Pliss, and

others). : [ <311 e ‘

Brjuno [238a-v] obtained general results in the theory of normal
forms of nonlinear analytic autonomous systems of ordinary differ-
ential equations. The method was first introduced by Poincaré
[149a]. The theory is applied in the second part of the book to analyze
oscillations. described by such equations. .

- .Chapter V gives the elements of the theory of normal forms required
to understand the material.

In Chapter VI we single out the class of problems in which the
normal form has the simplest form as given by the Poincaré theorem
‘and .in which the general solution of the Cauchy problem can be
obtained at each step of the approximation efficiently. This class
covers damped oscillatory systems (asymptotically stable in linear
approximation) with analytic nonlihearities of the general type.
The results are illustrated by two examples of mechanical systems
with one and two degrees of freedom.

In the next chapter we consider third-order systems with two pure
imaginary and one negative (Chapter VII, Section 1) or vanishing
(Chapter VII, Section 2) eigenvalues of the linear part. Chapter VII,
Section 1 concludes with an investigation of oscillations in
electromechanical systems with “one and a half” degrees of
freedom. .

Finally, normal forms and resonances are studied in analytic
fourth-order (Chapter VIII, Section 1) and sixth-order (Chapter VIII,
Section 4) autonomous systems with two and three pairs, respectively,
of various pure imaginary (in general, nonconservative) eigenvalues
of the matrix of the linear part. The Cauchy problem is solved in
the general case with quadratic terms included. The results derived
from the Molchanov and Bibikov-Pliss stability criteria are discussed
for third-power normal forms. Two methods are suggested for con-
structing the Lyapunov function for the case of conservative systems:
a direct method, and one based on Chetaev’s linear combination of
integrals obtained by means of third-power normal forms. The
results are applied to the Ishlinskii problem concerning the motion
of the gyroscopic frame of a sensor element of a gyroscopic compass
(Chapter VIII, Section 2). v

In the first approximation, the two parts of the book are inde-
pendent. : ‘

The book is aimed at engineers with a strong mathematical back-
ground, scientists working in mechanics and applied mathematics,
and undergraduate and postgraduate students of Applied Physics
and Physics and Mathematics departments.
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The book is based on a course of lectures presented by the author
to engineering students at the Mechanics and Mathematics Depart-
ment of Moscow University in 1956-1976.

If the author has been successful in giving the reader an insight
into the theory of oscillations and stability, he owes this primarily
to the late Boris V. Bulgakov and Nikolai G. Chetaev.

The formulas within each subsection of the text are numbered
without citing the section number. If a formula of another section
is cited, the number of this section is added to the formula number;
if the formula cited belongs to a different chapter, the number of
this chapter is written in front of the section number and is sepa-
rated by a comma. The same rule holds when sections and subsections
are cited.

V. Starzhinskii
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PART ONE

OSCILLATIONS
IN LYAPUNOV SYSTEMS

* K K

CHAPTER 1

INTRODUCTION

§ 1. Transformation of Lyapunov Systems

The order of Lyapunov systems ([108al, §§ 33-45; [111a], Ch. IV;
[111b], Ch. VII) can be reduced by two by using the energy integral
and choosing, following Lyapunov, "the polar angle in the plane of
critical variables as*the independent variable. The transformed
system [371e-g, j, n, s, t] is nonautonomous and includes a parameter
equal to the square root of the reduced constant energy. If this
parameter is sufficiently small compared to unity, the Poincaré
method ([188al, vol. I, Ch. III) of determining periodic solutions
of nonautonomous systems (see Section 2 and Chapter 111 of this
book) can be applied to the transformed system. The application
of the Poincaré method is of special interest when the Lyapunov
method ([108al, §§ 34-45; [111al, §§ 26-29; [111b], Ch. VII, §§ 1-4)
cannot be applied to finding periodic solutions of the initial system.

In general, hoWever, other methods of small parameter, for exam-
ple, the method of averaging [150, 22, 127d, 204, 66al, can be applied
to a transformed system. Since this allows us to not only determine
periodic solutions but examine a broader range of problems, such
as transient processes and so on, the usefulness of transforming
Lyapunov systems becomes apparent. This aspect of the problem
is discussed in Chapter III.

"1.1. General case [371 e-g, j. s]l. We consider a system of Lyapunov
differential equations

d g : » 3
—Ef—=—ly+X(-2', Y, &y, ...,.‘L'n),

d :
%:M-*—Y(x, YUy Tyy cony xn)v g

dzg

"dT':Puzl'f‘. fy 8o +pan§n+xa (1.‘, .l/':r~ S TR zn) “1)

(S = -1., e .,-n)r
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Here A, p,, are real constants, and X, Y, X,, ..., X, are real
analytic functions of =z, y, zy, ..., x, whose expansions begin
with terms of order not lower than two. Lyapunov proved the
following theorem ([108a], § 42): if

(a) the equation det || ps, — 84x || = O has no roots of the type
mAi (m =0, +1, +2,.. .., i = V——i), and

(b) it is possible to find power series in an arbitrary constant ¢ satisfy-
ing system (1.1)

z=cxV 4224 ...,
y—_—cy(!)_i_CZy(Z)__}_ o otals
ez P - ... (se=t; ..., B)) (1.2)

where 2®), y®, z®, . . 2® (k =1, 2, ...) are periodic func-
tions of t with the same period, and z® (t,) = y™ (t,) = 0 for k > 1,
then the series found are absolutely convergent if ¢ remains below a cer-
tain limit and for these values of ¢ the series are a- periodic solution
of the initial system (1.1).

Let us analyze the cases in which at least one of these conditions
is violated and the Lyapunov theorem consequently does not hold.
If condition (a) is violated, we have the “resonant” case discussed
by Ryabov [355a]. Condition (b) is violated if the expansions of
X, Y, Xy, ..., X, do not contain the terms 2z¥ and y¥ (v =
= 2, 3, . ..). In the latter case each coefficient of each of series (1.2)
will be identically zero at each step of the calculation.

In Chapter III we demonstrate, however, that even in these cases
it is possible to find periodic solutions of system (1.1) provided they
exist. With a view to the remarks made in the introduction to this
section, we shall consider-a transformation of a Lyapunov system
not bound, in general, by conditions (a) and (b). We assume in what
follows that system (1.1) possesses a- first integral,* which is inevi-
tably an analytic function of z, y, #;; ..., z, ([108a], § 38; [111al,
§ 25; [111b], Ch. VII, § 1) of the type

H=224+ P+ W, ..., 2)+ 8@ ¥ 2, - .o z,) = p
o> 0),.0 .o ¥ (1.3)
wheré W is a quadratic form. The Lyapunov substitution
z = p cos ¥, -
y = p~sin"5,
Ly = 0% i (=15 .. i) (1.4)

PE A

* This is included in the definition of a Lyapunov system.
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transforms system (1.1) and the first integral (1.3) to the form
ap M-
= =0*R(p, 9, 2), ’
2 ;
2 A48, 0, 2),

—d_t‘=’Palzl+ R Panzn+ pZs (ps O, 2) (1.9)

dzg
(S:_—_l, esny n); =,
P21+ W (2)+pS (p, Oy 2)]=p% (1.6)
Here R, 0, Zy, .-y Zy, and S are analytic functions of the YVari-
ables p, z;, - . .y 2z, in some neighbourhood of zero values whose
expansions in powers of p, in general, begin with zero-power terms;
the coefficients of power series in p, 25, . . -, Zn 2I@ periodic functions

of © with period 2xn that are polynomials with respect to cos ¥ and
sin ¢
¥ 8 R = p?[X (p cos 8, p'sin ¥, pz) cos 9
4+ Y (p cos &, p sin ¥, pz) sih 4,
© = p?[—Xsin® + ¥ cos
Z, = p~2X, (p cos®, psind, pz) — z,R (p, O, 2)
(macdyou . o),
S=p3S3(pcosd, p sin ¥, pz) (1.7)
and z is a vector with the components z;, . . ., Zn- J
We assume néw that 4 + W > 0 in (1.6). This holds true for all
values of z;, . . ., 2, if Wisa positive-definite quadratic form (this
is true for the energy integral) and for sufficiently small values of -
Zy, « - -» 2 in the general case. We solve equation (1.6) with respect

& top for one selected branch of the analytic funciion; specifically, we
presume only the arithmetic value of the root:

o=(14+W) " p {1 — LU mTrS0, 0 p

+[ 4wy 820, 8 9)—5 A+ W20, 9, alee}
+o@H. (1.8)

Assuming p to be sufficiently small, we introduce phase time 9,
by dividing the last n equations (1.5) by the second
a5 Part1+ - - -+ PanZn+0Zs (0, 8, 2)
3 ad A+p8 (p, 9, 2)
(S_='l! ey n).




