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A Complex Valued Hebbian Learning Algorithm

Maria Cristina Felippetto De Castro, Fernando César C. De Castro, José Nelson Amaral, Paulo
Roberto G. Franco

Abstract— We present a new training rule for a single-
layered linear network with complex valued weights and ac-
tivation levels. This novel network can be used to extract
the principal components of a complex valued data set. We
also introduce a new training method that reduces the train-
ing time of the complex valued as well as of the real valued
network. The use of the new network and training algo-
rithm is illustrated with a problem of compressing images
represented in the spectral domain.

Keywords— Generalized Hebbian Learning, Principal
Component Analysis, Complex Domain Neural Networks.

I. INTRODUCTION

In this work we develop a complex valued version of
the Generalized Hebbian Algorithm (GHA) proposed by
Sanger{14]. GHA combines the Gram-Schmidt orthonor-
malization [1] with the single linear neuron model intro-
duced by Oja [11].

A complex valued GHA finds application in the extrac-
tion of principal components of a complex data set, such
as those encountered in radar and sonar systems or com-
munication systems(6], [7].

We use a complex valued artificial neural network with
a single layer of linear neurons trained according to a Heb-
bian learning rule to perform Principal Components Anal-
ysis (PCA) [2], [3], [8], [10], [15]. The learning rule has
been extended to accommodate complex values. The data
and the synapse weights are also complex valued. After
the convergence of the Complex Generalized Hebbian Al-
gorithm (CGHA), each neuron of the network yields the
following: i) A set of complex synapse weights that cor-
responds to the components of the eigenvector associated
with an eigenvalue of the input data set correlation ma-
trix; and ii) An output value that is the principal compo-
nent which represents the projection of the complex input
vector over the associated complex eigenvector.

The set of eigenvectors of the correlation matrix forms
an orthonormal basis for the modes of variation of the in-
put data set [1], [10]. The eigenvalue associated with each
eigenvector is equal to the variance of the projection of
the data set in the direction of that eigenvector. Also, the
variance of the data set projections are local maximain the
directions of the eigenvectors [13], [12].

Principal Component Analysis (PCA) in the complex do-
main follows similar rules as those for PCA in the real
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domain. Assume that we have a complex data set X com- -
posed of a set of zero-mean, complex vectors. The correla-
tion matrix is Cx = (XXH), where () is the expectation
over the set operator and X# denotes the conjugate trans-
pose of X. Cx represents the average energy over all pos-
sible combinations of two data elements in X. Because the
correlation matrix of any complex data set is Henmtlan
all its eigenvalues are real [1].

II. Tue CoMPLEX TRAINING RULE

Consider a complex data set composed of a set of zero-
mean, complex vectors. This data set constitutes the neu-
ral network training set. The goal is to extract the principal
components of the data set.

Figure 1 shows our neural network composed of p com-
plex input nodes and a single output layer containing m
complex linear neurons. Let X (n) represents the n-th vec-
tor of the training set. The presentation of the vector X (n)
to the network constitutes the iteration n. The presenta-
tion of one complete training set constitutes one epoch.

X,m

X

X m

Xa(n)
Y(m_1)(n)

w,’:,_,L_,(m

x(p~1 )(")

Fig. 1. The Complex Valued Neural Network Architecture.

For the n-th complex vector X (n) presented to the neural
network, the complex output value Yj(n) of neuron j is
given by equation (1).

Yj(n) = Z i(n)Xi(n (1)
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where W;i(n) is the complex weight of the synapse that
connects the i-th input node to the j-th output neuron at
iteration n and * denotes the complex conjugate operator.

The synapse weight vector Wj(n), associated with neu-
ron Nj, is updated according to

Wji(n+1) = Wji(n) +

b
Y7 (n)[Xi(n) =Y Wii(n)Ye(n)] (2)

k=0

After achieving convergence for all neurons, we have the
m eigenvectors represented by the synapse vectors W and
the m neuron output values Yj(n) that represents the prin-
cipal components. Observe that the weight update (equa-
tion 2) contains operations that cannot be directly per-
formed with the connections shown in the network repre-
sentation of Fig. 1.

II1. ProPERTIES OF THE CGHA

To understand how the single layer linear neural net-
work trained by our complex valued version of the Gen-
eralized Hebbian Algorithm performs principal component
extraction, consider the architecture shown in Figure 1. For
simplicity, assume that the neural network is formed by a
single neuron Np. The pre-synaptic signal X(n), the post-
synaptic signal Yp(n) and the synapse weight Wp(n) are
complex valued. The neuron output Yg(n) for the iteration
n, due to the input vector X (n) is given by

Yo(n) = X7 (n)Ws (n) = W5 (n)XT (n) &)

As in the Hebbian rule, in the CGHA the synapse weight
Wo(n) is modified based on the correlation between the pre-
synaptic signal X (n) and the post-synaptic signal Yo(n).
From equation (2), and with AWy(n) = Wo(n+1)—Wo(n),
the synapse weight update is given by

AWo(n) = 0 {Ye (W)X (n) - o) Wo(m)} (@)
where the positive constant 7 determines the learning rate.
The term |Yy(n)|* Wo(n) is the complex equivalent to the
Oja deflation term proposed to stabilize the algorithm [2],
(11].

At convergence the expected change in the synapse
weights is zero, i.e., (AWy(n)) = 0. Thus, taking the
expected value of both sides of equation (4), and using
equation (3) we obtain

(nlX (n) X7 (n)Wo(n)—

Wl (m) X (n) XH (n)Wo(n)Wo(n)]) =0 (5)

Notice that in equation (5) 5 is deterministic, the vec-
tors X(n) and Wo(n) are statistically independent and
(X(n)X#H (n)) is the covariance matrix C;. Thus, we can
rewrite equation (5) as

C:q0 = (95 Czq0)0 (6)
where qo = (Wo(n)) is a constant vector. Now, let
(@ Czq0) = Ao, where Xg is a scalar. Therefore,

Czqo0 = AoQo (7)

From equation (7), qo is an eigenvector of the correlation
matrix C: and )g is the associated eigenvalue. In the case
of several neurons, due to the deflation of the input data
X (second term of equation 2), the synapses vector of each
neuron will converge to the respective eigenvector of C.
The synapse vector of the p-th neuron converges to the
eigenvector associated with the p-th highest eigenvalue of
C:. Thus, after the convergence of the CGHA, the synapse
weight vectors of the neural network represent the complex
eigenvectors of the input data set correlation matrix C-.

IV. THE TRAINING WINDOW

When the complex valued algorithm presented in sec-
tion II is applied to the network of Figure 1 to perform
principal component analysis, a neuron Nj enters into the
final stage of the convergence process towards the associ-
ated eigenvector only after the convergence of the neuron
N;-1 (2], [10]. After the synapses of a particular neuron
have converged to the respective eigenvector, the algorithm
should not perform any further synapse updates on that
neuron. Because only few neurons, those immediately ad-
jacent to the converging neuron N, will be near the con-
vergence point, the updating of the synapse weights of the
whole set of m neurons leads to unnecessary computations.

To avoid updating the synapses of all neurons that are
not ready for convergence yet, we propose a new algorithm
that we call Training Window Algorithm. The goal of this
algorithm is to reduce the computational cost of the CGHA
training!. This goal is achieved by applying the CGHA
training only to W, < m neurons, where'W; is the training
window size. For instance, if neuron N, is the first neu-
ron in the training window, the CGHA is applied only to
neurons N, Ney1,---, Negw,—1. Once the neuron N, has
converged, the window is slid down by incrementing the
value N.. This process goes on until all m neurons have
converged.

In [4] we give an expression for the reduction of the com-
putational complexity of the training when the Training
Window Algorithm (TWA) is used. This reduction of com-
plexity v is defined as the ratio of the CGHA complexity
using TWA to the CGHA complexity without TWA. v isa
function of the window size W;, the number of neurons m
and the number of inputs p. Table I shows the complexity
reduction « for different window sizes used to train a neural
network with 32 neurons and 64 input nodes.

When the weight vector W; of neuron N; have converged
to the eigenvector q;, additional training will not change

I Notice that this training method is also suited to the real valued
GHA
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W, | 32 16 8 4
B 1 | 0.726 | 0.414 | 0.219

TABLE I
TRAINING WINDOW ALGORITHM COMPLEXITY REDUCTION FACTOR v
AS A PUNCTION OF W,, p = 64 AND m = 32.

the norm ||W;|| [10]. In our experiments we assume that
the weight vector of a given neuron N; has converged if the
change in ||W;|| averaged over three epochs is less than 0.1
%.

V. EXPERIMENTAL RESULTS

In this section we present experimental results from the
application of our complex learning rule to image compres-
sion [2], [3]. The training set is obtained from the spec-
trum of the image “Lenna”, without the redundant conju-
gate spectral components. Discarding the principal compo-
nents and complex eigenvectors associated to the smallest
eigenvalues and storing those associated with the largest
eigenvalues we can achieve data compression with reduced
information loss [2], [13], [12], [10].

We start with a 128 x 128 pixel image with 256 levels
of grey. First the pixel values are normalized to the inter-
val [0, 1.0], and then the image is converted to the spectral
domain through a two-dimensional Discrete Fourier Trans-
form. We discard the conjugate spectral components and
divide the remaining half spectrum into 128 small 8 x 8
frames. Each frame is read from left to right and top to
bottom, resulting in one 1 x 64 training vector. The com-
plex data set mean vector X is subtracted from each train-
ing set vector before the training process.

We use a neural network with p = 64 input nodes and
m = 32 neurons. Both the real and imaginary parts of
the synapse weights of the neural network are initialized
with random numbers generated uniformly in the interval
[-1.0,1.0]. The initial learning rate 7 is set to 1 x 10~°.
At the end of each epoch we update 7 according to the
inverse..of -the largest eigenvalue [2], [3], [6]. The neural
network training is performed by presenting the training
set for several epochs until the synapses converge to the
eigenvector. It is important to note that the training set is
shuffled at the end of each epoch.

After achieving convergence for all 32 neurons, we store
the compressed image spectrum defined by the 64 x 32 ma-
trix @ formed by the complex eigenvectors, the 1 x 64 com-
plex mean vector X and the 128 x 32 matrix Y formed by
the neural network output to each training vector. The
compression ratio obtained is 0.76 with no additional tech-
niques, such as entropy coding. To decompress the image
we obtain the estimated half spectrum X = YQH, add X
to each 1 x 64 vector of X, restore the conjugate spectral
components and apply the inverse two dimensional Discrete
Fourier Transform.

Figure 2 is the original image and Figure 4 is the respec-
tive decompressed images using the new complex valued
algorithm. In Figure 3 we present the eigenvalues obtained

with the real valued algorithm (identified as GHA in the fig-
ure), and with the complex valued algorithm (identified as
CGHA). The real valued Generalized Hebbian Algorithm
is applied to the original image represented in the space do-
main. Notice that the eigenvalue decreasing ratio is higher
for the complex valued algorithm than for the-real -val-
ued one, which implies that for the image in Figure 2, the
complex valued algorithm concentrates more energy in the
first eigenvalues than the real valued one. We might infer
that the new-algorithm will retain more information than
the original Generalized Hebbian Algorithm for the same
number of principal components stored.

For images with small details and high contrast regions
the new complex valued algorithm yields a higher Peak Sig-
nal to Noise Rate than the original real valued algorithm.
Such images have a broad and smooth spectrum [9], which
implies in a high correlation between the frames in the spec-
tral representation of the image. In images with less con-
trast, such as “Lenna,” both algorithms yield similar Peak
Signal to Noise Rates. Another advantage of the complex
valued algorithm proposed for image compression is that
the use of frames in the frequency domain' prevents the
blocking effect, often present in decompressed images([9],
[10]. + ] 1 ad .

Fig. 2. .Original image Lenna.

GHAEQv.
-
- 1
CGHA Egv.
ax103
(X .
1
°
0 3 0 13 » E) x

Fig. 3. GHA and CGHA cigenvalues distribution of the image in
Fig. 2
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Fig. 4. Decompressed image of Fig. .2 using CGHA (32 eigenvectors).
The PSNR of this image is 37.8dB. The PSNR of the GHA de-
compressed image is 37.3dB.

V1. CONCLUSION

Our Complex Valued Generalized Hebbian Algorithm
can be used to extract the principal components of a
complex valued data set. Although we demonstrated our
method with an image compression application, complex
PCA can be applied to other classes of signal processing
problems such as seismic analysis, radar and sonar signal
processing and communication systems. We also present
a new training method for the single layer linear network
that can be used in both the complex valued and the real
valued Hebbian Learning Algorithm.
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Rescaled Simulated Annealing

L. Hérault, CEA-LETI, Grenoble, FRANCE

Abstract— This paper pr ts a new metah istics called
rescaled simulated annealing (RSA). It is based on a generic
modification of the Metropolis procedure inside the simu-
Jated annealing (SA) algorithm. This modification consists
in rescaling, before applying the Metropolis criterion, the
energies of the states candidate to a transition . The direct
ac q is an 1 tion of gence, by avoiding
to dive and escape from high energy local minima. Asymp-
totic results are established and favorably compared to the
famous ones due to Mitra and al. for SA [13]. Some practi-
cal implementations are presented for the Traveling Sales-
man Problem and results are compared to those obtained
with SA. Less transitions need to be tested with RSA to
obtain results of similar quality. As a corollary, within a
limited computational effort, RSA provides better quality
solutions than SA.

Keywords—Combinatorial optimization, meta-heuristics,
rescaled simulated annealing, simulated annealing, Metropo-
lis criterion, asymptotic results, recursive neural networks,
traveling salesman problem.

I. INTRODUCTION

EVERAL metaheuristics have been developed over the

past 15 years to tackle hard combinatorial optimiza-
tion problems or learning in neural networks. The simu-
lated annealing (SA) is one of the most popular because
of its ease of use and of the asymptotic results of conver-
gence to optimal solutions. It is extensively described in
[2]. Unfortunately, it is still too slow to be convenient in
many applications. Some current attempts to practically
overcome these limitations are presented in [6].

Some involve the use of a modified cooling schedule. The
most popular ones are the geometric reduction of the tem-
perature and a cooling schedule due to Lundy and al. [12],
but more elaborate cooling schedules have been proposed,
as reported by Aarts and al. [2],

Other attempts are based on parallel processing [1], [4],
[15], (8]

Some other uses a modified Metropolis procedure inside
SA. Anily and al. [3] have proposed the use of a biased ver-
sion of the Metropolis procedure due to Hastings [10], to
improve the computational performances while keeping de-
sired asymptotic properties. This algorithm has been used
in some applications but needs a good a priori knowledge
of the energy landscape [5].

We propose in this paper a new algorithm, also based on
a modified Metropolis procedure, called rescaled simulated
annealing (RSA), which needs less computational efforts
than SA and no a priori knowledge of the energy landscape.
Asymptotic results are established and favorably compared
to the ones developed by Mitra and al. concerning SA [13].

The idea of RSA is to modify the Metropolis criterion
in order to be “patient” during the search. In fact, instead

Address of the author: CEA-LETI (Systems Dpt.), CEA-G, 17 rue des
Martyrs, F38054 Grenoble Cedex 9. E-mail: Laurent.HeraultQcea.fr
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of diving into low energy states as soon as possible as SA
does (and thus loosing a lot of transitions to escape from
high energy local minima), at each temperature step, the
local search evolves in an energy “slice”, around a target
energy. A Monte-Carlo procedure let the system evolve
freely towards a stationary distribution such that the most
probable states are around a target energy.

The paper is organized as follows. Section Il describes
RSA. Section III presents asymptotic results of the algo-
rithm. Section [V presents experimental results and com-
parisons between SA and RSA, applied to the traveling
salesman problem.

II. DESCRIPTION OF THE ALGORITHM
A. Definitions

The following definitions are used in this paper:
o T: set of states
o For any state i € T, its associated energy E; is supposed
positive.
o Eope: the least energy; Eope 2 minjer E,
e Tope: subset of T containing the optimal states.
o Pij(k — 1,k): probability that the outcome of the k-
th tral is j, given that the outcome of the k — 1-th tral
is 1. Also called transition probability. P = (P;;) is the
transition matriz.
o 11(P): coefficient of ergodicity of a matrix P:

1 n
n(P) & g max {leu - P,II}
! t=1

Obviously, 1 (P) < 1.
« Let cx be the temperature at the k-th tral. The transi-
tion probability is defined by:

(v

Gij(ck)Aij(cx) Vi#i

Pi(k—1,k) 2 { 1 =3 1 Galex)Aulex) j=1

()

where Gi,(ck) is the generation probability of state j from
state 1, and Ai;(ck) is the acceptance probability of state 7,
once it has been generated from 1. If ck, (k =0,1,2,...)
is kept constant, the corresponding Markov chain is homo-
geneous. Otherwise, it is in-homogeneous.

« Ti: neighborhood of state i; T; 2 {7 € T|G;; # 0}

B. Rescaled Simulated Annealing

Let us define the following criterion to decide whether a
transition from state i to state j is accepted.

This criterion is the Metropolis criterion where the en-
ergy E; of any state i has been rescaled:

— (\/E_- -V Ecargec) ’ (3)



Algorithm 1 Metropolis criterion with rescaled energies
around Etarget
Compute

AEirs; = (\/E; = \/Erarget)’ = (VE: = \/Erarger)’

if AE;; <0

otherwise

1
Aijle) = { exp (~AEi;/c)

To illustrate the rescaling of the energy landscape, figure
1 gives a trivial example of a 1-D function to be minimized
and figure 2 shows the deformation of the energy land-
scape as a function of the target energy Etarge:. When
the energy target is O, the rescaled energy landscape is the
original one. At high target energies, the minima of the
rescaled energy landscape correspond to the maxima of
the original function. Thus, if initially Erargee is high, the
most probable states at the beginning of the search are the
crests of the energy landscape. As Etarger gets smaller and
smaller, the rescaled energy landscape converges towards
the original energy landscape. More precisely, ¥(i, j) € T

{E,- < Ej and Erarges < min E.}
i€T

= (VE = VEargw) < (VB = VEargw)

As a consequence, if the target energy is smaller than the
least energy, then the minima of the rescaled energy land-
scape are also minima in the original energy landscape and
the optimal states of the problem with rescaled energies
are also optimal in the original energy landscape. More-
over, one notices that the local minima of the rescaled en-
ergy landscape are shallower than in the original landscape.
Thus, it is less costly to escape from the local minima of
the rescaled energy.

mmets of anengy Mencamn

Bl WA T LS o) —

. [} 0 (X 2

28 3
Contbponsan

Fig. 1. Example of energy function to be minimized: f(z) = 8+
Z2(2) exp(r)sign(1.5 — =) + (= — 1.5)cos(50z).

The energy Etarget is defined as a function of the pa-
rameter ¢ that decreases as c decreases. Choosing Etrarget
as proportional to the square of the ¢ parameter leads to
have interesting asymptotic properties. In other words:

A
Emrget(C) =a.c

(4)
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Fig. 2. Deformation of the f(x) as a function of the target energy.

The parameter a can be experimentally determined from
the initial temperature step.

The rescaled SA algorithm can be defined as the SA al-
gorithm where the energies of the states are rescaled before
the evaluation of the transition energies (see algorithm 2).

Algorithm 2 Rescaled Simulated Annealing

Let ¢ = co,

E;
Leta= —Z—‘—jrfl-z,——'
while “stoppinog criterion” is not satisfied do
while “inner loop criterion” is not satisfied do

If i is the current state, generate a state j in the neighbor-

hood of i.

Compute AE = E; - E;.

Rescale of the energy variation:

AE := AE - 2v/ac (M- \/E—)

Accept the transition with the probability A;;

fAE <O

1
Aij(e) ={ exp(—AEfcm) otherwise

end while
Update the temperature parameter

cm+1 := Update(cm)

m:=m+1
end while

The “inner loop criterion” determines how many steps
are taken by the algorithm at a given temperature. The
parameter a can be chosen so that the initial target energy
is near the mean energy of the states. Practically, we have
verified in section IV that this value leads to good results
and that the performances do not depend a lot on a fine
tuning of a.

All the following results hold for any update function of
the parameter ¢ (in algorithm 2) in which:

Ym 2 0, cm > Cm+1

(5)
(6)

m cmn =0



11I. THEORETICAL CONSIDERATIONS

As with SA, two formulations of the algorithm can be
distinguished:
« an homogeneous algorithm: the algorithm is described by
a sequence of homogeneous Markov chains. Each Markov
chain is generated at a fixed value of the temperature pa-
rameter and this parameter is decreased in between subse-
quent Markov chains, and
« an in-homogeneous algorithm: the algorithm is described
by a single in-homogeneous Markov chain. The value of the
temperature parameter is decreased in between subsequent
transitions.

We can establish asymptotic properties similar to SA.
They are extensively detailed in [11] and only the main
results are outlined in this section.

A. The homogeneous RSA

The statistical properties of any homogeneous Markov
chain are the ones of the homogeneous SA, but the ener-
gies of the states have been rescaled according to equation
3. As a consequence, the Markov chain associated with the
probabilities P;j(c) is homogeneous, irreducible and aperi-
odic [2]. Thus, from [7], it converges towards a stationary
distribution q uniquely given by:

exp(—(\/E - \/ Elnrge¢)2/C)
Z, exp(-—(\/_E__, - \/Etarget)z/c)

In other words, this criterion let the system evolve towards
a stationary distribution where the most probable states
are those with energy close to Etarge:-

It can be established that if the update function of ¢
satisfies equation 6. Then, lim._,0 q(¢c) = x, where:

gi(e) =

. I Topel™t i i€ Tope
VieT, m= { 0 elsewhere

This result can be interpreted as the convergence of the
algorithm to an optimum state provided that an infinite
number of transitions are taken at each value of m, so that
the stationary distribution is reached.

A.1 Monotonicity of the stationary probabilities

The main results obtained in the standard homogeneous
SA [13] can be extended to this new algorithm with only
slight differences. Moreover, the following theoretical re-
sults are used to establish asymptotic results of the in-
homogeneous algorithm.

To summarize, if the target energy is proportional to
the square of the temperature, then the stationary prob-
abilities of least-energy states monotonically increase with
decreasing temperature and the increasing rate is higher
than with SA. For states of energy greater than E, where
E‘ z . E; exp(Z\/u—E—j )

T ), ep(2/eE;)
with an energy greater than least-energy and smaller than
E has an associated “critical temperature” &:; while the
temperature c¢ is greater than ¢;, the state’s stationary
probability increases with decreasing temperature, and for

, the opposite is true. Each state

(™
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temperatures lower than é;, the opposite is true. Further-
more, the critical temperature is an increasing function of
energy.

A.2 Analysis of the quasi-homogeneous distributions

Practically, a finite number of transitions are tested at
each temperature step and a quasi-homogeneous algorithm
is often implemented. We estimate the speed of conver-
gence of the current probability state vector to the sta-
tionary distribution q at each temperature and compare it
with the one computed for SA.

Let v(c,m) 2 [1(c,m),v2(c, m),- - -,1)(c,m)] be the
state probability vector after m transitions of the Markov
chain at temperature c. We have established that after m
transitions at temperature c:

o in the case of RSA: ||v(c,m) — q(c)|| = O(ersa™)

« in the case of SA: |[v(c,m) — q(c)|la=0 = O(esa™)
where ersa (resp. esa) is the coefficient of ergodicity of
the transition probability matrix at temperature ¢ (equa-
tion 1). Moreover, if ¢ < minier{VEi/Va} (i.e. if
the target energy is smaller than the least energy), then
€RsA < €SA-

This result implies that the convergence to stationary
distribution at any small enough temperature is estimated
as faster with RSA than with SA. Thus, the error made, at
each temperature, on the stationarity of the distribution
after a finite number of transitions is estimated smaller
with RSA than with SA as soon as the target energy is
smaller than the least energy. Thus, within a limited num-
ber of tested transitions at each temperature, RSA reaches
a quasi-stationary distribution estimated closer to the sta-
tionary distribution than SA does. This justifies a best
quality of solution with RSA within a limited number of
tested transitions, as experimentally verified in section IV.

B. The in-homogeneous RSA

We now consider that the algorithm can be described by
a single in-homogeneous Markov chain, whose transition
probability matrix P(k —1,k) (k = 1,2,...) is defined by
equation 2.

By analyzing our algorithm with tools similar to those
used in [13], sufficient conditions for convergence to an op-
timal state can be established and compared with the ones
proposed for SA in [13]. In this paper, authors define r as:

r=

min maxd(i,;
i€T\Tmas JET (4,9)

(8)
r is the radius of the neighborhood graph, where d(i, 5) is
the minimal number of transitions to reach j from ¢ and
T max is the set of locally maximal states. They have es-
tablished a cooling schedule which ensures the convergence
to optimal configurations. It is given by, for k =0,1,2,...:

maxier,seT. (r|Ei — Ej)
log(k + mo)

Ck 2>

(9)

With RSA, if the annealing schedule satisfies, for any



k=0,1,2,.-.

r|E; — Ej|
log(k + mo) + 2v/ar|VE: - \/E;|

Ck > max
IE€ETJET,;

}

(10)
where mo is any parameter satisfying 2 < mo < oo, then,
similarly to SA:

Vm,Vi,j €T k]in:c Pij(m,k) =x;. (11)
One notices that equations 9 and 10 are identical when
Va =0 (i.e., when RSA=SA).

We can compare the cooling schedules between SA and
RSA. The lower bound obtained for temperature annealing
in RSA (equation 10) is smaller than the bound given in
[13] (equation 9).

An immediate consequence of this theorem is that the
decreasing of the temperature parameter can be faster with
RSA than with SA.

IV. EXPERIMENTS

The algorithm has been tested on several combinatorial
optimization problems. All the conclusions are similar to
the ones obtained from tests on the Traveling Salesman
Problem (TSP). This problem is a benchmark in literature
and has been extensively studied in [14]. In order to high-
light the main properties of RSA, we have compared the
performances of a standard SA with a standard RSA algo-
rithm. A RSA algorithm is obviously derived from SA by
modifying the Metropolis criterion, as given in algorithm
1.

In the algorithms, the state transition that is used is
defined as follows:
¢ Pick at random two cities.

« Exchange their positions in the current tour.

A. Performance evaluation

The algorithms have been evaluated and compared in
terms of:
¢ Quality of the solution, i.e. smallest found energy in a
run.
¢ Number of tested transitions to reach the smallest found
energy in a run.
¢ Quality of the solution in a limited number of tested
transitions.

o The solution quality’s semsitivity to the tuning of the
parameters.
+ Computational effort.

We have chosen to compare a standard quasi-
homogeneous SA with a simple cooling schedule with its
RSA counterpart. Practically, for real applications, more
elaborate cooling schedules could be used (see [2]). Thus, a
quasi-homogeneous RSA with a geometric reduction of the
temperature has been extensively tested. The algorithm is
given in algorithm 3. The tested SA is exactly the same al-
gorithm as RSA except two lines (underlined in algorithm
3) corresponding to the initialization of the parameter a
and to a rescaling of the energy variation.

Except when specified, the parameters of SA and RSA in
the following are exactly the same: p = 90%, dec. = 0.99.
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Algorithm 3 Quasi-homogeneous RSA for the TSP

Set ¢ = co such that p% of the tested transitions are accepted.
Set Nb,maztest and dece.

= Z.‘ x5
Leta=x 7‘%3—.
Generate a random tour.
Compute the length L of the tour.
Let Nbaccaptea =1
while Nbgoccepted # 0 do
Nbiested =0, Nbaccapted =0
while Nbissted < Nbmastest do
Nbtested := Nbtastea + 1
Pick at random two different towns.
Compute the energy variation AE associated with an ex-
change of their positions on the tour.
Rescale the energy variation:

AE := AE - 2\/ac (m-ﬁ)

if AE < 0 then
Exchange their positions on the tour.

L:=L+AE
Nbgccepted .= Nbaccepted + 1
else

Generate a random number rand € [0, 1].
if rand < exp (— Af- then
Exchange their positions on the tour.
L:=L+ AE
Nbaccepted := Nbaccepted + 1
end if
end if
end while
Update the temperature parameter c := decc.c.
end while

In all the tests, with each set of parameters, the algorithms
have been rerun 100 times with different initializations of
the random generator.

Let us for instance consider the 101 cities TSP problem
€il101 referenced in [14]. Figure 3 visualizes the optimal
tour of this problem. The optimum tour has a length of
629. Figures 4 and 5 show, for SA and RSA:

o the evolution of the quality of the current smallest found
energy as a function of the number of tested transitions,
with SA and RSA (thested = 500000).

o the mean energy of the visited states on each tempera-
ture step (computed on Nbmazies: tested transitions), and
its standard deviation. ‘The mean energy is computed in
the following way:

¥, Bi-exp (~(VE: = v/ac)’/c)
5, exp (—(VE: - vacy /<)

o the target energy in RSA.

< E>=

The mean energy of the visited states with RSA follows the
target energy till the target energy is smaller than the least
energy. One also notice that the number of transitions to
reach the best found state is much smaller with RSA.

B. Less transitions are needed to obtain a good solution

Figure 6 shows the number of transitions needed to reach
the best found state of the TSP problem “eil101”, as a func-
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Fig. 3. “eil101" TSP probiem: an optimum state. The associated
energy is 629.
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Fig. 4. SA: Evolution of the smallest current energy and of the mean
energy. In this experiment, decc = 0.99, Nbpaxtest = 500000,
p = 90%. The best found state has an energy of 659,48 after
254,2 10° tested transitions, corresponding to 3692 seconds on
a SUN Ultrasparc.

tion of the number of tested transitions on each temper-
ature step (Nbmaztesc), When dec, is fixed (decc = 0.99).
Figure 7 shows the CPU time on a standard Sun Ultra-
sparc as a function of the number of tested transitions on
each temperature step. Clearly, the computational effort
needed by RSA is far smaller than the one needed by SA.

We experimentally verified that many fewer transitions
need to be tested to reach the best found state when using
RSA. This property of RSA should be nuanced by the extra
computational cost induced by the rescaling of the energy
variation. Nevertheless, on our SUN Ultrasparc Station,
when considering the CPU time needed to reach the best
found state, this extra computational cost is still within the
computational benefit due to the small number of transi-
tions needed.

Figures 8 and 9 show the gain of performance of RSA
compared to SA. Less transitions (and less computational
effort) is needed to obtain a given quality of solution.

C. Influence of a in equation 4

We have tested the influence of the a parameter in the
rescaling process (equation 4), i.e. the influence of the
initial target energy. If a = 0, then RSA is exactly SA.
By approximating the distribution of the energies of the
valid states by a gaussian distribution with a mean E and
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Fig. 5. RSA: Evolution of the smallest current energy and of the
mean energy. In this experiment, decc = 0.99, Nbpuaztesr =
500000, p = 90%. The target energy is also visualized. The
best found state has an energy of 665, 406 after 66,5 10° tested
transitions, corresponding to 1209 seconds on a SUN Ultrasparc.
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Fig. 6. “eill01" TSP problem. Log-Log diagram of the number of
tested transitions to reach the best found energy as a function
of Nbmaxtest, for SA (upper curve) and RSA (lower curve).

a standard deviation o, one derives a good value of a:

Z.e'r E;

a=
[Tle3

(12)
where co is the initial temperature, chosen high enough
so that most of the tested transitions are accepted. In
other words, the target energy is initially chosen around
the mean energy of the states.

We have tested the sensitivity of the algorithm to the
parameter a, i.e. to the initial target energy. Figures 10
and 11 visualizes the mean value of the smallest found en-
ergy as a function of the computational effort in the cases
where the initial target energy is £, E — 3¢ and E + 3.
Clearly, the results are not sensitive to a fine tuning of a,
as given by equation 12.

V. CONCLUSION AND PERSPECTIVES

This paper has presented a new metaheuristics, called
rescaled simulated annealing (RSA), based on a generic
modification of the Metropolis criterion. Some asymp-
totic properties are presented, using results obtained for
discrete-time in-homogeneous Markov chains. This prop-
erties favorably compare with the ones established [13].
They express that within a limited computational effort,
RSA provides better solutions than SA. This has been ex-
perimentally verified in this paper on the traveling sales-
man problem.



