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PUGH: STORAGE HIERARCHIES

2 I (®-TOTAL STORAGE BYTES -
= = - (B-MEMORY BYTES R
© r (©-CPU POWER IN MPS Pl

I S 4 Y P WS G Y
52 55 58 6! ) 0 T
YEAR OF FIRST CUSTOMER INSTALLATION

Fig. 1. Computer Frocessing power in MIPS compared to main
memory and total on-line storage capacity for large IBM com-
puters.

prepared to tackle this problem along with their applica-
tions software development.

Compared with their predecessors, these new operating
systems tended to be complex. OS/360, for example, was
measured in millions of bytes of instructions, a small part
of which was permanently resident in main memory while
the rest was held on disk storage. Operating systems
managed most system resources, established priorities,
handled I/0 requests, allocated space in memory, ete. In
order to keep the CPU and main memory busy while
waiting for information from electromechanical storage,
support of multiprogramming was often provided.
With this support, when a task makes reference to informa-
tion not in main memory, the operating system starts the
CPU working on another task already resident in ‘main
memory and simultaneously begins searching for the re-
quested information and preparing to transfer it into main
memory.

To the extent that the user can write his problem pro-
gram and get his job executed without being aware of the
hardware characteristics of the storage system, the storage
system is said to be transparent to the user. Many clever
schemes have been devised to permit nearly complete
systems management of the storage system and trans-

‘parency- to the user. However, the cost/performance and

certain unique characteristics of the available hardware
largely determine the extent to which transparency can be
achieved.
The most commonly identified hardware problem is that
of the access gap between electronically addressable semi-
nductor, plated-wire, or ferrite-core memories, and
ectromechanically addressable storage such as magnetic
ms, disks, and tapes. To distinguish between the hard-
are cost/performance gap and the system and software

groblems it presents to the user, we will refer to the latter

the cliff in the hierarchy.

w
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Fig. 2. Access gap in 1965 with projections to future.

Access Gar

The large difference between access time to electroni-
cally and electromechanically addressable storage has been
with us about as long as computers themselves. Further-
more, projections of future technology developments sug-
gest that this access gap will continue for some time.

The access time in seconds (scale given in powers of
ten) is shown in Fig. 2 versus price per byte for storage
technologies available during the mid to late 1960’s. A
byte is eight logical bits and is usually implemented with
nine or more hardware bits for error detection and correc-
tion. Price is to the user and includes prorated cost of
channel and control units (if any) required to attach the
storage to the system. Prices to 1985 assume that projected
technology advances are achieved and that cost savings are
passed on to the user.

Dominant electronically addressable technologies of this
era were ferrite-core, plated-wire, and semiconductor
memories, while electromechanical technologies were mag-
netic tapes, disks, and drums or fixed-head files. The pro-
jection to 1975 assumes that the same technologies will
continue to dominate the market, but that semiconductor
memories will make significant inroads into the plated-
wire and ferrite-core market. By 1985 most of the elec-
tronically addressable storage will be semiconductor, while
magnetic disks and tapes will continue to be the primary
form of electromechanical storage. The lack of a curve for
drums or fixed-head files beyond 1975 presumes that this
technology will no longer be competitive with low-cost
semiconductor technology, while the large question mark
suggests the possibility that a successful gap-filling
technology will be achieved using magnetic bubbles, low-
cost semiconductor technology, beam-addressable memory,
or some approach as yet not conceived.

The better price/performance technologies in Fig. 2 are
found to the lower left, while the poorer ones are to the
upper right. On this basis, drums or fixed-head files are
seen to provide poor price/performance compared to the
other technologies available during the same era—they do,
however, provide something within the access gap and
therefore find a limited market where a customer requires
this function. The price/performance projections of future
technologies indicate that the size of the performance gap
will remain nearly constant, spanning the range from 10+
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to 10—2 s. The gap, when measured in cents per bit, may
narrow from three orders of magnitude to less than two
orders of magnitude if pressent cost projections of semi-
conductor technology are met. This would make success-
ful introduction of a gap-filling technology more difficult
and would have profound implications on future system
design.

Hierarcuy CLIFr

The size of the cliff presented to the user by the access
gap varies from system to system. In general, when a user’s
application is containable in main memory, his job is rela-
tively straightforward; however, when his application must
make use of electromechanical storage, he becomes con-
cerned with the representation of data structures on stor-
age devices whose addressing rules differ markedly from
those of main memory. Frequency of access to storage
devices and contention with other programs for devices
must be minimized. He must select a method for structur-
ing the data in his file, select one of the software access
methods provided by the operating system, and allocate
sufficient space within main memory to buffer the records
transmitted between main memory and the channel at-
tached storage. Improper handling of these functions will
result in failure of the program to execute.

A clever programmer, who understands the peculiarities
of the system, can dramatically improve the performance
of the system for his program. For example, if he arranges
accesses to disk storage so as to minimige arm motion, he
may more than double the speed at which his job is com-
pleted. In a multiprogramming environment, however, his
efforts may be thwarted by repositioning of the arm by an
intervening task. In this case, global optimization of the
resources by the operating system is in direct conflict
with local optimization attempted by the user.

A revealing example of a user’s concern with this cliff is
that of an application which operates on an array of data
too-large to fit into main memory. The programmer must
decide how to divide the array into parts which will be
separately brought into memory. If the application re-
quires logical operations among all (or many) parts of the
array, then each of the several parts of the array may have
to be loaded into memory many times before all of the
logical operations can be completed. Devising an efficient
algorithm for doing this, and writing the code to implement
it, may be far more work than writing the basic applications
program itself.

It is therefore reasonable to ask if it is possible for the
user to write his program as if he had an infinitely large
address space, and then let the system select the algorithms
for moving parts of the program and data into and out of
main memory. Techniques for doing this have in fact been
devised and implemented. The very large, and physically
nonexistent, memory assumed by the application program
is referred to as virtual memory. It is worth noting that
such techniques may be even more important for terminal-
oriented systems in which many users are simultaneously
requesting large amounts of main memory.
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Fig. 3. Virtual addressing implemented by demand paging from

disk to memory.

DeMaND Pacing

Demand paging in conjunction with an address trans-
lation and mapping scheme is frequently used to provide
large virtual memory for users on a system with relatively
small real memory. A simplified version of this is depicted
in Fig. 3 for illustrative purposes. The disk storage space,
which represents the total virtual address space available
to the users, in this example is divided into 100 pages of
1000 words each. Directly addressable memory is illus-
trated with eight pages of 1000 words each. The purpose of
the addressing and paging scheme is to provide (as nearly
as possible) the function and performance of 1000 words
of main memory with 1000 words of inexpensive disk
storage and only eight words of the more expensive main
memory.

A CPU memory request, e.g., virtual address 98 273, is
divided into its high-order (98) and low-order (273) terms.
The latter are immediately placed in a register for the real
address, while the high-order terms are used to address a
dictionary stored in main memory. In the example given,
virtual page number 98 was assumed to be already resident
in page 4 of the main memory, and this information was
therefore found in the dictionary. The number 98 is re-
placed by 4 in the real address, which is now transmitted
to main memory in the usual manner to find the informa-
tion stored in location 4273

If the page is not in memory, then the dictionary will so
indicate. In the example, a request for a virtual address
99X XX would result in translation information 99-9, where
9 exceeds the number of pages in real memory and is used
to symbolize a request for the system to move page 99
into main memory from the disk. If the main memory is
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full, then some page already there will have to be selected
for replacement. A very common practice is to replace
the page which has been least recently used, namely, the
LRU algorithm. In addition to replacing the page in
memory, the system must also update the entry in the
dictionary.

The time required to make two memory references to
locate each word can be shortened if a high-performance
associative memory technology is available. In Fig. 3
three words of associative storage are assumed. When the
address translation information 98-4 is found, it is placed in
one of the three associative words. A subsequent virtual
address anywhere in page 98XXX will quickly be trans-
lated into the real address 4XXX without reference to the
full dictionary stored in main memory. Because of the small
size of the associative register, some algorithm must be
selected for replacing one address with another.

_The performance actually achieved by demand paging
depends strongly on the effectiveness of the paging
algorithm for the job stream on which it is used. If the time
to access and transfer data from memory is T, and from
disk is T'p, then the average time to access data from
virtual memory is given by

Ti=Tux+ (1_h)TD

where h is the hit ratio, i.e., the fraction of address requests
which are already in main memory. The term T, as
opposed to hT, is ‘'used because it is presumed that a re-
quest not fourd in memory results in an access and
transfer from disk to memory followed by an access and
transfer from memory. For a system in which Tp > Ty,
the access time is simply T, =2 (1—h)T'p, and a 90-percent
hit ratio reduces the average access time 7', to 0.1 T'p, and
an average access time of 0.01 T, would result for h = 0.99.

While demand paging was originally proposed for use
across the access gap, its most successful implementation
has been with the buffer-backing store, or cache memory
concept, first introduced on the IBM 360/85 computer.
In this computer a 0.4-us access ferrite-core backing store of
512 000 byte or larger is teamed with 16 000 byte of semi-
conductor memory with about ten times faster access.
Since hit ratios well in excess of 0.9 are typically achieved,
the average access time of the system is

TA= TM+0.1TDgTM

where T in this case is the access time to the high-speed
cache and T, is the access time to the lower speed main
memory. The cost per bit of the buffer-backing store com-
bination is approximately that of the lower cost ferrite-core
memory, especially on systems having large amounts of
core storage.

Three factors account for the greater success of demand
paging between cache and main memory than between
main memory and disk storage: .

1) higher hit ratios are achieved closer to the CPU due
to the greater sequentiality of the job streams at this
level,;
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Fig. 4. Price versus access time achieved by demand paging be-
tween buffer and main memory and between large capacity
memory (LCM) and disk storage using 1965-1970 technologies
and assuming 90-percent hit ratio to higher performanice device.

2) the performance difference to be spanned is smaller,
i.e., one instead of four orders of magnitude;

3) the slope of the price-to-access time curve is steeper
between cache and main memory than between main
memory and disk.

The impact of factors 2) and 3) is shown in Fig. 4. Two
cases are illustrated: a 0.2-Mbyte main memory buffered
by a 0.02-Mbyte semiconductor cache, and a 200 Mbyte
disk buffered by a 2-Mbyte ferrite-core memory. In order
to eliminate sensitivity to differing hit ratios, a hit ratio of
0.9 was assumed in both cases. The X connected by dotted
lines to the two parent technologies represents the resultant
price/performance of the combined systems. While the
price/performance of the memory-disk system for the
numbers selected is superior to that of the drum, it lies
well above the price/performance trend line drawn through
the other storage technologies. Tlie combined cache-
memory system, in contrast, has a price/performance
better than the trend line.

OFF-LINE INFORMATION STORAGE

The typical computer in the 0.05- to 5.0-MIPS range
has 100 to 1000 times as much information stored in its
tape library as it has on-line. By looking at Table I we can
see that the low cost of off-line tape storage is the prime
reason for the use of magnetic tapes. It is about 40 times
cheaper than off-line disk storage and 1000 times cheaper
than on-line disk storage. The relatively large cost of-a
tape drive combined with the relatively small capa-
city of the tape reel (107 byte) result in a cost of
on-line tape storage which is about equal to that of on-line
disk storage, even though the access time and flexibility of
the tape system is inferior to that of the on-line disk stor-
age.

Because the time to locate a reel and mount it on a drive
is measured in minutes, accesses to off-line data is handled
very differently than to on-line data. The operator is adi’}
vised to mount the tapes that will be needed before the job
is initiated, so that the access times actually experienced
by the system are measured in milliseconds, or seconds at
worst. The list of tapes to be mounted, for each job is fre-
quently given on the schedule which advises the operator
which jobs are to be run that day. In a larger installation
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the schedule may be stored in the computer and even some
provision made for automatic scheduling by the computer
a8 additional jobs are placed in the queue. In such cases
the operator is advised to mount tapes by the computer
before execution is undertaken.

Such conventions have evolved because of the physical
limitations of tape storage and have proved to be reason-
ably satisfactory. However, the number of tapes which
must be mounted per day on a given system is clearly
related to the rate at which the CPU can do work. A
typical 1-MIPS processor may average 2 tape mounts per
minute distributed over its 15 or so tape drives. Keeping
track of this activity requires a fair amount of clerical
activity, not to mention the physical activity of mounting,

IEEE TRANSACTIONS ON MAGNETICS, VOL. MAG-7, NO. 4, DECEMBER 1971

demounting, and storing tape reels. The time it takes to
obtain and mount tapes makes a change in the order in
which jobs are executed very time consuming and precludes
dynamic load balancing that involves that part of the
hierarchy served by magnetic tapes.

If a proportionally high mount rate is required for future
computers capable of 10 to 100 MIPS, then 20 to 200 tape
mounts per minute will be needed! Clearly, there is a grow-
ing importance of the gap between on-line and off-line
storage in the hierarchy. Two approaches are available for
solving this problem: one is to place high-usage informa-,
tion from the tape library onto disk storage, while the
second is to devise a storage technology that permits easier
access to the information now stored in tape libraries.

Evaluation of Multilevel Memories

RICHARD L. MATTSON MEMBER, IEEE

Abstract—Proposed memory hierarchy technologies and con-
figurations are usually evaluated by repeated running of ‘‘typical”’
jobs through simulated hierarchies while various parameters are
adjusted. Simulation is too slow to be a tool for selecting among the
choices in 1) technologies to be included, 2) implementation of each
technology, and 3) management of data flow in the hierarchy.

Four current hardware-managed hierarchies are described in a
manner which parameterizes their design. The evaluation process is
described in terms of address traces, hit ratios, and system cost
performance. Stack processing is then described as a replacement
for simulation that obtains hit-ratio data 1000 times faster than
before. Finally, an example is given to illustrate how to select be-
tween two competing technologies, how to design the best hierarchy,
and how to determine the information flow which optimizes the
total cost performance of the system.

* I. INTRODUCTION

Justification for Memory Hierarchies

VER THE PAST several years there has been a

substantial increase in the speed and capacity
demands placed on computer memory systems. These
demands cannot be fulfilled at an acceptable cost with any
single current technology, but the problem can be over-
come by a méemory hierarchy which combines a variety of
technologies with differing cost-performance charac-
teristics. To design an optimal memory hierarchy
for a given program load, one must determine the best
combination of technologies to include in the hierarchy,
the hierarchy parameters, and a policy for managing the
flow of data in the hierarchy.

Manuscript received April 26, 1971. Paper 1§.2, presented at the
1971 INTE&MAG Conference, Denver, Colo., April 13-16.

The author is with the IBM Research Laboratory, San Jose,
Calif. 95114.

Hierarchy Management

Management of a memory hierarchy involves deter-
mining where information is stored, how it is located, and
when it should be moved. The objective is to maintain
currently used data in fast and expensive devices in order
to minimize the access time to the hierarchy. This requires
recognizing when data is no longer needed so it can be
moved to slower and cheaper devices. Typically, manage-
ment policies involve partitioning data and programs into
blocks and adopting some technique for moving these
blocks in the hierarchy. ‘

Hierarchy management may be performed by the user
or automatically by the system. Management by the
user allows him to incorporate his knowledge regarding
data and program usage. However, this places an addi-
tional burden on him and reprogramming may be required
if his program is run on a machine with a different hier-
archy. ‘

Automatic management relieves the user, but transfers
the task to operating system programmers or hardware
designers. Operating system control is easy to change
when necessary, but each access to the memory system
requires software intervention and serious performance
degradation may result. Hardware control is inherently
more efficient, but it is expensive and cannot be changed.
Thus, a careful design tailored to the intended workload
is required to insure that a hardware-managed hierarchy
will have good cost-performance characteristics.

Hierarchy Evaluation

The problem of hierarchy evaluation is to determine the
overall computing system cost performance when pro-
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cessing its workload. The cost-performance characteristics
of the system depend on the technologies in the memory
hierarchy, the hierarchy organization, and the given
hierarchy management policy.

The usual approach has been to define a set of “typical”’
applications, run these on existing computers, trace the

time sequence of memory access requests, and use this

trace as input to a program which simulates the computing
system with a memory hierarchy. The simulation produces
the average access time to the hierarchy which can be
used to obtain the processing speed of the system and,
when ¢ombined with costs, the cost performance of the
hierarchy. Repeated simulation. with different memory
technology parameters and hierarchy management policies
leads to a hierarchy design with low cost performance.
However, simulation is a slow and detailed process to
use as a design tool. This paper discusses a new technique
for the evaluation of memory hierarchies which allows for
the rapid evaluation of technology and system design
choices.

" II. HIERARCHY MANAGEMENT TECHNIQUES
Pages, Classes, and Data Movement.

For purposes of illustration, a technique for the auto-
matic management of two-level memory hierarchies is
discussed in this section. The level closest to the central
processing unit (CPU) will be called the buffer, and the
other level will be called the memory. The memory and
buffer are both partitioned into equal-size blocks called
page frames, and are further partitioned into classes as
indicated by the vertical columns in Fig. 1(a).

The CPU issues a request for data by specifying a
memory address (see Fig. 1). This address specifies the
desired page, the page class, and the byte within the page.
All pages are initially in the memory and are moved to the
buffer only when requested by the CPU. In this paper,
movement is constrained so that a page cannot cross class
boundaries, and when the buffer has no free space in a
given class, the page removed from the buffer is the
least recently used (LRU) page in that class

Management Techniques

To manage this type of hierarchy one needs 1) a directory
for each class to indicate which page from the memory is
in which page frame of the bufier, and 2) a priority list
for each class that orders the buffer page frames in order
of their availability .of being emptied when space is
needed. Examples of systems with four classes and one
class are shown in Fig. 1(a) and (b), respectively.

Tradeoff Between Classes, Cost, and Speed

The number of classes in the.memory (buffer) has
conflicting effects on system cost and performance.
With one class every page frame in the buffer can be
fully utilized, but the directory and priority list are
large. Because the directory must be gcanned and the
priority list updated for each CPU request, the scan and
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Fig. 1. Hierarchy management. (a) Four “classes. (b) One class.
TABLE I
DEsiGN PARAMETERS
System 360/85( 360/195| 3707165 | 370/155
Buffer Size (bytes) 16,384 32,768 8,192 8,192
Memory Size (bytes) 4,194,300 | 4,194,304 [3,145,728 [2,097,152
Page Size (bytes) T 1024 64 32 32
‘Blocks per page 16 1 1 2
Crasses V| s 64 128
Buffer page Frames/Class 16 4 4 2
Memory Page Frames/Class 4096 65,536 49,152 32,768
ths/Class for Pn_o-thy L\st_ B 64 5 5 1
D1rectory Storage (bxts) 192 8,192 4,352 4,096
Prlorlty List Storagc (bits) 64 640 320 128
B’Iock Loaded Indicators (b\ts) 256 0 J 512

update will either take a long period of time, or require a
great deal of hardware. On the other hand, with many
classes the directories and priority lists for each class are
small and can be searched and updated quickly and with

‘little hardware, but, unless page requests by the CPU

are uniformly distributed over all classes, the buffer space
may be poorly utilized. Thus, the number of classes is a
design choice that affects both cost and performance.

Ezxamples of Memory H ierarchies

In this section, four two-level memory hxera.rchy or-
ganizations are discussed that are hardware fanaged and -
are transparent to the user and system programs which
use them. These correspond to the IBM computer systems
360/85, 360,195, 370/165, and 370/155, the pa.rameters
of which are listed in Table I.

The operation of these systems is similar in that. each
time the processor makes a memory access, the memory
system identifies the page class, checks the directory
for that class to see if space has been allocated for the
desired page, and checks to see if the data is in the space
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allocated. If the data is in the buffer, processing continues.
If space has been allocated, but the data is not there,
data is moved to the buffer. If space has not been allo-
cated, then space is allocated for the entire page, and part
or all of the page is moved to the buffer.

Each time the processor stores information, it is stored
in the memory. If the buffer also contains the data, it is
stored in the buffer also. When all buffer page frames in a

.given class have been allocated and space is needed, the
least recently accessed page frame is allocated to the new
page (LRU replacement).

In the IBM 360/85 the operation is as illustrated in
Fig. 1(b), with the parameters given in Table I. The
360/85 differs from the other system in that only 1/16
of the page is loaded on demand in order to make the
page wait-time small. Space for the remainder of the page
is reserved and other parts can be quickly loaded if
needed.

In the IBM 360/195, 370/165, and 370/155 the operation
is as illustrated in Fig. 1(a). In the 360/195 and 370/165
entire pages are loaded into the buffer on demand. In the
370/155 only 1/2 pages are loaded into the buffer in a
manner similar to that in the 360/85.

II1. EvaruatioN METHODS

Hit Ratio

In two-level hierarchies, if the requested memory
access is found in the buffer it is called a hit. The hit ratio
is defined as the ratio of the total number of hits to the
total number of address accesses. This hit ratio can be
used to compute the average time between hierarchy
accesses from the equation

Tawe=t+ (1 - f)t2 . (1)

where f is the hit ratio, # is the average time between
memory requests, and ¢, is the time required to get the
. requested data, into the buffer and ready to be used
" by the CPU. The times #, and & must include directory
search time and directory and priority list update times.

Cost Peifomwnce

‘A common cost-performance measure of a system is
dollars times seconds per access; it can be computed by
1) computing the average time (in seconds) between
hierarchy responses (from (1)), 2) computing the total
gystem cost including the CPU, buffer, directory, priority
list table, and main memory, and 3) multiplying the
average seconds per access by tlie system cost to obtain
the dollars times seconds per access for the system. If the
buffer capacity is increased, the average time between
hierarchy responses goes down, but the cost goes up, so
that to balance the cost performance of the system one
needs the hit ratio for all possible buffer capacities, page
sizes, and numbers of classes.

Simulation

The memory hierarchy systems discussed in Section II
represent only a few of the possible organizations. In the
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Fig. 2. Simulation versus staci( for LRU.

systems shown the design variables were 1) the cost and
speed of the CPU, 2) buffer technology, 3) memory tech-
nology, 4) buffer capacity, 5) page size, 6) number of
blocks per page, 7) number of classes, 8) buffer page
frames per class, 9) replacement algorithm (LRU in the
examples), and 10) method of handling stores. If only two
alternatives of the above ten variables are examined, then
1024 simulations per typical application would be required
to determine the cost-performance tradeoff between the
choices examined.

Stack Processing

The stack processing technique {1] discussed in this
section has been measured to be over 1000 times faster
than two-level hierarchy simulation, and thus makes hit-
ratio data easy to obtain on a variety of hierarchy con-
figurations. The technique is illustrated in Fig. 2, where

pages are labeled with capital letters and the contents of a

three-page frame buffer are shown as they would be
after each page request (LRU replacement is used). In
this example there are five hits (indicated by asterisks) in
ten requests, so the hit ratio is 0.5.

The preceding process could be repeated for buffers
with one or two page frames. If this were done, the contents
of these buffers after the fifth time interval would be as
shown in Fig. 2.

The observation that led to the development of stack
processing is that for many replacement algorithms, at
each instant of time and for any sequence of address
requests, the contents of a buffer with k& page frames is
included in the contents of every buffer with more than k
page frames. This allows one to define a list of pages called
a “stack,” where the top k entries of the stack represent
the pages which would be included in a buffer with &
page frames at that particular instant of time. A single
stack can be used to represent the buffer contents for many
different hierarchy configurations, as illustrated in Fig. 3.

The significance of the stack is that hit-ratio data can
easily be obtained from it. The stack that would exist at
each instant of time is illustrated in Fig. 4 for LRU
replacement. For each reference a stack' distance is
defined as the distance from the top of the stack to the
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TABLE III
TECHNOLOGY ASSUMPTIONS

CPU  Cost  $100,000

Buffer Technology 60ns cycle @ 50¢/bit

Memory Technology

A) 1,000ns cycle @ 3¢/bit
8) 8,000ns cycle @ 0.5¢/bit

TABLE 1V

TiMING AND COST ASSUMPTIONS
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Fig. 4. Stack processing hit ratios.

- TABLE II
Hrr-RaTio DaTa

Page Size {bytes)

16 32 64 128 | 256 | 512 | 1024
) - —r—
0.894 10.915 | 0.928 |0.924 | 0.884 | 0.792 | 0.495 |1
< || 0:895 [0.916 | 0.921 [0.904 | 0.791 - - 4
S|} 0.891 |0.903 | 0.860 | - - - 16
21| owss7 | - - - - . - 64
- - - - - - - 256
0.931 [ 0.949 | 0.957 |0.958 | 0.950 | 0.912 | 0.823 ||1
0.931 | 0,948 | 0.954 |0.955 | 0.933 [ 0.808 | - 4
@ 0.930 | 0.943 0.943 [ 0.909 - - - 16
21| o921 [ 0.013 - - - - - 64
- - - - - - - 256
0.951 | 0.969 | 0.973 | 0.978 | 0.977 | o0.966 | 0.939 |[1
0.955 | 0.969 | 0.973 | 0.977 | 0.974 | o0.951| o0.838 || 4
wl| 0.955 [0.968 | 0:972 | 0.970 | 0.933 - - 16
= 18] 0.955 | 0.963 | 0:948 | - - - - 64
S 0.934 - - - - - - 256
2 : L
= 0.977 | 0.986 | 0.988 [ 0.985 | 0.987 | 0.987| 0.984 {1
2 0.981 | 0.986 | 0.988 | 0.985 | 0.987 | 0.985| 0.965 || 4
% |eli 0981 | o0.985 | 0.983 [ 0.987 | 0.983 | o0.95¢| - 16
8 |} o0.979 | 0.98a | 0985 | 0.974| - - - 64
] 0.974 | 0.97 - - - - - 256
’_ 0.985 | 0.993 | 0.994 | 0.996 | 0.993 | 0.992| 0.994 [ |1
£ |o|| 0-990 | 0,993 | 0.994 | 0.996 | 0.994 | o©.992| 0.993 ||
¢ | ®|| o990 | 0.994 | ©0.995 | 0.997 | 0.995 | ©0.991| 0.957 || 16
3 | <l o0.990 | 0.994 | 0.995 | 0.995| 0.985 - - 64
0.989 | 0.992 | 0.986 | - - - - 256
0.989 | 0.996 | 0.997 | 0.997] 0.999 | o0.994] 0.997 | [1
0. 0.996 | 0.997 | 0. 0.998 | 0.995| 0.997 | | 4
§ 0.994 | 0.996 | 0.998 | 0.998( 0.998 | ©0.997] 0.997 | | 16
0.994 | 0.996 | 0.998 | 0.998| 0.998 | o©.988 - 64
0.904 | 0.996 | 0.997 | 0.902| - - - 256

Classes

(A) Symbels

Page Size (bytes) [ A, 1. 4,00
Buffer Size (bytes) ¢ - Ao
Memory Size (bytes) - 262,144
Nurber of Classes K - *, k= |0,2,4.6,8
Number of Page Frames PF c/p
Numher of Frames per Class FPC PF/K
Bits of Directory Storage DS ¢ (18 - 1) PF

0 {iffpCc 2 0
Bits of Priority List Storage - PS :K :: :';g: E

DS iffpc > 4

(B) Timing

Diractory Search Time osT (30 ns) FPC
Priority List Update Time PLU B et
Data Access Time DAT 60 ns
Memory Cycle Time MCY Tus or 8us
Page Move Time PHT (p/16) MCT
Priority List Check and Update PLC | 60 ns {f FPC* 4

FPC.60 ns otherwise

Oirectory Update Time

ouT 60 ns

Ave. Mem, System REsponse Time

T (ave) Tt Q- f)'Tz a

where T, = DST + PLU + DAT, and T, = PLC + PHT + OUT

(¢) System Cost (CPU, Buffer, Merory, Directory, Priority List)

CPU Cost $100,000
Buffer Cost $4:C

Directory Cost $ 0.25 0S
Priority List Cost $0.25PS

Memory Cost

$ 60,000 with Tus or $10,000 with 8us

z

O T/ T e

="

SSE=2

lus
3¢/vit I
Ht= . 2
N ————
258 -Classes
Hit Ratio 034
LY 150 ns
T2 1120 ne
. T(ave) 224 ne

cPU $100 000
Butfer 16 384
Memory 062918
Diveciory 808
Priority List -

TOTAL 3180198

1664
Priogty List_&4_
TOTAL 8177 750

Fig. 5. Technology selection and system design.
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TABLE V
Cos'_r-PEBFonMANCE DaTas

PAGE SIZE (bytes) .
32 64 128 56 512 1024
(&) (8} m (8} {n {8) 7} (8) [&M) (8] OB m Tech
- 1
0.74 | 0.59 | 0.39 {0.40 0.23 10,39 |10.20 0.624]0.35 | 1.73 }|1.15 6.13 [} 5.43 | 29.66
0.21 0.23 |f 0.13 [0.22 0.09 [0.32 {{0.16 0.72110.5% | 3.09 -- -- - - ‘1‘6
b4 0.06 { 0.13[' 006 |0.20 0.12 |0.53 -- -- -- -- :: :- :: : =
shooosjorsy - = o S S s s S s g
- 1.44 1.06 {{ 0.72 | 0.59 0.38 |[0.41 0,24 0.45|f 0.24 | 0.83 ||0.52 2.70 4] 1.98 [10.81 1
0.38 0:32 0.20 |0.23 0.13 [0.24 j|0.10 0.37{} 0.22 { 1.04 {{1.08 5. - - 4
-4 o.n 0.14 || 0.06 |0.14 0.07 |0.24 || 0.15 0.71 - -- - - -: :: ;2
S o-osjorofoe o1 - o b TS S S S| e
~{ | . 2.13 1 1.45 |1.08 0.74 }0.62 |{0.39 0.44 |} 0,25 } 0.50 {]0.29 1.17§|0.75 | 4.01 1
1 (2)?; 0.57 || 0.38 |0.32 0.21 }0.24 J10.13 0.26 ] 0.12 } 0.45 |{0.32 1.621}1.94 {10.82 4
Sle il 0.20 [ 0.8 || 0.11 |0.14 |j0.06 }0.14 Jj0.08 | o0.27]|0.22 | 1 - -- -—1 - ;:
2 b=4 0.05 | 0.08 || 0.05 |0.10 0.07 }0.23 -- - - - -- -- -— - Sas
0.04 | 0,09 - - - - -- - - \ - - -1 -
> 6.28 {4.65 | 3.09 | 2.30 1.56 f1.18 || 0.80 0.70]1 0.43 | 0.52 |[0.28 0.62]}0.31 | 1.25 1
bt 1.28 1.8 || 0.79 }0.61 0.40 [0.34 [j0.22 0.281|0.15 | 0.31 |t0.14 0.60 [{0.47 | 2.56 4
E & 9,41 | 0.32 || 0.2 |0.18 0.12 .13 ] 0.07 0.15(| 0.09 | 0.33 |{0.32 . -- - g
3 % o.n 0.1 0.05 0.09 0.07 0.0% 0.07 0.26 - -- -- - - - 5%
0.04 | 0.06 |j 0.04 | 0.09 -- . -- - -- -- - -- - -
I 14.71 11.45 || 7.20 | 5.59 3.58 | 2.79 j1.79 1.42|]0.92 § 0.85 0.5 0.70]{0.32 { 0.71 1
s 3‘(7>7 2.87 1.81 1.42 0.91 0.73 [] 0.46 0.40 || 0.26 | 0.32 |[0.18 0.44 (| 0.16 | 0.67 4
b b9 0.93 10,74 }| 0.47 |0.38 0.24 |0.2) }J0.13 0.13 | 0.07 | 0.16 [{0.01 0.46 {] 0.67 | 3.94 16
2 3 0.25 | 0.20 § 0.13 [ 0.12 0.06 | 0.07 |;0.05 0.09)|0.09 ] 0.36 e - - - ggs
— 0.66 [ 0.06 } 0,05 | 0.06 0.05 }0.10 - -- - - - - - -
I 1{ 38.31 |371.87 [[18.61 {15.38 999 | 7.60 |{4.58 3.80(12.29 {1.93 {IT.21 1.31]] 0.65 { 0.91 1
.55 | 7.94 || 4.67 | 3.87 2.32 |1.93 }j1.16 0.9910.59 0,53 |{0.34 0.51}10.22 | 0.5 4
§ 2.40 2.00 1.18 }0.9¢% 0.59 ;0.50 [10.31 0.27 ]10.17 }0.18 }l0.10 0.25 110.11 0.44 16
o 0.62 }(0.52 [[0.31 {0.27 0.16 |0.15 i{0.07 0.08 |j0.06 j0.10 [i0.16 0.78 -- - 64
0.17 10.15 #{0,07 0.07 1 0.06 0.07 {|0.06 |0.16 - - -- .- I 256

* Dollars times seconds per access.

requested page. The distance recorded is the minimum
number of page frames required in a buffer so that a hit
would occur. (If the page is not in the stack, no distance is
recorded.) The complete technique for maintaining the
stack is given in [1].

The hit ratio for a buffer of k page frames is simply the
number of times that a distance & or less was recorded
divided by the total number of accesses. Using this stack
processing technique, hit-ratio data can be obtained for
buffers with any number k of page frames in just one pass
of the page trace. It can be shown [1] that for LRU
replacement simple extensions of this procedure can be
used to simultaneously obtain hit-ratio data for all page
sizes and any number of classes in the same pass of the
address request sequence. Such hit-ratio data can be
tabulated as shown in Table II.

IV. System DEsigN AND TECHNOLOGY SELECTION

Stack processing offers the ability to obtain hit-ratio
data on hierarchy configurations with different capacities,
page sizes, and numbers of classes. The purpose of this
section is to illustrate by example how the techniques
described in Section III can be used for system des'gn
and technology selection.

The hit-ratio data given in Table II, the -technology
parameters given in Table III, and the timing and cost
assumptions given in Table IV will be used to calculate the
cost performance in dollars times seconds per access for
each of the possible designs using the 1- and 8-us memories.
These results are tabulated in Table V, showing the
dollars times seconds per access for each configuration.
The “best” hardware-managed hierarchy for this work-
load and ‘each memory technology is illustrated in Fig. 5. )

V. CoNcLusIONSs

Many new memory and storage technologies are
currently in the early stages of development. Selection of
the best technologies to pursue depends on determining
their relative ability to fulfill a total system need. Exhaus-
tive simulation, the only previously known evaluation
method, is not a powerful enough tool to thoroughly
examine two- or more level memory hierarchies. In addi-
tion, since simulation required long processing times, job
selection was limited and had to be carefully done.

With the stack processing technique, system perfor-
mance can be evaluated in detail for many more job types.
Furthermore, it is shown in [1] that the same data as
presented in Table II can be used to evaluate hierarchies
with three or more levels containing different page sizes at
each level. Thus technologies and system designs which
fill the gap between electronically accessed memory and
mechanically accessed storage can be evaluated as illus-
trated in Section IV.
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Virtual Memory : A Combined Hardware-Software
Memory System

NORMAN WEIZER

Virtual memory concepts as they relate to providing a device in-
dependent, seemingly single-level memory system are discussed. The
.. hardware—software virtual memory approach to hierarchical memory
systems is placed in perspective with the more familiar hardware-only
techniques now in use or being discussed. The advantages and dis-
advantages of the various systems are discussed as well as the com-
plexity of the hardware needed to implement the various techniques.

First, the basic concepts of a virtual memory system are described.
Second, the current state of the virtual memory art including some of
the implementations for the third and fourth generation systems are
described. Then the virtual memory approach is compared with
various hardware-only approaches of producing memory hierarchies.
Finally, the future of the virtual memory technology in view of the
memory advances which are currently being reported are discussed.
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The Use of Hierarchical Storage in Language-Based
Multiprocessing Systems

R. V. BOCK, MEMBER, 1IEEE

In the design of large computer systems the use of virtual memory
is a means of improving the system cost-performance ratio. Virtual
memory is taken in this paper as any hierarchy of memories for which
the system provides the mapping of information at each level, and
controls the transfer of information between levels. The use of the
word system is meant to imply either the hardware, firmware, or the
operating system software. Within this framework the paper de-
scribes first how parts of the memory hierarchy can be simplified and
reduced in size, and then how the design of the hierarchy is com-
plicated by the existance of multiple processors in the system.

Processors that are designed to interpret structured higher level
languages tend to restrict the range of addresses that can be generated
by a processor at any given instance in time. This fact can be used to
great sdvantage in virtual memory design. The increased knowledge

about those items currently addressable and therefore most likely

to be used by the processor allows the designer to use a smaller
capacity buffer memory and simpler control algorithms. This paper
will describe aspects of language-based processor design that can be
used in simplifying virtual memory design.

When using virtual memory techniques the access time of the
highest level in the hierarchy is generally assumed to match the
logic speed of the processor. This usually means a very close coupling
between the processor and the memory. In systems with more than
one processor, each with its own high-speed buffer, problems can re-
sult if information is shared. The problem of shared data is considered
and several solutions are described.

\ P'“lple:; g%A. presented at the 1971 INTERMAG Conference, Denver, Colo.,
Apri -16.
The author is with the Burroughs Corporation, Paoli, Pa.
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Data Base Management Systems: The Influence

of Hardware
ALFRED H. VORHAUS

Abstract—The technology of software of data base management
systems is described, and the infiuence that hardware has had on
such systems in the past is discussed. In addition, an attemptis made
to highlight some hardware advances that are awaited eagerly by
software designers.

DerFINITIONS

OMMUNICATION difficulties arise when a software
designer presents his thoughts to those who are hard-
ware oriented. In an attempt to circumvent these problems
terms will be defined and used herein in accordance with the
given definitions.

It is necessary to differentiate between logical data struc-
ture and storage structure. Logical data structure will be
used to express the collection of data as viewed or inter-
preted by a system user. This is an external view. The
storage siruciure, on the other hand, gives an internal view.
1t is the collection of data as it is physically stored within
the computer. These terms are easily confused. In some
systems the structures are identical, although the trend
today is toward having two discrete ones. By having two
separate structures, the user is permitted to interact with
the data in terms that are independent of the manner in
which the data are stored physically.

The terms used in discussing the logical data structure
are as shown in Table I. The word schema might have been
included after each of these terms because that is what is
meant in these definitions—the associations or logical rela~
tionships—not the actual values. An item is the elementary
data structure from which all other data structures are
constructed. Items are generally associated with the
attributes of an entity. For example, the entity orGANIZA-
TION might have attributes of organization code, organiza-
tion name, and budget. Each of these could be an item. All
data base management systems permit item schemas to
have attributes and generally require that items have
names and types. Item types can be classified into numeric
(integer, fixed decimal, and floating), string (an ordered set
of character symbols), and other (date, coordinate,
Boolean). In the example the organization name item is
called TiTLE and would have a type of string; the item

"‘named BUDGET would be numeric in type. Other item

attributes variously available in today’s systems include
synonyms, units of measure, usage, input/output conver-
gion and editing, accgss lock, and value limitations such as
length, character arrangements, uniqueness, ranges, and
lists of discrete values.

Manuscript received April 30, 1971. Paper 13 5, lfn‘es(-mted at the
1971 INTERMAG Conference, benver, Colo., l& 16,
The author is with the MITRE Corporatlon, cLean, Va. 22101,

TABLE 1
LocicarL DATA STRUCTURE

ITEM — ELEMENTARY DATA STRUCTURE
GROUP — ASSOCIATION OF ITEMS AND GROUPS
ENTRY — ASPECIAL ASSOCIATION OF GROUPS
FILE ~ ASET OF ENTRIES

DATA BASE — A SET OF FILES

TABLE 11
STORAGE STRUCTURE

ITEM INSTANCE ~ FIELD*
GROUP INSTANCE

ENTRY INSTANCE - RECORD™
FILE INSTANCE — DATASET*

DATA BASE INSTANCE

* COMMONLY USED EQUIVALENT TERMS

A group is an associated set of items and possibly other
groups. A compound group contains both items and groups;
a simple group contains only items. The given example
might have a simple group called JoBs with items job code,
authorized quantity, and authorized salary and a com-
pound group about the persons. in the organization with

items of NAME, S8EX, SALARY, and groups of SKILLS and .

BirTH. Having groups within groups provides a method of
establishing hierarchic relationships to be discussed later.
Groups may be repeating or nonrepeating depending upon
whether or not more than one occurrence of the item values
is permitted. For example, the BIRTH group containing
items BIRTH YEAR, BIRTH MONTH, and BIRTH DAY would
generally be considered a nonrepeating group since a person
is only born once. However, if you really believe in rein-
carnation and could identify a person’s previous birth
dates, then BIRTH could become a repeating group like
sKILLS which definitely can have more than one occurrence
for each person.

Entry is similar to group except that an entry is not
contained in or subordinate to any other group. The entry
is used to represent the major entities of an apphcatlon——
organizational units in the given example.

A file is a set of entries. Many data base management

‘systems do not permit more than one entry schema in a
file schema. In that case the two terms are indistinguish- -

able. Some systems do permit multiple entry types within
a file and both file and entry are also useful in talking about
storage structures. Data base, a set of files together with

2 ]
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any interfile associations specified, completes the list of
logical data structure term definition.

The terms for storage structure are derived by adding
“instance’’ to the terms of logical data structure as shown in
Table I1. An instance (or “occurrence’’) refers to the actual
value or appropriate collection of values as stored on some

physical medium.

Locical, DATA STRUCTURES

To return to logical data structures, those in use today
cover a wide range of complexity. The first of three to be
deseribed is the simplest. An example of this tabular array
is shown in Fig. 1. The entry schema fits the definition for a
simple nonrepreating group. Each organizational entity has
one and only one ORG CODE, TITLE, BUDGET, and ORGAN-
1ZATION to which it reports. This type of structure is easy
to comprehend, but it is limited in utility. Most applica-
tions happen t6 have much more complex data relation-
ships. '

The most popular logical structure in use today i is the
hierarchical tree structure. Fig. 2 shows most of the features
of such a structure, although they can be more orless com-
plicated than the one shown. The boxes with extra vertical
lines at each end indicate that the item or group represented
may repeat, i.e., it may have zero or more occurrences for
each occurrence of the group (or entry) which contains its
parent. The relationships among the groups and items in
this structure are traditional for a tree type structure. They
are all of the parent/dependent form such that a group
may have any number of dependent groups and/or items,
but each item or group must have one and only one
parent (group or entry). This hierarchical structure often
fits neatly into real life situations. Fig. 2 has shown three
levels of hierarchy. Each organization has, among other
attributes, a variable number of persons, and each of these
persons may have a variable number of skills. Until recent
years most of the logical data structures that were imple-
mented were limited to two levels of hierarchy, and the
relationships between actual data values were relatively
easy to understand. Newer systems, however, allow for
many levels of hierarchy. The complexity that such sys-
tems allow may make the actual data relationships ex-
tremely difficult to comprehend and eommunicate. For
example, you could determine the number of years experi-
ence as a plating operator of those persons having any
_ experience at all as plating operators who are in organiza-

tions that have authorized jobs for machine operators only
if the system permits you to express it explicitly.

It gets worse. " The most complex structure, capable of
handiing virtually anything, is the plex structure (see
Fig. 3). Relationships are not restricted to parent/
~dependent but can be anything the user requires. Three
plex type relationships are indicated in the figure. The
fefreular associations “reports to”’ and ‘‘subordinates are”
#hjean that an organizational unit could report to many
splher organizational units and even (if it is permitted)

uld report to itself. The “is filled by’ association relates

ividuals to authorized jobs. Indiscriminate use of the
"Plex structure with large data volume can lead to uncon-
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Fig. 1. Tabular array.
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Fig. 2. Hierarchical tree.
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Fig. 3. Plex structure.
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trollably complex problems. However, there are situations
where special uses of plex structure relationships are
applicable and reasonable. The tabular array, hierarchical
tree, and plex structures represent a cohtinuum of eophlo-
tication in logical data structures.

STORAGE STRUCTURES

Over time, system designers have 1mplemented these
logical data structures by using a variety of storage struc-
tures. The first techniques to be developed were worked
out on card machines—sorters, collators, and accounting
machines. Every item has a fixed set of columps on a eard.
This technique, described by the name “fixed field for-
matted file system,” handles tabular array structures as
shown in Tig. 4. The organization code is in columns 1-4,
the title in columns 5-24, budget in 25-31, and columns
32-35 hold the code of the parent organization. This file
may be ordered easily on the card sorter by ore cobg,
alphabetically on the first six characters of -the title, by
size of the budget, or into -groups by parent organization.
Changes are made merely by replacing a card with.a new
one. The accounting machine can be used to print reports,
including totals.
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Fig. 4. Fixed fields on cards.
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Fig. 5. Fixed fields with hierarchy.
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Hierarchy presents a problem, but that can be handled
in several ways. Fig. 5 indicates items added to the card.
Four-column fields have been set aside for a maximum of
four subordinate organization code numbers. If there are
less than four, the columns are left blank. The joBs repeat-
ing group is handled by setting aside columns 53-65 for the
three items and adding a one-column card“number so that
each job code authorized would be on a separate card. The
ORG CODE would have to be repeated to keep the cards in
order properly, but the rest of the items could have blanks
for a value on the extra cards. This limits the number of
different job codes that could be authorized, but in this
case the limit would never be reached. The literature is full
of descriptions of methods of fitting what is essentially
hierarchical data into 80-column cards. That 80-column
limit and the fixed-field formatted file it spawned do present
some nasty problems. Twenty columns are set aside for
the title of the organization, and that becomes an absolute
limit. Anything bigger than that is going to get chopped
off. There are innumerable files that were designed with
limits like -the 999 placed on authorized quantity in the
example. If that needs to be increased, all of the cards
have to be completely redone. This happens—often.

Some of the limitations of cards were mitigated with the
advent of magnetic tape units. No longer was there an 80-
column restriction. Physical records could be any length
desired. Items could be variable in length if an additional
item giving the character count was included or the variable
length item was followed by a special terminating symbol.
The biggest change was speed. Tape READ/WRITE speeds
are several hundred times as fast as card READ/PUNCH
speeds. The main effect of this speedup was that much
bigger data aggregates could be handled. The basic prin-
ciples of formatted file systems changed little, but usage
increased, leading to interest in generalized data base
management systems. The possibility of considerable
economy in the implementation of varied applications has
maintaiced the interest in developing generalized systems.

Shortly after tape systems became popular, disk mem-
ories (or, more properly, rotating random access devices)
appeared on the scene. It was easy to convert the tape
oriented formatted file processing systems to disks, but
this represented little value because disks used serially were
no faster than tapes.

With the advent of random accessing, methods of index-
ing became a prime concern of software designers. Most
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files have one or a combination of items which provide
unique key values for each entry or group. The problem of
indexing is to make these unique keys translate into disk
file addresses. If the indexes or keys are limited in number
and spaced evenly without gaps and the entry or group
instances are fixed in size, solution is easy. An algebraic one-
to-one transformation can be found from index to disk
address. This situation, however, is rare. Even a company
that assigns employee numbers in a sequential fashion finds
that the set is not limited. Entries must be maintained for
departed employees or gaps develop. Software solutions
include index tables and hash-coding. The index tables or -

‘directory method usually involves considerable storage

since each index must be included together with the corre-
sponding disk address. When entries are large in number
and small in size, it is often helpful to arrange the direc-
tories in a hierarchy to minimize search time and core
storage needs. In essence, this is what indexed sequential
access is all about. Hash-coding is simply a. method of
transforming the index algebraically to a new number that
can-be used for direct accessing. The simplest method of
hash-coding is to divide the index by the number of slots
and use the remainder, as shown in the following example.

Example of Hash-Coding: We are given 10 records per
track and 10 tracks per cylinder; therefore, 200 cylinders
= 20 000 possible slots. An index 98 798 223 is divided by
the possible solts as follows:

98 798 223
20 000

Thus the index 98 798 223 converts to
cylinder 182 track 2

= 4939 plus 18 223 remainder.

record 3.

The problem, of course, is that there are multiple indexes
that convert to the same disk address. Complicated pro-
visions must be made to handle the overflow situations that
can occur. In actual practice hash-coding algorithms are
chosen very carefully to increase the probability of an even
distribution of the codes and therefore minimize the over-
flow. ' ' ‘

There have been hardware attempts to solve the index-
ing problem, too. Most successful has been the use of
automatic hardware search for special disk records some-
times called “key parcels.” This method has the advantage
of permitting the central computer to continue processing
while the disk is independently searching and positioning
for data access. Total disk use time may increase, but if
processing can be overlapped with input/output and trans-
fers can be foreseen within the program, wasted input/
output time and disk delays can be virtually eliminated.

All of these things have been attempts to convert old
tape ideas to disk. New types of storage structures which
would never work on tape are lists, multilists, ring strue-
tures, and inverted files. Fig. 6 shows the salient features of
a list structure. Physical ordering of the data can be arbis -
trary as each entry instance contains a pointer with izhe
address of the next entry instance in the desired order.
Inserting an entry instance between B and C in the example
simply involves changing the pointer in B and having the
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Fig. 8. Inverted file structure.

new entry instance point to C. Deletions are equally easy
to handle. Multilists differ only in that more than one list
is possible (see Fig. 7). The lists need not contain the same
entry instances and every entry instance is eligible to be in
any list. This necessitates added care when deletinganentry
instance from one list. Some list structure implementations
permit backward pointers in addition to the forward
pointers so that it is not always necessary to start at the
beginning. If the last entry instance points back to the
first entry instance in the list, a complete ring—or ring
structure—is formed. These ring structures are extremely
flexible and can be used to handle all types of logical data
structures including hierarchical tree and plex. An ad-
.vantage of list type structures is that updating is relatively
easy. However, extra storage space is required for the
pointers, and some retrievals can be very slow.

A simplified partial view of an inverted file structure is
shown in Fig. 8. Essentially, the data are rearranged into a
list of occurrences for each value for each item. The list of
items and list of unique values per item permit rapid selec-
tion of the desired sections of the list of item value oceur-
rences. Any or all items can be inverted. The advantage of
this structure is the rapid retrieval that is possible for
previously unplanned queries. The disadvantages are the
extra storage required (for usually the data are maintained
simultaneously in more conventional form) and the diffi-
culties of keeping the lists correct when updating. Im-
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plementation of inverted file structures has demonstrated
their feasibility for logical structures as complex as the
hierarchical tree.

CHALLENGES FOR HARDWARE INNOVATION

The variations of storage structures in use today are too
numerous to mention. Nor is there space to discuss the
special problems attendant with nondisk bulk storage
devices like magnetic tape loops, magnetic cards, and
optical stores. All of these have interesting properties of
their own, but they really do not change the basi¢ limita-
tions that system designers are facing. Bigger, faster, and
cheaper storage is needed. As long as mechamcally aided
rotating devices are used, little improvement can be
anticipated. There are too many physical limitations. The
ideal solution might be a plug-in cube, about the size of a
child’s building block, holding millions of characters each
randomly addressable, transferring character streams in
microseconds, and all at a cost of pennies per thousand
characters. Some such device will be built by the hardware
specialists someday.

Finally, most of the storage devices in use have fixed
length tracks containing exactly so many characters each,
no more, no less. Virtually all of the data in this world are
variable in length. The city you live in could be RoME,
CHICAGO, Or LOS ANGELES, but the space allocated for that in
most systems is not 4, 7, or 11 characters, respectively. It
is'either 3 for some code like LAX or perhaps 19 which is
enough for almost any place, unless you happen to live in
the little Texas town of DALWORTHINGTON GARDENS:
There are innumerable software methods to fit variable
length data into the fixed length tracks, but all those meth-
ods are costly in storage and time. Storage devices that will
handle variable length data are a must for the futuze.

Two other hardware inventions that would send software
designers back to the drawing boards to come up with new
concepts in data base management systems are sorely
needed. The first is a really big, fast, and good associative
memory. Associative memory based systems eould be used
to make both updating and selective retrieval equally effi-
cient. These have been simulated and real ones have been
tried on & small scale. Moving the ideas from the laboratory
to full scale systems, however, has proved impossible so
far. The other invention needed is something that would
eliminate much of the time devoted to sorting. Most of the
commercial data processing centers around today use up
about 30 percent of their computer time sorting data, an
astronomical dollar cost. Managers want, and need, to
obtain information ordered in ways that make the data
more meaningful. Some of the best programmers in this
country have spent years studying, developing, and re-
fining sorting and merging techniques and have reached
an impasse. Something new is needed.

This, then, is the message of this paper. There are many
techniques to use with today’s equipment, but soméhow

the finished systems are not completely satisfactory. The A

software designers of generalized data base management
systems have caught up with the hardware innovations. ¢f
the past. Something new is needed.
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The Storage Complex Considered as a

System Component
" G. G. SCARROTT

Abstract—To permit further growth in the application of in-
_formation systems, the lower level activities must be automated so
that they cease to be a burden on the user. A synthesis of known
hardware devices and software algorithms for dynamic storage alio-
cation is advocated which can achieve acceptable efficiency at run
time by using the explicitly defined data structure as a basis for
store management and the prediction of store usage.

The resultant automated storage complex also provides security
against the propagation of consequential software failures. Con-
sideration of the function of the individual storage devices which
would be components of such a storage complex leads to some con-
clugions which may be useful for guiding the development of ad-
vanced storage devices.

I. INTRODUCTION

HE TERM “storage hierarchy” is now firmly estab-

lished. It is unfortunately a somewhat misleading
phrase since in most information systems all the storage de-
vices communicate directly with the main store, so that in
the strict sense of the word the organization of the physical
storage devices is not hierarchical. The information in the
collection of stores, can, however, usefully be regarded as a
hierarchical structure; this paper will be concerned with
the organization of the storage complex considered as a
macrocomponent of an information system.

1. WaaT WouLp WE LIkE A Storage CoMpLEX TO Do?

We must start by taking a new look at the storage com-
plex by regarding it as an autonomous subcontractor to the
whole information processing system. Then ideally, we
would like the complex to have the following properties.

1) The user must be able to specify the hierarchical
gtructure of his information by creating appropriately
organized reserved space in the storage complex.

2) The user must be able to store information in his
reserved space in the complex and retrieve it.

3) It must operate autonomously without bothering the
user with its internal workings.

4) It must achieve the shortest access time to informa-
tion at the lowest cost with the largest total storage capac-
ity. '

5) It must be safe to use. A user, i.e., & program, may
make a mistake at any time and try to retrieve the wrong
item of information. If he does 80 he obviously cannot al-
ways be protected from his error at the time that he makes
it, but the storage complex should be so organized that the
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mistake does not lead to a storage malfunction either in an-
other part of the same user’s information, or in any other
user’s information. In short, the storage complex should
incorporate means for preventing, or at least restricting,
consequential software failures.

These requirements can be regarded as primary in the
sense that they are derived from the needs of the informa-
tion processing system without any reference to the proper-
ties of individual storage devices. At first sight, property
1) has an unfamiliar look, but is logically necessary; 2)
and 4) look like platitudes; and 3) and 5) appear to be
counsel of perfection, but not really practicable. However,
an attempt will be made to show that by the use of appro-
priate hardware and software techniques which have al-
ready been published, i.e., fast storage, cheap storage,
hardware store management devices, and programmed
store management algorithms, it is possible to satisfy these
primary requirements, and thus to make available a very
powerful macrocomponent to system designers.

III. “ApPARENT’ STORE CONCEPT

The specification of the requirements for the automated
store complex describes how it should appear to the user.
It may, therefore, be useful to introduce the term “appar-
ent” store to refer to the user’s view of the storage complex.
The contrast between the apparent store and the physical
store can be illuminated by considering how the ideal
secretary operates. She stores documents in filing cabinets
and retrieves them as requested by her employer. He does
not know or care where in the filing cabinet each document
is stored; he identifies it for filing and recovery by name.
For example, he says: “Put this paper in Mr. Bloggs’ file.”
He may give extra information, such as Mr. Bloggs is a
customer, or an employee, which implies that in his mind
the papers are organized in sets, such as employees files,
and customers files. It follows that in his view the informa-
tion could be said to be functionally structured, i.e.,
organized in & way which- arises naturally out of the data
itself. This is how the store appears to him, and it is, there-
fore, the apparent store. In physical fact the papers are
held in filing cabinets, and to economize space each cabinet
may contain papers of many unrelated classes which are so
organized autonomously by the secretary, so that she in
effect translates between the apparent and the real store.

One can describe the secretary’s operation in mathe-
matical terms. She maps the apparent store onto the real

-store and continuously, by interpreting her employer’s in-
structions, modifies the map to ensure that space is avail-
able and that papers which are likely to be required fre-
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qjleﬂtly are easily accessible, whereas papers which are less

: hkebn to be required are banished to less accessible corners.

In eomputer terms, the filing cabinets represent the storage

§  deyices in an information system, the secretary represents

the store management system, and the employer represents
the program.
IV. STORE MANAGEMENT PROBLEM

- Evidently, the task of our hypothetical secretary is no
ginecure, and equally, the design of a store management
system to yield the apparent store organization with ade-
quate productivity is a task which can be accomplished
only if it is tackled systematically starting from a clear
statement and proper understanding of the requirements.
To the user the information in' the apparent store is
organized in a hierarchical pattern specified by him when
he requests sborage space, and which is a natural property
of the information itself. Moreover, the user identifies
each item of information for storage and retrieval by its
position in that hierarchy. In the physical storage, how-
ever, each item is identified by its physical location. It
follows that means must be provided for recording the

organigation structure of the data and its current map on -

the physical storage, keeping this store management in-
formation up to date, and referring to it as required when
information is stored and retrieved.

These considerations are concerned with the logic of the
store mapping process. There is also the problem of doing
the store management job efficiently. Obviously, the
following requirements must be satisfied insofar as possi-
ble.

1) Information which is required most frequently should
be stored in the fastest store in the complex.

2) Information which is temporarily inactive should be
banished to a cheaper and slower store.

3) As far as possible, the transfers of information be-
tween stores to satisfy criteria 1) and 2) should be carried
out immediately before the relevant situation arises.

4) Information which must be read frequently and fast,
but written very rarely, may be kept permanently in a
storage device with very primitive rewriting facilities (e.g.,
interconnection wiring, to quote an extreme case).

5) The transfers of information between one store and
another are parasitic in the sense that they do not con-
tribute directly to the information processing job in hand.
These parasitic transfers should occur no more frequently
than is strictly necessary.

6) The information transfers between storage levels
should be made in optimum size packages, i.e., small pack-
ages of only a few words to the fastest storage level of the
complex, and larger packages between the slower and
cheaper stores.

The available means for satisfying these requirements are
fast costly stores, slow cheaper stores, “‘read mostly’’ stores,
hardware store management devices (e.g., datum and
limit registers and page registers), and software (e.g., store
management programs). In order to see how these can be
used to create the desired apparent store, It is necessary to
specify the available techniques in a little more detail.
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V. AVAILABLE STORAGE DEVICES

This is not the place to make a detailed list of available
storage techniques since this paper is primarily concerned
with storage organization. There are, however, certain basic
types of information store whose reason for existence seems
to have such firm foundations that they are likely to con-
tinue in the foreseeable future, and must therefore be
taken into account in any proposed organization. -

A. Drgitally Selected Storage Devices

Such stores incorporate a discrete device for each bit of
information, so that they are fast but costly. It is primarily
for their speed that stores of this type are used, so that we
can be sure that no matter what methods (e.g., MOS tech-
nology) are used to bring down their manufacturing cost,
they will still be more expensive than other contemporary
storage devices. Moreover, even within the class of digitally
selected stores, there will be several different compromises
between speed and cost ranging from the ultimate in speed
(bipolar integrated circuits) to minimum cost (core stores,
MOS, plated wires, and possibly MNOS).

B. Geometrically Selected Storage Devices

Such stores incorporate a continuous storage medium
such as magnetic tape, magnetic disks, or a magnetic bub-
ble-domain material. A piece of information is accessed by
physically moving the recording device to the appropriate
area of storage medium (or vice versa), so that stores of this
class have a low cost per bit, but are inevitably much
slower than the digitally selected storage devices. In this
class of store we can be sure that technological develep-
ment will be directed to achieve a shorter access time;
nevertheless, no matter what technique is introduced to
increase the speed of geometrically selected stores they
will always be decisively slower and cheaper than digitally
selected stores since the prime reason for their existence is
their low cost.

It is possible to combine digital selgetion with geo-
metrical selection as in fixed-head disk stores with one head
per track. The introduction of such combinations offers a
useful tactical maneuverability to designers, but does not
invalidate the general statement that geometrically selected
stores are cheap but slow, whereas dlglta.lly selected stores
are fast but costly.

VI. LARGE-SCALE STORE MANAGEMENT—APPROACH OF
MACROSYSTEMS DESIGNER

The problem of large-scale store management has been
tackled by many system designers. It is a problem invol#
ing many difficult compromises since, for example, if the
information is handled in large packets, storage space is
wasted, whereas if it is handled in small packets, store
management computer time overheads become excessive.

A store management system proposed as part of a com-
plete system concept by Iliffe (2] goes very far toward
satisfying the requirements for an autonomous storage
complex while leaving adequate room for maneuvers to
make the necessary compromises, and it may therefore be




