HIHRE Haskell (ZER)

Real W/rld

O'REILLY" Bryan O'Sullivan,
%K% Rt Jobn Goerzen & Don Stewart %

H iR B Haskell zam)
Real World Haskell

T]
oy Pyl L

”ﬁ j%]}on'&’tegu t

2

-~3f' -~

uendi@vnes

O'REILLY*

Beijing + Cambridge « Farnham < Koln < Sebastopol » Taipei « Tokyo

O’Reilly Media, Inc. £ 4 A& & k % & B4t ik

B A H Mt

BHERSAE (CIP) HitE

HSHF) Haskell: 230/ (35) #FI3C (Sullivan,
B.0.), (%) X/R (Goerzen, J.), (¥£) & /R
(Stewart, D.), . —REIA . —3%.: KEA%LHEK
#:, 2010.1

H&IEIC. Real World Haskell

ISBN 978-7-5641-1925-6

I.J I.0% OX~ Off+ I Haskel
EE - BRI - ¥X IV TP12

T ERAE51E CIP Bk (2009) 5205748

(LA R R VR A TR
E%. 10-2009-241 &

©2008 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University
Press, 2009. Authorized reprint of the original English edition, 2008 O'Reilly Media, Inc., the
owner of all rights to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form,
% LB R & O'Reilly Media, Inc. & #& 2008,

EXYphd hAd AP ERA LK 2009, ¥ I8 & A48 G 42 | h BRAL A4l G A IR A
—— O'Reilly Media, Inc. &) #% T,

BAIRE, ARHGHT, KBGEITHRSF SRR UETH X EH,

FLSL SR Haskell (BEENER)

HREIT: REARFEHRE

#oo fbe BIRPYMRE2 S BR4: 210096
WO A D I

& ok htip://press.sen.edu.cn

B Fhfd:. press@seu.edu.cn

EN Rl: e A ENRIABR 2 5

7 F: 787K < 980k 16 A
En gk . 44.5 Ellgk

¥ B 7148 FF

R K. 2010481 A% 15K

En K: 20104 1 A% 1 RETR

+ S : ISBN 978-7-5641-1925-6

Efl . 1~1600

£ #r: 88.00 ¢ (i)

A EBEFNRRRAE, FEESREMESWHEA. RIiE (FH). 02583792328

About the Authors

Bryan O’Sullivan is an Irish hacker and writer who likes distributed systems, open
source software, and programming languages. He was a member of the initial design
team for the Jini network service architecture (subsequently open sourced as Apache
River). He has made significant contributions to, and written a book about, the popular
Mercurial revision control system. He lives in San Francisco with his wife and sons.
Whenever he can, he runs off to climb rocks.

John Goerzen is an American hacker and author. He has written a number of real-
world Haskell libraries and applications, including the HDBC database interface, the
ConfigFile configuration file interface, a podcast downloader, and various other libra-
ries relating to networks, parsing, logging, and POSIX code. John has been a developer
for the Debian GNU/Linux operating system project for over 10 years and maintains
numerous Haskell libraries and code for Debian. He also served as president of Software
in the Public Interest, Inc., the legal parent organization of Debian. John lives in rural
Kansas with his wife and son, where he enjoys photography and geocaching.

Don Stewart is an Australian hacker based in Portland, Oregon. Don has been involved
in a diverse range of Haskell projects, including practical libraries, such as Data.Byte-
String and Data.Binary, as well as applying the Haskell philosophy to real-world ap-
plications, including compilers, linkers, text editors, network servers, and systems
software. His recent work has focused on optimizing Haskell for high-performance
scenarios, using techniques from term rewriting.

Colophon

The animal on the cover of Real World Haskell is a rhinoceros beetle, a species of scarab
beetle. Relative to their size, rhinoceros beetles are among the strongest animals on the
planet. They can lift up to 850 times their own weight. The average rhino beetle found
in the U.S. is about an inch long, but they can grow as long as seven inches.

Rhino beetles have horns on their heads, resembling that of the rhinoceros, hence the
name. The size of their horns is related to how much nutrition they had in larva. In
some species, the horns are longer than the bodies, and they can grow as many as four
or five horns. They use the horns for digging, as well as for fighting for territory and
mates.

Rhino beetles thrive on sap and rotting fruit, specifically bananas, apples, and oranges.
Their larvae, which takes between 3-35 years to mature, eat decaying wood, compost,
and dead leaves—a kind of recycling for the environment.

The cover image is from an unknown source. The cover font is Adobe ITC Garamond.
The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the
code font is LucasFont’s TheSans Mono Condensed.

tH higis A

B A NLBAR R BF IZ R AR EAES A —NEARE R RAHR . TR
BLEEAR B & R AT Lol A= 7= . 8 & ShFn B A TG AR Ok T E KRRV, 2R,
HHEAL R AT AR BT B 2 MR AT R AT, TR B E N BCR A RS BT iR
TRESMEFAEA, KEAFHRLEE OReilly Meida, Inc i8I, bk
825 | % A TR R R AR AR ek X TGN A B AR E 1, AR ENR 80 B i
R R B . Hodr, REENRRA5HE ok 5 E S E R 88, HE
HER" RIAAEE.

BAVERHAE, BT5 R AR E AR AT B AR A B . FHRHLAGRIBEZE A 5
s B A B2 S A DR BT B, S E AT R B AR EZRA s, LR .OHE
AR F AR AR

B AR A RZEN R B 45, 645 -

o (HESLHFH Haskell) GEENAR)

o (EARBMMEBFRY GEEIR)

e (Java Web IR . B 5B/ (FEHK)
o (HITFEEAY (RER)

o (fEMAPerl LHALEEA L F Y (REIKR)
o (Java{HEIRF FE MY (EER)

o (HEABHMEEHE) (BER)

e {Ruby BeHERE) (REIK)

o (EHEMIEY EHIR)

e (IEMiFEIKRIK Cookbook) (FEENAR)

e (flex 5 bison) (FZENAR)

H LR B Haskell ()
Real World Haskell

To Cian, Ruairi, and Shannon, for the love and
joy they bring.

—Bryan

For my wife, Terah, with thanks for all her love,
encouragement, and support.

—John
To Suzie, for her love and support.

—Don

Preface

Have We Got a Deal for You!

Haskell is a deep language; we think learning it is a hugely rewarding experience. We
will focus on three elements as we explain why. The first is novelty: we invite you to
think about programming from a different and valuable perspective. The second is
power: we’ll show you how to create software that is short, fast, and safe. Lastly, we
offer you a lot of enjoyment: the pleasure of applying beautiful programming techniques
to solve real problems.

Novelty

Haskell is most likely quite different from any language you’ve ever used before. Com-
pared to the usual set of concepts in a programmer’s mental toolbox, functional pro-
gramming offers us a profoundly different way to think about software.

In Haskell, we deemphasize code that modifies data. Instead, we focus on functions
that take immutable values as input and produce new values as output. Given the same
inputs, these functions always return the same results. This is a core idea behind func-
tional programming.

Along with not modifying data, our Haskell functions usually don’t talk to the external
world; we call these functions pure. We make a strong distinction between pure code
and the parts of our programs that read or write files, communicate over network con-
nections, or make robot arms move. This makes it easier to organize, reason about, and
test our programs.

We abandon some ideas that might seem fundamental, such as having a for loop built
into the language. We have other, more flexible, ways to perform repetitive tasks.

xxiif

Even the way in which we evaluate expressions is different in Haskell. We defer every
computation until its result is actually needed—Haskell is a lazy language. Laziness is
not merely a matter of moving work around, it profoundly affects how we write
programs.

Power

Throughout this book, we will show you how Haskell’s alternatives to the features of
traditional languages are powerful and flexible and lead to reliable code. Haskell is
positively crammed full of cutting-edge ideas about how to create great software.

Since pure code has no dealings with the outside world, and the data it works with is
never modified, the kind of nasty surprise in which one piece of code invisibly corrupts
data used by another is very rare. Whatever context we use a pure function in, the
function will behave consistently.

Pure code is easier to test than code that deals with the outside world. When a function
responds only to its visible inputs, we can easily state properties of its behavior that
should always be true. We can automatically test that those properties hold for a huge
body of random inputs, and when our tests pass, we move on. We still use traditional
techniques to test code that must interact with files, networks, or exotic hardware.
Since there is much less of this impure code than we would find in a traditional lan-
guage, we gain much more assurance that our software is solid.

Lazy evaluation has some spooky effects. Let’s say we want to find the k least-valued
elements of an unsorted list. In a traditional language, the obvious approach would be
to sort the list and take the first k elements, but this is expensive. For efficiency, we
would instead write a special function that takes these values in one pass, and that
would have to perform some moderately complex bookkeeping. In Haskell, the sort-
then-take approach actually performs well: laziness ensures that the list will only be
sorted enough to find the k minimal elements.

Better yet, our Haskell code that operates so efficiently is tiny and uses standard library
functions: ‘

-- file: choo/KMinima.hs
-~ lines beginning with "--

"

are comments.
minima k xs = take k (sort xs)

It can take a while to develop an intuitive feel for when lazy evaluation is important,
but when we exploit it, the resulting code is often clean, brief, and efficient.

As the preceding example shows, an important aspect of Haskell’s power lies in the
compactness of the code we write. Compared to working in popular traditional lan-
guages, when we develop in Haskell we often write much less code, in substantially
less time and with fewer bugs.

xaiv | Preface

Enjoyment

We believe that it is easy to pick up the basics of Haskell programming and that you
will be able to successfully write small programs within a matter of hours or days.

Since effective programming in Haskell differs greatly from other languages, you should
expect that mastering both the language itself and functional programming techniques
will require plenty of thought and practice.

Harking back to our own days of getting started with Haskell the good news is that
the fun begins early: it’s simply an entertaining challenge to dig into a new language—
in which so many commonplace ideas are different or missing—and to figure out how
to write simple programs.

For us, the initial pleasure lasted as our experience grew and our understanding deep-
ened. In other languages, it’s difficult to see any connection between science and the
nuts-and-bolts of programming. In Haskell, we have imported some ideas from abstract
mathematics and put them to work. Even better, we find that not only are these ideas
easy to pick up, but they also have a practical payoff in helping us to write more com-
pact, reusable code.

Furthermore, we won’t be putting any “brick walls” in your way. There are no especially
difficult or gruesome techniques in this book that you must master in order to be able
to program effectively.

That being said, Haskell is a rigorous language: it will make you perform more of your
thinking up front. It can take a little while to adjust to debugging much of your code
before you ever run it, in response to the compiler telling you that something about
your program does not make sense. Even with years of experience, we remain aston-
ished and pleased by how often our Haskell programs simply work on the first try, once
we fix those compilation errors.

What to Expect from This Book

We started this project because a growing number of people are using Haskell to solve
everyday problems. Because Haskell has its roots in academia, few of the Haskell books
that currently exist focus on the problems and techmques of the typical programming
that we’re interested in.

With this book, we want to show you how to use functional programming and Haskell
to solve realistic problems. We take a hands-on approach: every chapter contains doz-
ens of code samples, and many contain complete applications. Here are a few examples
of the libraries, techniques, and tools that we’ll show you how to develop:

Preface | v

 Create an application that downloads podcast episodes from the Internet and
stores its history in an SQL database.

 Test your code in an intuitive and powerful way. Describe properties that ought to
be true, and then let the QuickCheck library generate test cases automatically.

* Take a grainy phone camera snapshot of a barcode and turn it into an identifier
that you can use to query a library or bookseller’s website.

* Write code that thrives on the Web, Exchange data with servers and clients written
in other languages using JSON notation. Develop a concurrent link checker.

A Little Bit About You

What will you need to know before reading this book? We expect that you already
know how to program, but if you’ve never used a functional language, that’s fine.

No matter what your level of experience is, we tried to anticipate your needs; we go
out of our way to explain new and potentially tricky ideas in depth, usually with ex-
amples and images to drive our points home.

As a new Haskell programmer, you’ll inevitably start out writing quite a bit of code by
hand for which you could have used a library function or programming technique, had
you just known of its existence. We packed this book with information to help you get
up to speed as quickly as possible.

Of course, there will always be a few bumps along the road. If you start out anticipating
an occasional surprise or difficulty along with the fun stuff, you will have the best
experience. Any rough patches you might hit won’t last long.

As you become a more seasoned Haskell programmer, the way that you write code will
change. Indeed, over the course of this book, the way that we present code will evolve,
as we move from the basics of the language to increasingly powerful and productive
features and techniques.

What to Expect from Haskell

Haskell is a general-purpose programming language. It was designed without any ap-
plication niche in mind. Although it takes a strong stand on how programs should be
written, it does not favor one problem domain over others.

While at its core, the language encourages a pure, lazy style of functional programming,
this is the default, not the only option. Haskell also supports the more traditional mod-
els of procedural code and strict evaluation. Additionally, although the focus of the
language is squarely on writing statically typed programs, it is possible (though rarely
seen) to write Haskell code in a dynamically typed manner.

wovi | Preface

Compared to Traditional Static Languages

Languages that use simple static type systems have been the mainstay of the program-
ming world for decades. Haskell is statically typed, but its notion of what types are for
and what we can do with them is much more flexible and powerful than traditional
languages. Types make a major contribution to the brevity, clarity, and efficiency of
Haskell programs.

Although powerful, Haskell’s type system is often also unobtrusive. If we omit explicit
type information, a Haskell compiler will automatically infer the type of an expression
or function. Compared to traditional static languages, to which we must spoon-feed
large amounts of type information, the combination of power and inference in Haskell’s
type system significantly reduces the clutter and redundancy of our code.

Several of Haskell’s other features combine to further increase the amount of work we
can fit into a screenful of text. This brings improvements in development time and
agility; we can create reliable code quickly and easily refactor it in response to changing
requirements. '

Sometimes, Haskell programs may run more slowly than similar programs written in
C or C++. For most of the code we write, Haskell’s large advantages in productivity
and reliability outweigh any small performance disadvantage.

Multicore processors are now ubiquitous, but they remain notoriously difficult to pro-
gram using traditional techniques. Haskell provides unique technologies to make
multicore programming more tractable. It supports parallel programming, software
transactional memory for reliable concurrency, and it scales to hundreds of thousands
of concurrent threads.

Compared to Modern Dynamic Languages

Over the past decade, dynamically typed, interpreted languages have become increas-
ingly popular. They offer substantial benefits in developer productivity. Although this
often comes at the cost of a huge performance hit, for many programming tasks pro-
ductivity trumps performance, or performance isn’t a significant factor in any case.

Brevity is one area in which Haskell and dynamically typed languages perform similarly:
in each case, we write much less code to solve a problem than in a traditional language.
Programs are often around the same size in dynamically typed languages and Haskell.

When we consider runtime performance, Haskell almost always has a huge advantage.
Code compiled by the Glasgow Haskell Compiler (GHC) is typically between 20 to 60
times faster than code run through a dynamic language’s interpreter. GHC also pro-
vides an interpreter, so you can run scripts without compiling them.

Another big difference between dynamically typed languages and Haskell lies in their
philosophies around types. A major reason for the popularity of dynamically typed

Preface | xxvii

languages is that only rarely do we need to explicitly mention types. Through automatic
type inference, Haskell offers the same advantage.

Beyond this surface similarity, the differences run deep. In a dynamically typed
language, we can create constructs that are difficult to express in a statically typed
language. However, the same is true in reverse: with a type system as powerful as Has-
kell’s, we can structure a program in a way that would be unmanageable or infeasible
in a dynamically typed language.

It’s important to recognize that each of these approaches involves trade-offs. Very
briefly put, the Haskell perspective emphasizes safety, while the dynamically typed
outlook favors flexibility. If someone had already discovered one way of thinking about
types that was always best, we imagine that everyone would know about it by now.

Of course, we, the authors, have our own opinions about which trade-offs are more
beneficial. Two of us have years of experience programming in dynamically typed lan-
guages. We love working with them; we still use them every day; but usually, we prefer
Haskell. ~

Haskell in Industry and Open Source

Here are justa few examples of large software systems that have been created in Haskell.
Some of these are open source, while others are proprietary products:

* ASIC and FPGA design software (Lava, products from Bluespec, Inc.)

* Music composition software (Haskore)

* Compilers and compiler-related tools (most notably GHC)

» Distributed revision control (Darcs)

Web middleware (HAppS, products from Galois, Inc.)

The following is a sample of some of the companies using Haskell in late 2008, taken
from the Haskell wiki (http://www.haskell.org/haskellwiki/Haskell_in_industry):

ABN AMRO
An international bank. It uses Haskell in investment banking, in order to measure
the counterparty risk on portfolios of financial derivatives.

Anygma
A startup company. It develops multimedia content creation tools using Haskell.
Amgen
A biotech company. It creates mathematical models and other complex applica-
tions in Haskell.
Bluespec
An ASIC and FPGA design software vendor. Its products are developed in Haskell,
and the chip design languages that its products provide are influenced by Haskell.

xxviii | Preface

Eaton
Uses Haskell for the design and verification of hydraulic hybrid vehicle systems.

Compilation, Debugging, and Performance Analysis

For practical work, almost as important as a language itself is the ecosystem of libraries
and tools around it. Haskell has a strong showing in this area.

The most widely used compiler, GHC, has been actively developed for over 15 years
and provides a mature and stable set of features:

* Compiles to efficient native code on all major modern operating systems and CPU
architectures

* Easy deployment of compiled binaries, unencumbered by licensing restrictions

¢ Code coverage analysis

* Detailed profiling of performance and memory usage

. Thoroﬁgh documentation

* Massively scalable support for concurrent and multicore programming

¢ Interactive interpreter and debugger

Bundled and Third-Party Libraries

The GHC compiler ships with a collection of useful libraries. Here are a few of the
common programming needs that these libraries address:

* File I/O and filesystem traversal and manipulation

* Network client and server programming

» Regular expressions and parsing

* Concurrent programming

* Automated testing

* Sound and graphics
The Hackage package database is the Haskell community’s collection of open source
libraries and applications. Most libraries published on Hackage are licensed under lib-
eral terms that permit both commercial and open source use. Some of the areas covered
by these open source libraries include the following:

* Interfaces to all major open source and commercial databases

* XML, HTML, and XQuery processing

» Network and web client and server development

* Deskrop GUISs, including cross-platform toolkits

* Support for Unicode and other text encodings

Preface | xxix

A Brief Sketch of Haskell’s History

The development of Haskell is rooted in mathematics and computer science research.

Prehistory

A few decades before modern computers were invented, the mathematician Alonzo
Church developed a language called lambda calculus. He intended it as a tool for in-
vestigating the foundations of mathematics. The first person to realize the practical
connection between programming and lambda calculus was John McCarthy, who cre-
ated Lisp in 1958.

During the 1960s, computer scientists began to recognize and study the importance of
lambda calculus. Peter Landin and Christopher Strachey developed ideas about the
foundations of programming languages: how to reason about what they do (operational
semantics) and how to understand what they mean (denotational semantics).

In the early 1970s, Robin Milner created a more rigorous functional programming lan-
guage named ML. While ML was developed to help with automated proofs of mathe-
matical theorems, it gained a following for more general computing tasks.

The 1970s also saw the emergence of lazy evaluation as a novel strategy. David Turner
developed SASL and KRC, while Rod Burstall and John Darlington developed NPL and
Hope. NPL, KRC, and ML influenced the development of several more languages in
the 1980s, including Lazy ML, Clean, and Miranda.

Early Antiquity

By the late 1980s, the efforts of researchers working on lazy functional languages were
scattered across more than a dozen languages. Concerned by this diffusion of effort, a
number of researchers decided to form a committee to design a common language.
After three years of work, the committee published the Haskell 1.0 specification in
1990. It named the language after Haskell Curry, an influential logician. ‘

Many people are rightfully suspicious of “design by committee,” but the output of the
Haskell committee is a beautiful example of the best work a committee can do. They
produced an elegant, considered language design and succeeded in unifying the frac-
tured efforts of their research community. Of the thicket of lazy functional languages
that existed in 1990, only Haskell is still actively used.

Since its publication in 1990, the Haskell language standard has seen five revisions,
most recently in 1998. A number of Haskell implementations have been written, and
several are still actively developed.

xxx | Preface

During the 1990s, Haskell served two main purposes. On one side, it gave language
researchers a stable language in which to experiment with making lazy functional
programs run efficiently and on the other side researchers explored how to construct
programs using lazy functional techniques, and still others used it as a teaching
language.

The Modern Era

While these basic explorations of the 1990s proceeded, Haskell remained firmly an
academic affair. The informal slogan of those inside the community was to “avoid
success at all costs.” Few outsiders had heard of the language at all. Indeed, functional
programming as a field was quite obscure.

During this time, the mainstream programming world experimented with relatively
small tweaks, from programming in C, to C++, to Java. Meanwhile, on the fringes,
programmers were beginning to tinker with new, more dynamic languages. Guido van
Rossum designed Python; Larry Wall created Perl; and Yukihiro Matsumoto developed
Ruby.

As these newer languages began to seep into wider use, they spread some crucial ideas.
The first was that programmers are not merely capable of working in expressive lan-
guages; in fact, they flourish. The second was in part a byproduct of the rapid growth
in raw computing power of that era: it’s often smart to sacrifice some execution per-
formance in exchange for a big increase in programmer productivity. Finally, several
of these languages borrowed from functional programming.

Over the past half decade, Haskell has successfully escaped from academia, buoyed in
part by the visibility of Python, Ruby, and even JavaScript. The language now has a
vibrant and fast-growing culture of open source and commercial users, and researchers
continue to use it to push the boundaries of performance and expressiveness.

Helpful Resources

As you work with Haskell, you’re sure to have questions and want more information
about things. The following paragraphs describe some Internet resources where you
can look up information and interact with other Haskell programmers.

Reference Material

The Haskell Hierarchical Libraries reference
Provides the documentation for the standard library that comes with your com-
piler. This is one of the most valuable online assets for Haskell programmers.

Haskell 98 Report
Describes the Haskell 98 language standard.

Preface | ocxi

GHC Users’s Guide
Contains detailed documentation on the extensions supported by GHC, as well as
some GHC-specific features.

Hoogle and Hayoo
Haskell API search engines. They can search for functions by name or type.

Applications and Libraries

If you’re looking for a Haskell library to use for a particular task or an application
written in Haskell, check out the following resources:

The Haskell community '
Maintains a central repository of open source Haskell libraries called Hackage
(http://hackage.haskell.org/). It lets you search for software to download, or browse
its collection by category.

The Haskell wiki (http://haskell.org/haskellwiki/Applications_and_libraries)
Contains a section dedicated to information about particular Haskell libraries.

The Haskell Community

There are a number of ways you can get in touch with other Haskell programmers, in
order to ask questions, learn what other people are talking about, and simply do some
social networking with your peers:

* The first stop on your search for community resources should be the Haskell web-
site (http://'www.haskell.org/). This page contains the most current links to various
communities and information, as well as a huge and actively maintained wiki.

* Haskellers use a number of mailing lists (http://haskell.org/haskellwiki/Mailing
_lists) for topical discussions. Of these, the most generally interesting is named
haskell-cafe. It has a relaxed, friendly atmosphere, where professionals and aca-
demics rub shoulders with casual hackers and beginners.

* For real-time chat, the Haskell IRC channel (http://haskell.org/haskellwiki/IRC
_channel), named #haskell, is large and lively. Like haskell-cafe, the atmosphere
stays friendly and helpful in spite of the huge number of concurrent users.

* There are many local user groups, meetups, academic workshops, and the like;
there is a list of the known user groups and workshops (http://haskell.org/haskell
wiki/User_groups). ‘

* The Haskell Weekly News (http://sequence.complete.org/) is a very-nearly-weekly
summary of activities in the Haskell community. You can find pointers to inter-
esting mailing list discussions, new software releases, and similar things.

* The Haskell Communities and Activities Report (http://haskell.org/communities/)

collects information about people that use Haskell and what they’re doing with it.
It’s been running for years, so it provides a good way to peer into Haskell’s past.

wexii | Preface

