

GPSS-FORTRAN

B. Schmidt

Institut fur Mathematische Maschinen
und Datenverarbeitung

Universitat Erlangen-Nurnberg

JOHN WILEY & SONS
Chichester New York Brisbane Toronto

Copyright © 1980 by John Wiley & Sons Ltd.
All rights reserved.

No part of this book may be reproduced-by any means, nor
transmitted, nor translated into a machine language with-
out the written permission of the publisher.

British Library Cataloguing in Publication Data:

Schmidt, B.
GPSS—Fortran,—(Wiley series in computing).
1. GPSS (Computer program language)
2. Digital computer simulation
3. FORTRAN (computer program language)
I, Title
001.4°24 QA76.73.G18 80-40968

ISBN 0 471 27881 5

Printed in Great Britain

GPSS-FORTRAN

WILEY SERIES IN COMPUTING

Consulting Editor

Professor D.W. Barron
Computer Studies Group, Southampton University,
Southampton, England

BEZIER - Numerical Control - Mathematics and Applications
DAVIES and BARBER - Communication Networks for Computers
BROWN - Macro Processors and Techniques for Portable Software

PAGAN . A Practical Guide to Algol 68

BIRD - Programs and Machines

OLLE - The Codasyl Approach to Data Base Management

DAVIES, BARBER, PRICE, and SOLOMONIDES - Computer Networks and
their Protocols

KRONSJO - Algorithms: Their Complexity and Efficiency

RUS - Data Structures and Operating Systems

BROWN . Writing Interactive Compilers and Interpreters

HUTT - The Design of a Relational Data Base Management System

O’DONOVAN . GPSS - Simulation Made Simple

LONGBOTTOM . Computer System Reliability

AUMIAUX - The Use of Microprocessors

ATKINSON - Pascal Programming

KUPKA and WILSING - Conversational Languages

SCHMIDT - GPSS - Fortran

PREFACE

By contrast with other modelling methods, simulation is said
to give expensive results. For the time being, this reservation
is Jjustified, but 1improved hardware and software are reducing
many costs. We thus assume that the advantages of simulation will
stand out more and more and its range of application broaden.

The costs of simulation fall into three categories:

¥ long run times,
¥ high memory demand, and
¥ large development costs.

It is already certain that emerging technology will drastical-
ly trim the costs of computing power and memory capacity. Long
run times and high memory demand will no longer bar simulation.
Development costs will, on the contrary, probably rise.

One way to cut development costs is to develop a simulator
composed of immediately usable, tested modules. Then, to build a
model, the user need only set the finished modules together. Ex-
pcrience shows that such a simulator reduces costs significantly,
provided: 1) the number of modules is not too large and 2) they
are designed to correspond to all possibly occurring elements and
functions of the system being modelled. GPSS-F was designed to
satisfy both criteria.

The GPSS-F simulator is a Fortran program-package. It consists
of a chassis, the main program, into which calls to the modules,
GPSS-F s subroutines, are inserted. Its construction makes it su-
perior in several respects to its grandparent, GPSS (1):

¥ GPSS-F can be run on any computer with a Fortran compiler. All
simulation models are virtually machine-independent.The package
is already in use on a wide variety of machines, including 1IBM
360 s and 370 s, Cyber-series machines and PDP machines.

¥ Any Fortran programmer can change, extend or improve the simu-
lator easily himself. He can tailor GPSS-F to suit his fancy, or
even add new language-features required by his problem.

A beginner <can learn the wuse of GPSS-F by either of two
methods. The steam-roller method would be to read chapters 1 and
2, section 4.1 and chapters 7 and 9, ignoring under way any men-
tion of preemption, multifacilities, storages and families.

The butterfly method browses through chapter 1 reading 1.6
carefully, then jumps to <chapter 11, where it finds example
models, each supplied with reading suggestions. Then it flits
from examples to readings, progressing through the seven models
from the simple to the ever more complex. The frequent cross-re-
ferences in the text are navigation-aids for the butterfliers.

Despite the differences, GPSS and GPSS-F are close relatives.

vi

They resemble one another especially in their names: GPSS-F’s and
GPSS’s stations are named alike and GPSS-F’s subroutines are
often named after GPSS’s blocks. But the younger program has fea-
tures beyond older one’s. The following points summarize its nov-
elties:

¥ Events’
Events are now as easy to handle as transactions, where GPSS res-
tricted itself to transactions.

¥ Transaction-locking

In both simulators, transactions can wait at any point they
choose, until the system’s state satisfies certain conditions. In
GPSS-F the user can test the system’s state whenever he wants, to
see whether a waiting transaction can now proceed. TIn GPSS, on
the other hand, only the simulator’s flow management can test the
wait conditions; they are outside the user’s reach.

¥ Queue-processing
Each queue can be administered by its own policy. Furthermore,
the transactions’” priorities can be be assigned dynamically, as
well as statically.

*¥ Setup time at preemption

Tt is now possible to take into account the setup time 1lost in
any preemption. A model that ignores that time yields false re-
sults, if the setup is not short by comparison with the service.

* Multifacilities

A multifacility is a new type of station. It consists of several
ordinary facilities operating in parallel that take transactions
from a common queue.

¥ Addressible storages
A transaction can acquire and free specific locations; the simu-
lator keeps track of each location’s contents.

Coordinating transactions
model can coordinate its transactions’ movements more easily.
n particular, user chains are more broadly applicable.

o= ok

I should like to thank Prof. F. Hofmann for his generous sup-
port. I also thank Prof. G. Niemeyer for allowing FGPSS (2) to be
used as a basis for GPSS-F.

I received important help and support from B. Gernoth. She
suggested especially valuable improvements. I thank T. Stroup for
stimulating discussions that led to improvements in the system
and for translating the text into English.

The program package GPSS-F 1is maintained by Dr. Staedtler
Unternehmensberatung, Rother-Strasse 1, D 85 Nuernberg, Germany,
from whom copies of the source deck may be ordered.

vii

TABLE OF CONTENTS

1. Modelling a System. « « « « v« ee o1

1.1 Systems . . . e e e e e e e e e e e e e e e e e e e T

1.1.1 Examples R e

1.1.2 Types of Systems . v

1.17.3 Transaction-oriented and

Event-oriented Systems.2

1.2 Models. 3

1.2.1 Slmllar Struotures 3

1.2.2 Types of Models 5

1.3 Simulation Languages. 7

1.3.1 Types of Languages. 7
1.3.2 Model Formulation and Range

of Application. 7

1.4 The Program Package GPSS-F. . 8
.4.1 Model Construction and Range

of Application for GPSS-F . 8

1.4.2 A System’s Elements and F‘umctlons . 9

1.4.3 Application Examples. .10

1.5 Developing a Model. « « « « + « « « « . .M

15:1 Analyzing a System. . « o o o = ww o @ = ¢ o« s « 11

1.5.2 Building a Model.« +« « « « .« « o . 12

1.5.3 Testing a Model « « « « & « « « « . .14

1:.5:8 Using @ Model &« « & « s & s @« » © s « » s s s & «14

1.5.5 Analyzing Results15

1.6 Simulating Discrete Systems15

1.6.1 Bank-Window Model « « « « « . . .16

1.6.2 Simulation Flow « « « « « « « « « « + . .20

1.6.3 Waiting Transactions.23

1.6.4 Conditioned Activation.26

2« Structure of GPSS-F . . & % « « s & % @ © & © & & & s 3 + 329

2.1 Event Management.+ . .+ « « .« .« .«29

2.1.1 The Event List. « « « « « « « « .« . .29

2.7.2 BVYENT v v o o = v o o« » » & & & @ % & s ¢ % # % .30

2.2 Transactions. . . . m o d B 5§ F B ®m o® @ W o8 & § 0§ F e

2.2.1 Transactlons Data Area . . . + « .« « +« « .« « . .33

2.2.2 Transactions” States. «34

2.3 Transaction Management.« « « « « « . . .37

2.3.1 Activation List38

2.3.2 ACTIVI. . + v v v v v v « « « « o w w w w « o« . 239

2.3.3 ACTIV2. v v v v v v v v v e e e e e e e e e W2

viii

2.4 Transaction Generation and
Annihilation. « . .+ .+ ¢ v v v v« W« o . bS5

2. 4.

1

GENERA. « « o v v v v v« « v o« o . . b5

2.4.2 TERMIN. ¢ o « v v o v v & « « v v . .47

2.5 Tran
2.5.
2.5
2.5.

2.6 The
2.6
2.6.
2.6.
2.6.
2.6.

UEwn -

saction-State Management.49

1
2

3

ADVANY. & « . ¢ ¢ o v v o o @ o = 5 ¢« & s s 5 o =849
BUFFER. o « ¢« ¢ ¢ v v o o o w « @ 4 6« s s s s & 50
UNEOCK. « v « ¢« o ¢ o v s © @ @« s % € « s s s s w51

Chassis . . . o m w om om owm owm om w ow ow s s o e

Chassis Sectlons s b m w om om w om e w oW w2 & WD
INITT © & v v v ¢ ¢ v v 4« « v v « « « « v « « . .55
INIT2 . . & ¢ v v e v v v e e v v 4« « « v « « . .56
INLETS o o w @ « s s 3 3 ## © m w & @ & © © & 5 5 sOF
RESET o w w #w w ¢ 5 2 3 » ©w & ©# # @ ®» ®# ® & s & D9

3. Stations and Policiés « « & « s s s s o # © 5 & & & « &« s 60

3.1 Policies. . I T T T T :' ¢

D
3.
3.
3.
3.

The

(8] w
L=

.5 The

4., Facilities.

3.1.1
3als2
321+3
3.1.4
3a1«b
3:1:5

Pol
3.3.
3.3
3.3.
3.3

J:‘U\)f\)

e
1
2
3
I

Prlorlty and Preemptlon N I T B R s
FIFO (First In, First Out).61
LIFO (Last In, First OQut)61
SJ¥ (Shortest Job First).62
Round-Robin (Cyclic Policy)62
LFB (Limited Feedback).6l

y amlc Priority Assignment64

Types of Dynamic Prlority

Assignment. . e e e e e e e e«bY
UTL (Upper lee lelt) . e ¢+« +« « « +« . . .bu
UTLP (Upper Time Limit w1th

Priorities) . . e - 1)
WTLP (Waiting Tlme lelt wlth

Priorities)66

ies 1l GPSS=F. o « o« o & w © © « s s s 5 s © & w00

POLICY. . o o o o #» o © © @ & % & s s & @ & & & #0F
PEIFQ « ¢ & o s o @ o w » © % 3 s 5 5 & 5 # » 09
FIFO. . . ¢ % & & 3 3 & 3 @ @ 70O
Dynamic Prlorlty A331gnment

with Subroutine DYNVAL.71

State Veetor, . ¢ s « & © = © & 5 & s s s 5 @ & &F2

WaELEndOE. » 4 ¢+ s s ¢ » @ = © ® © ® § 5 i 5 5 @ @ 75

.TH

4.1 Acquiring and Freeing a Facility.75

4.1.
.2

4.1

1

1.3

SEEZE ¢ & o w « s s 3 3 © 5 5 » & © 8 & i s s % 75
WORK. « w & w % s o s s s v % ® s s @ s s 8 s s 17
CLEAR w & o « o @ % 3 s 5 © @ & w # % « @« & s s 380

b,

2 Preemption. .
4.2.1 PREEMP.

4,2.2 Setup and Vnockdown in Case of

Preemption.
4.2.3 SETUP .
4 4 TNOCKD.

4.3 Multiple Entries to a Facility.

Multifacilities

5.

5

6.

6

6.

.4

1 The Structure of Multifacilities.

.2 Acquiring and Freeing a

Multifacility
5.2.1 MSEIZE.
5.2.2 MWORK

5.2.3 MCLEAR.

.3 Preemption at Multifacilities

5.3.1 MPREEM.

5.3.2 Setup and knockdown in Case of

Preemption.
5¢3%3 NSETUP.

4 The Plan: Service-Element Management.
5.4.1 PLANI and PLANO
5.4.2 LFIRST.
5.4.3 PRIOR
SELOTages o« « o @« o « s s & s ® ® @ s
1 The Structure of Storages

.2 Non-Addressible Storages.

6.2.1 ENTER
6.2.2 LEAVE

3 Strategies.

6.3.1 Storage Aoqulsltlon

6.3.2 First-fit

6.3.3 Best-fit. .

6.3.4 Conditioned Storage A531gnment.

6.3.5 Segmenting. . . 5 &

6.3.6 Collecting Free Space

6.3.7 Freeing Space

Addressible Storages. .

6.4.1 The Structure of Addre551ble
Storages.

6.4.2 ALLOC . . .« ¢« « « « « « .

6.4.3 FREE. « . . .

ix

+ 871
.81

.85
.86
.87

.90

.91
.91

.95
.95

.98
100

102
102

106
106

107
107
109
109

—_
—_
—_

Py
—_
—_

_—

2 WVOWWOW O W w

_— e e e
N ===

=3
N
=

121

—_
N
w

127

6.5 GPSS F Strategies . .
6.5.1 STRATA and SLRATF
6.5.2 FFIT. 5 ® ®
6.5.3 BFIT.

Coordinating Transactions

Ts Branchlng on Condition.
.1.1 Deterministic Branchlng
7 1.2 Stochastic Branching:
TRANSF. s B Om o® @

7.2 Waiting on Condition.
7.2.1 Trying the Gate . .
7.2.2 Local and Global Parameters

7.3 Gates .
7.3.1 GATE1
7.3.2 GATE2 . . .
T7T.3.3 The IT Mechanlsm

7.4 Gather Stations

7.4.1 Coordinating Transactlons in one

Processing Path
7.4.2 GATHR2.

7.5 User Chains and Trigger Stations.

7.5.1 Coordinating Transaction in
Parallel Paths.

7.5.2 LINK2 . . . « « v « « v o o .
7.5.3 UNLIN2. « « « « « . .

Families.

8.1 Kindred Tasks

8.2 Data Areas for Families

8.3 The Birth and Death of Kinsmen.
8.3.1 SPLIT . ¢ % % 5 & &
8.3.2 ASSEMB.

8.4 Coordinating Family Members .
.4.1 Gather Stations for Famllles

Random Sequences.

9.1 Random Number Generators.

8

8.4.2 GATHR1. . . s

8.4.3 User Chains and Trlgger Statlons
for Families. « @ & & ¥ % & @

8.4.4 LINK1

8.4.5 UNLIN1.

130
130
132
133

135

135
135

136
136
137
138
139
139
143
145
146

146
146

148
148
150
152
155
155
155
156
156
158
160
160
160
162
163
165
168

168

10.

1.

9.2 Uniformly Distributed Random

9.

3

4

Sequences

Arbitrarily Distributed Random
Sequences .

9.3.1 UUsing the Tnverse Cumulatlve—
Distribution Function
Exponential and Erlang
Distribution. "
Gauss Distribution.
Lognormal Distribution.
Approximating Empirical
Distributions

Truncated Dlstrlbutlons

w
n

O O OO O
w www
(o)) U =W

dom Numbers in GPSS-F.
Function RN

UNIFRM.

ERLANG.

GAUSS

LOGNOR.

BOXEXP.

Using the Random Number
Generators.

(W]

OWOOWOOOOT
ErEeesEE D
~NOoOUlT =W =0

Gathering Statistical Data

10.

10.

10

10.

1 Bins.

10.1.1 Statlstlcs Gathered by Blns

10.1.2 ARRIVE
10.1.3 DEPART
10.1.4 ENDBIN

2 Frequency Table
10.2.1 TABULA
10.2.2 EVALUE
10.2.3 GRAPH.

.3 Report of the System’s State.

10.3.1 REPORT
10.3.2 SMLIST
10.3.3 SELIST

.4 Saving the System’s State

10.4.1 SAVE
10.4.2 CONT

5 Ending Stochastic Simulation.

Models

1M

.1 Flow Management

1.1 Bank Window.

X1

169

170
170

171
174
175

175
177

181
181
182
183
184
185
186

187

190

190
190
193
194
196

197
197
199
201

204
204
205
206

207
207
207

208

211

211
211

xii

11.

1.

11.

11.

117

The Chassis’ Sections.
The System’s State at T
Final Results. e %
Model Listing.

A e o
R i, e} Y
Lo g o 2o
o e e e
Ul =W

Sequences.

Squirrel o @

Our Use of Random Number
Generators .

The Model’s Constructlon
Model Listing.

oo b
S
n N Q.
N — 3

NN
r:w

e
1.
Policies and Preemption
11 3.1 Tune-Ups

.3.2 The Model’s Constructlon
.3.3 Model Listing. g

Dynamic Priority Assignment
.4.1 Orders . .
.4.2 The Model’s Constructlon
11. .3 Model Listing.

tifacilities

.5.1 Clinic . .

.5.2 The Model’s Construotlon
.5.3 Model Listing. P

e
1 Computer . . .

.2 The Model’s Constructlon
3 Startup.

4

Statistics .
.5 Final Results.
6 Model Listing.

«

[ecioN\ o)) Ul = wn =

Cable Car c

The Model with ”ype-1 Ga
Model Listing with Type—
Gates. «» .

The Model w1th Type 2 Ga

4
—
~330

Gates. .
The Model w1th User Chal

N P R N

Final Results.

= 630.

Collecting and Dlsplaylng

tes.

tes

Model Llstlng with Type 2

ns

Model Listing with User Chains

211
214
215
216

225
225

225
226
229

238
238
238
240

250
250
250
252

269
269
269
272

282
282
283
283

285
285
286

299
299
299

302
309

309
311
311
313

xiii

Appendix 317
A1 The System’s Variables. . . . « « « « « « « « « « « « « « 317
A2 Description of the Data Area. « « « « & « = 323
A3 Parameter Adaption. o . 0. e e 328
A4 The Chassis . . .« « « ¢ « « o« o o o o o o« o o+ . . . 334
A5 The Subroutines « « « « « « « « « « & « « « . . . 3h0

Bibliography . « + « « « « o o & « « o+ 4 4 4 4 4 o« o« . .« 519

1 MODETLLTING A SYSTEM

Models simulate systems. More precisely, a simulation studies
a system’s behaviour over some period by constructing a second
system, with the same structure as the original, but easier to
work with. The second system is called a model.

1.1 Systems

A system is a set of elements in some way related to one an-
other. At any instant, it is in some particular state determined
by the elements” states and relationships. The system’s state
changes when an element’s state or its relation to other elements
changes. .

1.1.1 Examples

*¥ The planetary system:

Each planet has some set of private parameters, which describe
its state. These could include its diameter, geological struc-
ture, surface temperature, mass and period of rotation.

But the system’s momentary state depends not only on the plan-
ets” own states, it depends on planetary relationships as well.
Those relational parameters would include the Dbodies” relative
positions and velocities. If we assume that the planets’ own
states don’t change during our observation, the system’s state
can change only in its relational parameters.

¥ A computer installation:

Complex systems usually have elements of various types. If a
computer installation is regarded as a system, its elements can
be classified as processors, memories, peripherals and jobs.

As before, the system’s parameters are both private and rela-
tional: private parameters characterize its elements; relational
parameters, the relations and dependencies between them. The re-
lational parameters specify, among other things, which job runs
on which processor or which peripherals a job is using. A state
change occurs when a parameter’s value changes. A relational pa-
rameter could change 1in that the resources allocated to a job
change; a private parameter couid change in that a job s residual
running time or priority changes.

1.1.2 Types of Systems

Systems theory classifies systems with a terminology that im-
poses rough order on the clutter of possibilities.

*¥ Static and dynamic systems:

Static systems are not subject to change. A beam ballance 1in
mechanical equilibrium is a static system, provided it is not

1

disturbed. Systems whose state can change are dynamic.

¥ Deterministic and Stochastic Systems:

Dynamic systems are divided into two further classes. A system
is deterministic, when for each system state, the subsequent sys-
tem state is uniquely determined. If various states can follow,
the system is stochastic. In plain English, chance is a part of
the system. A radioactive nucleus is a stochastic system, since
it emits nucleoids at random. “At random’ means that no given
state leads, without fail, to radioactive decay.

¥ Continuous and discrete systems:

If state changes are continuous functions of time, as they
are, say, 1in the planetary system, the system is continuous. A
lake with streams feeding and draining it is also a continuous
system. So is a spring-driven pendulum. If states change abrubtly
and at intervals, the system is discrete. Two examples of dis-
crete state changes are: a computer job frees one system resource
and acquires another; the ballance in an account is increased by
the amount of a deposit.

1.1.3 Transaction-oriented and Event-oriented Systems

Among the discrete systems, we distinguish the transaction-
oriented from the event-oriented. Many systems can be thought of
as built from mobile and stationary system elements. The mobile
elements wander between the stationary ones, altering them and
being altered. The mobile elements are called transactions; the
stationary elements, stations. Systems so constituted are trans-
action-oriented.

Examples:

¥ Computer installation

The stations are the system’s resources, such as processors,
working storage and peripheral devices. The transactions are jobs
or tasks brought into the system; they travel from station to
station and they acquire, free and queue up in front of stations.

¥ Warehouse

A warehouse consists of a great many racks in which wares are
kept. The racks count as stations and the wares as transactions.
Wares arrive at the warehouse, are filed according to muster and
remain stored a while. Finally, upon receipt of an order, they
are removed from the racks and forwarded.

¥ Street intersection

The cars are transactions whose essential characteristic 1is
direction-of-travel. A traffic light coordinates their movement:
travel is barred where the light is red. The cars form queues at
the light until it changes; then they travel on.

When a model mimics one of those systems, it is irrelevant
whether its transactions represent jobs in a computer, packages
in a warehouse or cars at a traffic light. The essential similar-

ity is, they are all mobile system components. A model’s stations
are just as flexible. They are equally adept at representing any-
thing stationary, whether computer processor, warehouse rack, or
traffic light.

In transaction-oriented systems, all state changes originate
in the transaction’s movements. An event-orientation doesn’t di-
vide the world so sharply into things that move and things that
stay put. Instead, it sees systems as composed of elements that
may or may not be stationary, but whose interplay entitles them
in any case to full-fledged systemhood. The elements undergo
state changes, called events, whose origin need not have anything
to do with others of the system’s elements. Obviously, a complex
system may be thought of as part transaction-oriented, part
event-oriented.

Examples:

¥ An exchange of letters

Your grandmother remembered to send you a birthday card. Since
grandmothers remember such things quite on their own, they are
genuine event-makers; their memories are not jogged by the move-
ment of anything else on earth. If you wrote a pleasant reply,
your activity is transaction-oriented, since it was occasioned by
the birthday card’s arrival.

¥ Traffic light

If we view the traffic light as a subsystem within the larger
system sketched above, we could see it as event-oriented. Irre-
spective of traffic movements, it changes from red to green and

back again.

1.2 Models

Even under the best of circumstances, it may be impossible to
study a system directly. In systems planning, for example, the
system doesn’t yet exist. Or a system may be inaccessible, or its
investigation dangerous or costly. Often, the system can’t be
studied because it changes too quickly or too slowly. So the
study 1is carried out on a second system, built for the occasion.
Of two systems structured alike, with respect to the values to be
studied, the one used to investigate the other is called a model.

1.2.1 Similar Structures

An example should make clear what it means to say that two
systems have a common structure:

¥ A mechanical system

A mass M is suspended from a rigid wall by a spring with elas-
tic constant K and shock absorber with damping factor D. (Fig. 1)
If a time-dependent force F(t) acts on the mass, the equation of
motion of its center of gravity is:

