d

!
5/

-ORGE A.GRATZER
FOMAS G.GRATZER

~ FAST BASIC:
Beyond TRS-80™ BASIC

il

E8362000

_

i

)

J

u\ At "“:.“
GEORGE-A. GRATZER
University of Manitoba

Winnipeg, Manitoba

Fort Richmond Software Co.

assisted by THOMAS G. GRATZER
Fort Richmond Software Co.

EARg
& e
1807 1932
AOBL I sH\'\AO

John Wiley & Sons, Inc.

New York * Chichester * Brisbane * Toronto * Singapore

. . it takes all the running you can do,
to keep in the same place. If you want
to get somewhere else, you must run at
least twice as fast as that!

—L. Carroll in Through the Looking Glass

Dedicated to the people
who did all the running:

to the mathematicians
who worked out the algorithms
utilized in the TRS-80 ROM,;

to the programmers
who put it all together;

to the many experts
who, through their writings and correspondence,
taught us the secrets of TRS-80 BASIC.

Publisher: Judy V. Wilson
Editor: Dianne Littwin
Composition and Make-up: Cobb/Dunlop, Inc.

Copyright © 1982, by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Section 107 or 108 of the 1976
United States Copyright Act without the permission of
the copyright owner is unlawful. Requests for permission
or further information should be addressed to the
Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data
Gratzer, George A.

FAST BASIC

Includes index. -

1. Basic (Computer program language) 2. TRS-80
(Computer)—Programming. I. Gratzer, Thomas G.

II. Title.
QA76.73.B3G7 001.64’24 81-16207
ISBN 0-471-09849-3 AACR2

Printed in the United States of America

828310987654321

Preface

Promise, large promise,
is the heart of any advertisement.

—S. Johnson in The Idler

The TRS-80* computer is equipped with an excellent programming lan-
guage: TRS-80 BASIC (called Level II BASIC in the Model I and Model III
BASIC in the Model III). The design of TRS-80 BASIC emphasizes ease of
operation, and so it is not surprising that in some business and game
programs the computer is too slow to respond. This book suggests a solu-
tion. Write your programs in FAST BASIC.

FAST BASIC is introduced in two stages. The first stage is called CON-
TROLLED BASIC: the systematic use of PEEK and POKE to gain control
over TRS-80 BASIC. To program in CONTROLLED BASIC we must have a

- good understanding of the structure of TRS-80 BASIC. Many of your wishes
foran improved TRS-80 BASIC can come true with a few PEEKs and POKEs
if you know where. In CONTROLLED BASIC you can send to the printer
what is displayed on the screen, merge BASIC programs in a cassette
system, and check the status of the printer or the disk.

The presentation of CONTROLLED BASIC is self-contained. Some read-
ers may find CONTROLLED BASIC adequate for the improvements they

- seek; they should read Parts I and II of this book.

The second stage is FAST BASIC itself: We use TRS-80 BASIC to accom-
plish what TRS-80 BASIC can do well, but enhance it with machine
language routines to overcome some of its shortcomings.

Almost any task FAST BASIC has to do in machine language can be built
up from the routines that can be found in the TRS-80 ROM (read-only
memory; the ROM is a part of the TRS-80 computer). By learning how to
use fewer than 20 machine language instructions and the names of about
60 ROM routines, we can write our enhancements.

Examples in this book demonstrate that we can easily make our programs
run faster by a factor of 3 to 4 for arithmetic calculations, and by a factor of
1000 for string sorts.

Machine language programming has two main drawbacks: the hundreds
of instructions one has to learn and the difficulty of debugging long pro-

*TRS-80 is a trademark of Tandy Corporation.

vii

viii

FAST BASIC—BEYOND TRS-80 BASIC

. grams. These problems do not arise in FAST BASIC. In a few minutes any

user of TRS-80 BASIC can learn the few machine language instructions
heeded in FAST BASIC. All tasks, for example, addition, are performed by
ROM routines. Debugging is done in BASIC.

In FAST BASIC we select the time-consuming lines, especially FOR
NEXT loops, from a BASIC program and replace each by a small group of
machine language program lines, mostly subroutine calls to the ROM.
These small groups of machine language instructions are presented'in this
book; almost no machine language debugging is needed.

Finally, we consider enhancing FAST BASIC with machine language
routines that are not translations of BASIC program lines. We do this when
even FAST BASIC is not fast enough or when we want to implement
something that cannot be done in TRS-80 BASIC.

To understand what is happening in the computer’s memory, we have to
speak the fanguage of the computer; this language is written in binary and
hex. In Part I we teach you binary numbers, the shorthand representation of
binary numbers—hex—and ways of representing negative numbers. We
also discuss the various codes, including ASCII and the codes for the
BASIC keywords. If you are familiar with these topics, you can safely skip
Part I.

CONTROLLED BASIC and FAST BASIC rely heavily on how the mem-
ory is organized. In Part Il we learn the organization of the memory and the
significance of many memory locations. Dozens of applications are inter-
spersed throughout the discussion.

In Part III we acquire a rudimentary knowledge of the Z-80 micro-
processor, along with some machine language instructions.

FAST BASIC is developed in Part IV. We start with the most important
ROM routines that carry out arithmetic operations and move variables
around. Then we learn how to do FOR NEXT loops. We achieve a great
increase in speed (a loop that takes 48 to 99 seconds in BASIC is executed in
less than 0.5 second in FAST BASIC).

We then learn how to handle string variables. This means extra work on
our part but the reward—a 984 times increase in the speed of our bench-
mark program—makes the effort worthwhile.

A step-by-step guide is given for turning a BASIC program into FAST
BASIC.

To illustrate how FAST BASIC can be enhanced, several new Z-80
instructions are introduced and their utilities demonstrated. We conclude
the discussion with a case study. This provides a rather dramatic example
of the speedup from BASIC to enhanced FAST BASIC: In TRS-80 BASIC
the FIND command of the example program takes about 5 hours and 20
minutes to search the complete (64K) memory; in enhanced FAST BASIC
this is accomplished in 1 second. The machine language enhancement that
makes this speedup possible is only 83 bytes (about the length of an average
BASIC line).

We assume that the reader has some familiarity with TRS-80 BASIC and,
preferably, has access to a Model I or Model III TRS-80. To understand Parts

PREFACE ix

III and IV, the reader should also have an assembler such as the Radio
Shack Editor Assembler.

We often refer to the TRS-80 BASIC Manual. For Model I users this is the
Level II BASIC Reference Manual; for Model III users this is the “BASIC
Language Section” of the TRS-80 Model Il Operation and BASIC Language
Reference Manual.

Most of the material covered in this book applies to both the TRS-80
Model I and Model Il computers, although the examples are oriented a bit
more toward the Model I. The differences between Model I and Model III, as
they relate to this book, are discussed in Appendix 9. When reading a
chapter, the Model III user should refer to the corresponding section'in
Appendix 9.

With small modifications FAST BASIC can be used for any computer
that uses Microsoft BASIC (TRS-80 Model II, Heath, Sorcerer, Apple Il with
the Z-80 card, and so on). The ideas of FAST BASIC can be adopted for any
microcomputer where enough information is available about the inter-
preter.

We would like to express our appreciation to H. McCracken and his son,
Iain; to the members of the TRS-80 Users Group, in particular to D. Rigg, D.
‘Toews, and D. Wood, who made many helpful suggestions; to Prof. H.
Lakser, who was always there to help us out with an explanation when we
needed it the most; and to C. Dillon, our developmental editor, for a most
professional job.

George A. Gratzer
Thomas G. Gratzer

Contents

Preface

PART I BACKGROUND FOR CONTROLLED BASIC

Chapter 1 Representing the Contents of Memory Locations

Binary Numbers
Hex and Base 256
Review and Programming Practice

Chapter 2 Binary Codes
Negative Numbers
Integers
Characters and Keywords
Epilogue
Review and Programming Practice

PART II CONTROLLED BASIC

Chapter 3 PEEKing and POKEing
General Memory Organization
The BASIC Work Area
The Control Blocks
Review and Programming Practice

Chapter 4 Five BASIC Tables
The BASIC Program
The Simple Variable Table
The Array Variable Table
The String Space
The BASIC Stack
Review and Programming Practice

Chapter 5 Devices
Buses and Ports
The Video Display
The Keyboard
_The Cassette
Device Programming
Review and Programming Practice

vii

11
15

19
19
22
23
25
27

31

33
33
36
42
46

49
49
52
57
57
61
61

67
67
69
69
72
73
77

iii

el Atatr s ORI s e o i Y 5

iV FAST BASIC—BEYOND TRS-80 BASIC

PART III BACKGROUND FOR FAST BASIC 81
Chapter 6 The Z-80 Register Set 83
The Registers 83
The Program Counter 86
Assembly Language 87
Review and Programming Practice 88
Chapter 7 Some Z-80 Instructions 91
Data Movement 91
Branching, Increment, and Decrement 95
Pseudo Operations and Labels 96
Review and Programming Practice 100
PART IV FAST BASIC 105
Chapter 8 FAST BASIC Introduced 107
USR: User Subroutine 107
Arithmetic 109
Finding Variables 110
Moving Variables . 112
Converting a Single-Precision Addition relia
A Shorthand for Assembly Language Programs 116
Three Examples of Single-Precision Arithmetic 118
Integer and Double-Precision Arithmetic 120
Review and Programming Practice : 122
Chapter 9 Special Techniques: Loops and Strings 129
The Most Important Loop 130
One More Loop Implementation 134
Strings 136
String Sorting 138
Concatenating Strings 142
Review and Programming Practice 145
Chapter 10 Step by Step 151
Preliminary Steps 151
Conversion to SIMPLE BASIC - : 152
Conversion from SIMPLE BASIC to Machine Language 156
Packing Machine Language Programs into Variables 158
Final Hints 163
Review and Programming Practice 164
Chapter 11 Enhancing FAST BASIC 167
Block Transfer and Block Search 167
Other Useful Instructions 170
Extending TRS-80 BASIC 174
Review and Programming Practice 179
Chapter 12 A Case Study 187
Analyzing the Program 187
The Machine Language Programs 189

The Converted Program 193

CONTENTS Vv

Appendix 1

Assorted ROM Routines

Math Functions

Input/Output

Graphics
Restarts

Expression Evaluation

Appendix 2
Flags

The Z-80 Instruction Set

Eight-bit Data Transfer

Sixteen-bit Data Transfer

Block Transfer and Search

Eight-bit Arithmetic and Logical Operations
Sixteen-bit Arithmetic Operations

Bit Manipulation

Jumps, Calls, and Returns

Miscellaneous Instructions

Appendix 3

Two Listings of the Z-80 Instruction Set

Alphabetic Listing
Numeric Listing

Appendix 4

Binary Arithmetic

Adding and Subtracting Binary Numbers
Binary Fractions

Appendix 5

Hex Tables

Hex Addition Table
Hex Conversion Table

Appendix 6

Appendix 7
Books
Magazines
Software

Appendix 8
TUTOR
VARPTR
VIEW/MOD
DISASSEM

Appendix 9
Chapter 2
Chapter 3
Chapter 5
Part IV

Appendixes

Label Listing
Additional Reading and Software

BASIC Program Listings

The Model III

Concluding Comments

Index

199
199
200
201
202
202

203
203
204
204
206
206
208
208
211
212

213
214
219

225
225
227

231
231
231

235

241
241
245
245

247
247
251
254
257

267
267
267
270
271
272
272

275

PART I

Background for
Controlled BASIC

CHAPTER ONE

Representing the Contents of
Memory Locations

Practice yourself, for heaven's sake, in little things;
and thence proceed to greater.

—Epictetus in Discourses

CONTROLLED BASIC uses the BASIC functions PEEK and POKE to gain
control over TRS-80 BASIC. These two BASIC functions can read informa-
tion in the computer’s memary and change it.

In Part I you learn in what form information is stored in the computer’s
memory. We use this in Part II to make TRS-80 BASIC send to the printer
what is displayed on the screen, merge BASIC programs in a cassette
system, and so on.

In this chapter we discuss a representation of memory contents: binary
numbers. Because binary numbers tend to be long and cumbersome, we
also introduce a shorthand: hex.

BINARY NUMBERS

Memory Locations

A memory location in the TRS-80 computer has an “address”: the address
can be any integer from 0 to 65535.

Turn the computer on and make sure it shows the BASIC READY
prompt. To find the contents of a memory location of a given address we
use the BASIC PEEK function. For instance,

PRINT PEEK(2423)

will return the number 205. If the address, X, is greater than 32767, we
should replace X by —1* (65536 — X). (See the TRS-80 BASIC Manual.) Thus

4 FAST BASIC—BEYOND TRS-80 BASIC

to find the contents of the memory location with address 65535, type
PRINT PEEK (-1) since —1* (65536—65535) = —1.

The BASIC PEEK function represents the contents as an integer from 0 to
255. Another way of representing the contents of a memory location is
provided by the program TUTOR.

TUTOR

We shall often refer to the program TUTOR. We assume that you either
purchased the program on cassette or disk, or copied it in from Appendix 8
for your own use. ;

RUN the program TUTOR and respond to the question:

TYPE THE NUMBER OF THE DESIRED OPTION?

by typing 1 (and press the ENTER key). Answer the prompt

TYPE IN ADDRESS (0 - 65535)2_
with any address from 0 to 65535; we get a response such as
(2423) = 1100 1101

indicating that the contents of memory location 2423 are 1100 1101. (To
make it easier to read TUTOR puts a space between the first 4 and last 4
digits.) To get the contents of memory location 65535 type 65535; there is
no need to do any subtraction when you work with TUTOR.

Even if we have a system with 16K memory (that is, the computer has
memory at locations 0 to 32767), we can still request numbers over 32767.
The computer does not know how much memory it has. Observe, however,
that the contents of such nonexistent high memory are always 1111 1111.

There is no memory at addresses 12288 to 15359. At these locations
TUTOR will give us mostly 1111 1111; however, a few locations will yield
varying results. This will be explained in Part II.

Examine the contents of memory locations 0 to 12287; these contain
Microsoft’s BASIC Interpreter, the program that makes the TRS-80 compu-
ter run. At locations 15360 to 16385 we are looking at the memory locations
containing what is displayed on the screen. Since, as a rule, most of the
screen is blank, we usually get 0010 0000, the code for a blank (see Chapter
2).

As the program TUTOR suggests, the contents of a memory location can
berepresented by a sequence of zeros and ones, an 8-digit “binary number.”
Thus our understanding of memory locations has to start with binary
numbers.

What is really at a memory location? Imagine that a memory location
contains eight light bulbs; each bulb can be on or off. We can describe the
contents by naming which bulbs are on and which are off, for instance: on

REPRESENTING THE CONTENTS OF MEMORY LOCATIONS

5

on off off off on on off. By writing 1 for on and 0 for off, we can represent the
contents by 11000110.

In reality the contents of a memory location are magnetic rather than
electric. However, the little magnets also have two states that can be
represented by a 0 and 1, so again we can represent the magnetic contents
by 11000110.

Remember: PEEK represents the contents of a memory location with a
number from 0 to 255 whereas TUTOR represents it with an 8-digit binary
number!

Binary Numbers

What is a binary number? We know that the number 592 stands for
5aX 1009 X 10"+ 2

If we agree to write 10% (10 squared or 10 to the power 2) for 100, 10" (10 to
the power 1) for 10, and 10° (10 to the power 0) for 1, then our number
becomes

5 X 102 + 9 X 10 + 2 x 10°

This is called the “expanded form” of 592. Numbers expressed in powers of
10 are called “base 10” or “decimal” numbers; 5, 9, and 2 are the “digits.”

If we replace base 10 by base 2 and permit only 0 and 1 as digits, then we
get “binary numbers.” Examples:

101 =1 X 22+ 0:x 214+ 1 Xx20=4:+0+1.=5
(the decimal number 5)

1000 = 1 x23+0%x224+0%x2'+0%x2°=8+0+0+0=28
(the decimal number 8)

0110 1001 =

0X27+1x26+1 X 2540 % 2%+1 x 23+0 X 2240 x 21 +1 x 2°=
0 + 64 + 32 + 0 + 8 + 0 + 0 + 1 =
105 .

(the decimal number 105)

In a binary number 0 and 1 are called “binary digits,” or “bits” for short.
To make the binary numbers easier to read we put a space after every fourth
digit (starting from the right).

We saw above that we can represent the contents of a memory location by
an eight-character string of zeroes and ones, for-example, 0110 1110. We
shall regard this as an 8-bit binary number.

F‘,{ﬁ»r-’f.\:m i 4 < 1St o

3
.
A
3
4

6

FAST BASIC—BEYOND TRS-80 BASIC

An 8-bit binary number is called a “byte,” and its bits are numbered from
0 to 7, from right to left. We illustrate this with the byte 0110 1001:

bite %7186 4 3210
R 2 I T TR
0t 18 108:01

Bit 7 often is called the “high-order bit” and bit 0 the “low-order bit.” Note
that the bit number corresponds to the exponent of 2 when 0110 1001 is
written in the expanded form.

Set and Reset

In the early days of electronics binary numbers were used to denote
whether an electric switch was set or reset. We still use this terminology. If
the bit in a binary number is 1, we say the bit is “set”; if it is 0, we say the bit
is “reset.” For instance, in the binary number 0110 1001 bit 6 is set and bit 1
is reset.

Converting Binary to Decimal

What is 1100 1101 in decimal? Writing the binary number in expanded
form:

1% 27+1 X 28 +0 X 25+0 X 28 +1' x2841 % 22 +0 %2t +1: X 2%
128 + 64 + 0 =0 + 8 + 4 +:4. 6 el
= 205
S0 11001101 is 205 in decimal. Surprise! Compare this with PEEK(2423)
and the contents of 2423 as given by TUTOR. We conclude that the PEEK
function gives the decimal conversion of the binary representation of the
contents of a memory location.
Practice binary to decimal conversion with option 2 of TUTOR.
Table 1.1 lists the first 16 powers of 2. This table is useful in converting
from binary to decimal.

TABLE 1.1. Powers of 2

2%9=-"4 28 = 258
2lh="12 2%5i=" . 512
2= "4 210%= 1024
3= g PWE=9048
2 =,"16 2'2 = 4096
25 =39 23 = 8192
2= 64 2'% = 16384
27 =128 2'% = 32768

REPRESENTING THE CONTENTS OF MEMORY LOCATIONS

7

Binary Arithmetic

Binary addition and multiplication are very easy to learn. There are only 2
digits, so there are only four pairs of numbers to learn to add and multiply.

0.4 0.=0 8 1 1
1.4+.0.=.1 1+1=10

0X0=0 0xX41=0
1X0=0 1 1=

It is convenient to represent addition and multiplication in tabular form:

k150 e X 0 1
0 0 1 0 0 0
1 1 10 1 0 1

Asyou see, the only rule tolearnis 1 + 1 = 10, which in multidigit addition
will take the form: 1 + 1 = 0 and carry 1. Now let us do a multidigit
addition:

11110 Carry line

0 1 L | 1011

v A A (S B + 11110
1.0/1 00 1 Result line

We start the addition from the right, that is, in the last column: 1 + 0 = 1
(write 1 in the result line) with no carry (carry 0 is written on the carry line
one column to the left); moving one column to the left, 0 + 1 + 1 = 0 (write 0
in the result line), carry 1 (write this in the carry line); next, 1 + 0 + 1 = 0,
carry 1, and so on.

We can subtract binary numbers in much the same way as decimal
numbers. For a closer look at binary arithmetic turn to Appendix 4. Option
3 of TUTOR will help you practice.

Keep in mind, however, that our primary goal is to recognize and under-
stand the contents of a memory location. We shall always have help (from
BASIC or from machine language instructions) in carrying out arithmetic
operations.

Logical Operations

In addition, there are also logical operations (also called “Boolean opera-
tions”) that can be performed on the binary digits: AND, OR, exclusive OR
(XOR), and negation (NOT). TRS-80 BASIC users do not have much diffi-
culty learning the logical operations. After all, if we start a BASIC line with

g o el Sty B

FAST BASIC—BEYOND TRS-80 BASIC

IF X = 0 AND ¥ = 9

we use AND exactly as we do in everyday English.

OR and XOR are quite different. XOR (exclusive OR) means one or the
other, but not both. A OR B is TRUE if A is TRUE and B is FALSE, or if A is
FALSE and B is TRUE, or if both A and B are TRUE. A XOR B is TRUE if A is
TRUE and B is FALSE, or if A is FALSE and B is TRUE. If A and B are both
TRUE, then A OR B is TRUE while A XOR B is FALSE.

Examples: The lawn is wet if it rains or if it has been watered. Tonight we
go to the movies; we go to the Odeon Theater or to the Venus Theater. In the
first sentence “or” means OR; in the second, “or” means XOR (we cannot go
to both theaters at the same time).

In conditional statements in BASIC (IF condition THEN . . .) we very
seldom need XOR. TRS-80 BASIC does not provide XOR; if you find it
convenient to use it, substitute

(condition1 OR condition2) AND NOT (condition1 AND
condition2)
for XOR.

The logical operations are applied to TRUE and FALSE; the result is
again TRUE or FALSE. Table 1.2 describes the logical operations.

If you think of 0 as FALSE and 1 as TRUE, Table 1.3 repeats the informa-
tion of Table 1.2.

To perform AND on 0 and 1: First find the AND table; at the intersection
of the 0 line and 1 column is 0; s0 0 AND 1 is 0. Similarly, 1 XOR 1is 0. NOT
has only one argument; the NOT of 0 is 1 and the NOT of 1 is 0.

The logical operations can be applied to bytes as well, carrying them out
bit by bit:

0100 1110 1100 1010 1110 0001
AND 1000 0010 OR 0001 1110 XOR 1010 1010
0000 0010 11031110 0100 1011

NOT 0010 1100
1101 0011

We carry out the AND in eight steps: first, for bit 7 (0 AND 1 is 0] then for bit

6 (1 AND 0 is 0), and so on.

This may help explain how the logical operations work in BASIC. We
have seen in the foregoing example that 0100 1110 AND 1000 0010 = 0000
0010. Now 01001110 is 78 decimal; 1000 0010 is 130 decimal; 0000 0010 is
2 decimal. Thus in BASIC the logical expression

78 AND 130

