

X |
rF

ABSTRACTS OF THE
IEEE COMPUTER SOCIETY

Fourth Workshop on Real-Time Operating Systems

Sponsored by:
[EEE Computer Society

Chairmen’s Remarks

Welcome to the fourth workshop on real-time operating systems. As the program lor the workshop
indicates, this workshop has brought together researchers, designers, implementors, and users of

real-time operating systems.

b This year we are experimenting with a new format for the workshop. All sessions have been
organized in the form of panels each devoted to a specific topic and headed by a chair to stimulate
and coordinate the technical interactions and discussions among panelists and the audience. To
provide sufficient time for discussions, each panelist has been requested to limit his/her presen-

tation to fifteen minutes.

Thanks for your participation in the workshop. We welcome your comments and look forward
to your suggestions to make it even more useful to the participants of future workshops as well

as to the field of real-time systems.

. PROGRAM CHAIRMAN GENERAL CHAIRMAN
Prof. Krithi Ramamritham Prof. Al Mok
Department of Computer Dept. of Computer Science
and Information Science TAY 3.140C
) Graduate Research Center University of Texas
University of Massachusetts Austin TX 78712
Amherst MA 01003 (512) 471-9542
(413) 545-0196 e-mail: Mok@sally.utexas.edu
e-mail: KrithiQcs.umass.edu

[EETL Fourth Workshop on Real-Time Operating Systems
July 2-3, 1987
Thursday, July 2. 1987 Page
08:30 - 08:50 On-Site Registration & Check-in (Coffee and Pastries)
08:50 - 09:00 Welcoming Remarks
A. Mok (University of Texas, Austin) General Chair
K. Ramamritham (University of Massachusetts, Amherst) Program Chair
09:00 - 10:30 Panel Session 1: Real-time Projects
Marc D. Donner (IBM) Chair
e “Toward Next Generation Distributed Real-time Operating Systems” I
Hide Tokuda, Lui Sha and John P. Lehoczky
(Carnegie Mellon University)
e “A Programmable Standard Executive for Multiprocessor Real-

Time Systems” 6

Greg Scallon and Becky Riley

(Boeing Aerospace) ’
e “CHOICES” (Class Hierarchical Open Interface for Custom
Embedded Systems) i 12

Roy Campbell, Gary Johnston, Kevin Kenny, Gary
Murakami and Vincent Russo
(University of Illinois at Urbana-Champaign)
e “The Design of the Spring Kernel™ 19
John Stankovic and Krithi Ramamritham
(University of Massachusetts, Amherst)
10:30 - 11:00 Coffee and Tea Break
11:00 - 12:30 Panel Session 2: Scheduling
Wei Zhao (Amherst College) Chair
e “Performance Parameter Control in Real Time Operating Systems” 21
Howard Sholl and Y. P. Ding (University of Connecticut)
e “Concord Prototype System” and “Real-Time Scheduling” 27 ?
Jane Liu, Kwei-Jay Lin and C. L. Liu
(University of Illinois at Urbana-Champaign)
e “Scheduling of Hard-Real-Time Tasks in the Fault-Tolerant 31
Distributed Real-Time System MARS"™
Christian Koza (Technical University of Vienna. Austria) 3
e “Distributed Scheduling Calendars for Scheduling under Real-time
and Synchronization Constraints”
Virginia Lo (University of Oregon)
12:30 - 01:45 Catered Lunch

-
~1

ii

v

01:45 - 03:30 Panel Session 3: Real-time Kernels
G'reg Scallon (Boeing Aerospace) Chair

o “Kernel Mechanisms for Distributed Real-time Programs” {0
N. Natarajan (Pennsylvania State University)
e “E-Mars - Embedded Ada Multi-Processing Run-Time Support” 5

Marjorie Levitz, Jill Hetzron, Jeff Golowner, Kevin
Tupper and James Fuhrer (Unisys Shipboard and Ground
Systems Group) (formerly Sperry)
¢“The Computer X Distributed, Real-Time System” 55
Andrew Kun and John Barr (Computer X, Inc.)
¢“The Synthesis Operating System”
Henry Massalin and Calton Pu (Columbia University)
e “Evolution of the AMOS Operating System” 70
David Krumme (Tufts University)
03:30 - 04:00 Break
04:00 - 05:45 Panel Session 4: Application-Driven Systemns
Horst Wedde (Wayne State University) Chair

e“A PC Based Signal Processing System with a High Speed Operating 71
Environment”

Perry Malone and Hans Kunov (University of Toronto
¢“Current Status of the Hawk Operating System™ T8

V. Holmes, D). Harris and K. Piorkowski
(Sandia National Laboratories)
¢“Embedding an Expert System in a Real-Time Application: <3
A Case Study”
A. Martin Wildberger (General Physics Corporation)
e“A Case Study of the Real Time Operating Systems in Switching [Field” X7
S. Sivakumaran and L. T. Sharada
(Centre for Development of Telematics, India)
¢“The Fifth Generation Reohr Real-Time Executive” 101
Terry Ess (REOHR Technology Engineering Co., Inc. Systems
Engineering Group) and Lui Sha (Carnegie Mellon University)

06:30 - 08:00 Reception

iii

0R:45 - 10:20

10:30 - 11:00
11:00 - 12:30

12:30 - 01:45

Friday, July 3. 1087

Page

Panel Session 5: Language Support for Real-time Systems

Robert Cook (University of Virginia) Charr

e“Language and Opcrating System Integration for Real-Time Systems™ 106
Marc Donner (IBM)

e “Specification of Real-Time Programs in RT-CDL” 110
I.. Liu and R. Shyamasundar (Pennsylvania State University)

e“A Case for Schedulability Analyzable Real-Time Languages™ 120
Alexander Stoyenko (University of Toronto)

¢ “Expressing Requirements for Distributed Real-Time Systems” 125
Glenn MacEwen and Trudy Montgomery (Queen’s University)

e “Implementing Timing Guarantees in Ada” 129
Ted Baker (Florida State University)

Coffee and Tea Break

Panel Session 6: Databases and Architecture

John Stankovic (University of Massachusetts) Charr

«“What is a Real-time Database System?” 131
Robert Abbott and Hector Garcia-Molina (Princeton University)

¢“The StarLite Project” 139
Robert Cook and Sang Son (University of Virginia)

e“Objects Architecture for Real-Time Distributed, Fault Tolerant 142

Operating Systems”
Ashok Agrawala and Shem-Tov Levi (University of Maryland)

¢ “The Homogeneous Multiprocessor: A Novel Multiprocessor Architecture™ 119
J. Atwood (Concordia University)

Catered Lunch

iv

€

[=

01:45 - 03:30 Panel Session 7: Formal Approaches

Alezander Stoyenko (University of Toronto) Chair

e “Estimating the Performance of Real-Time Systems”
Paul Dietz (Schlumberger-Doll Research)

¢*A Framework for Analyzing llard Real-Time Systems”
Jonathan Ostroff (York University)

¢ “Programming Support in ARTT for Real-Time Systems”
C. Woodside, J. Neilson, B. Pagurek, P. Rowe and K. Watson
(Carleton University)

e “Motivating Time as a First Class Entity”
Insup Lee, Susan Davidson and Victor Wolfe (University of
Pennsylvania)

¢ “Verification of an [/O Device Drive Using Temporal Logic

of Strings”
Victor Yodaiken and Ugo Buy (University of Massachusetts)

03:30 - 04:00 Break

04:00 - 05:00 Panel Session 8: What Will be New in Real-time Systems of
the Future?
Andre van Tilborg (Office of Naval Research) Chair

165

170

Towards Next Generation
Distributed Real-Time Operating Systems

Hideyuki Tokuda, Lui Sha and John P. Lehoczky
Computer Science Department and
Department of Statistics
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
(412) 268-7672
H.Tokuda@k.cs.cmu.edu

1 Introduction

There are many difficult problems in the construction of distributed real-time applications in a network
of multiple processors. Unlike a non-real-time program, a real-time program must not only perform the
computation correctly, but also meet its timing, fault-tolerance and reliability requirements. A general-
purpose time sharing or network operating system can manage resources well when there is no hard
deadlines; however, it is impossible for a user to request the operating system to manage resources to
meet each task’s timing constraints. Nor traditional real-time executives provide adequate supports.
They are typically stripped down and optimized timing sharing operating systems. They do not provide
adequate system functions for reliability and fault-tolerance in a distributed environment.

As a result, a designer of the distributed real-time program manage resources at the application level.
Due to the lack of adequate operating system capabilities, the designer must use an application specific
ad hoc solution and it complicates the program logic and structure. The objective of a distributed real-
time operating system is to provide efficient and fault-tolerant time-driven resource management for its
users in a network environment, so that programmers can concentrate on their applications. In the
following, we first review our research efforts related to ARTS operating system. Then, we will overview
the research issues which require for further investigated.

2 Review of ARTS Operating System Development

ARTS operating system is a distributed real-time operating system under development in the CMU
ART (Advanced Real-Time Technology) Project. Unlike a commercial product, the goal of ARTS OS is to
support research and experimentation of computation models, scheduling algorithms and reliability
mechanisms that are essential to the construction of distributed real-time operating systems.

2.1 Computational Model

It is a unique problem to create a computational model suitable for designing time critical distributed
programs. For instance, a software module concept commonly used in non-real-time systems is the
notion of an abstract data type, which encapsulate both the data and its associated operations. However,
it has yet to provide appropriate abstractions for the encapsulation of timing properties of the software
module.

In ARTS operating system, we are developing an object-based model for a distributed computing
environment [Tokuda85a]. An object is defined by a set of operations and private data and can be an
"atomic”, "permanent”, or "normal” object. Each object can have more than one light-weight process

-1-

Position Paper

which share the same address space within the object. The state of the object can be changed only by
invoking its operation. Operation invocation semantics is extended to support not only a synchronous
one-to-one invocation, but also asynchronous one-to-many invocations for managing replicated obijects.
A distinct feature of this ART object model is that it allows the propagation of timing abstractions through
the notion of value function. For each object, we can define a value function, which represents the timing
requirements of object in terms of the (semantic) value of the computation as a function of time. In the
case of a server type object, the ARTS OS supperts "value-function inheritance” during object
invocations. The inherited value function provides the basis for server preemption.

2.2 Integrated Network-Wide Scheduler

ARTS OS is designed to support integrated scheduling algorithms for processor scheduling, 110
scheduling, and message communication scheduling, so that a distributed computation can meet its
timing requirement. Since real-time applications can be divided into soft deadline and hard deadline,
algorithms for both types of applications have been developed and supported.

As for processor scheduling, ARTS OS provides both a hard real-time virtual processor for periodic and
sporadic tasks, and a soft real-time virtual processor for aperiodic tasks. Since bursty aperiodic tasks are
incompatible with time division muiltiplex (TDM) type scheme, the multiplexing of the two virtual
processors is based upon the bandwidth preservation algorithms developed in [Lehoczky87].!

In the context of the hard real-time virtual processor, the ART OS supports mission critical hard real-
time applications:
e Guaranteed deadlines for critical periodic and sporadic tasks whose worst case utilization
below the best of the three worst case bounds in [Lehoczky86].

» Stability under transient overload. That is, ARTS OS is designed to support the period
transtormation algorithm [Sha86], so that the guarantee to the critical tasks are honored even
if the total processor load is impossible to schedule due to various exception conditions.

* Integrated processor scheduling and /O handling. All schedulable entities in ARTS are
prioritized and scheduled. In addition, priority inheritance in synchronization mechanisms is
supported.

In the context of the soft real-time virtual processor, the ARTS OS supports value function based
scheduling which maximizes the value of computation performed by aperiodic tasks. We have developed
a time-driven scheduler (TDS) model for a single node environment and analyzed the model by a series
of simulation runs [Locke85, 86]. Recently, we have also implemented a modified time-driven scheduler
on a VAX 11/784 which consists of four VAX 11/780’s connected by 8 Mbytes of shared memory
[Tokuda87]. The basic scheduling policy is that when the soft real-time virtual processor is not
overloaded, aperiodic tasks are scheduled by the earliest deadline algorithm. When overioad is predicted
or detected, tasks will be scheduled according to their expected contribution to the total value of the
computations performed in the virtual processor.

'For example, supposed every 20 slots out 100 slots, i.e. (C, =20, P, = 100, U, = 0.2), are assigned to soft real-time virtual
processor, the Deferral algorithm (one of the bandwidth preservation algorithms) permits aperiodic tasks use any 20 slots during a
period of 100. This algorithm guarantees that no deadlines of periodic or sporadic tasks will be missed, provided that the hard
real-time virtual processor supports tasks with utilization no more than 0.61 (In((Ua+2)/(2Ua+1))) and that the shortest period of
periodic and sporadic tasks is greater than 120 (P,(1+U,)). The remaining 0.19 (1-0.2 - 0.61) of processing cycle can be used for
background tasks.

€3

€3

Position Paper

2.3 Fault-Tolerance and Reliability

The basic problem which we are working on is related to system support for atomic transactions and
replicated objects. The purpose of using atomic transactions is to share objects in a consistent, reliable
and timely manner despite system failure. Based on the formal atomic data set model [Sha85] and a
nested transaction model [Moss81], we have extended the transaction model and integrated it into our
object model to develop a notion of "compensatable” atomic objects [Tokuda85b].

The basic idea of the compensation is similar to the notion of the forward recovery. If a transaction is
aborted, the traditional transaction system performs “roll back" and bring the state of the object back into
the previously consistent state. In our model, the aborted transaction will be compensated by executing a
corresponding compensation operation and the net-effect of the transaction will be "cancelled".2 We are
also investigating a problem specific "real-time" transaction model together with the problem of integrating
the transaction management protocol and real-time scheduling protocol.

The purpose of using replicated objects is to enhance the availability and reliability of the object. There
are many ways to manage a replicated object by a user. However, it is not clear how many object
attributes which should be related to replication control in the object specification. We are also
investigating the minimum set of mechanisms and protocols to support efficient replicated object
management at the operating system kernel level.

3 Research Issues

When we attempt to construct a real-time application for a network of homogeneous or heterogeneous
processors, we must face many complex problems not only in the system architecture area, but also at
every stage of the software life cycle such as problem specification, design, testing, debugging and
maintenance. In ARTS OS development, our primary research effort focusses on the functionality and
structure of an advanced distributed real-time operating system. In other words, we are studying the
necessary advanced operating systems functions and structuring schemes.

3.1 Time-Driven Resource Management

The notion of time-driven resource management must be extended to other types of system resources
such as memory, I/0, and communication. For instance, when many tasks are waiting for an access
permission to a shared resource, the traditional approach is to give the permission in FIFO order.
However, this approach is inconsistant with the real-time scheduling principles. One possible solution is
to give the access permission according to the task’s value function.

Another important aspect is "policy/mechanism" separation. In TDS scheduler, we have implemented
the separation by introducing the policy dispatching module between the mechanism and the policy
modules. However, it is important to investigate different types of separation schemes for other system
resources.

2Whether an atomic object can be compensatable or not depends on the basic characteristic of each atomic operation. However,
we also developed a state-insertion scheme so that a certain type of operation can be modified as compensatable operation.

.y

Position Paper

3.2 Real-Time Transactions
A real-time transaction is a transaction which has real-time constraints. Because of the real-time
constraints, we need a new type of recovery scheme such as "compensation” instead of "roll back".

A major issue in supporting real-time transaction is the integration issue between time-driven scheduler
and transaction manager. As we stated in the previous section, transaction locking protocol, commit
protocol and recovery protocol must be integrated together.

3.3 Real-Time Communication Protocols
Real-time communication protocols are very difficult to design, because the design spans from the
media access level to the end-to-end level protocols. Furthermore, the design must be consistent with

the integrated scheduling policies. In ART project, we are currently analysing various types of the media
access level protocols.

Another problem is the implementation of protocol modules in general. Although protocol modules can
be created at interrupt handling level, kernel level or process level in an operating system, it is important
to develop better guide lines to implement a real-time protocol suite efficiently.

3.4 Real-Time Language Support

In ART project, we are investigating the use of Ada for distributed real-time applications. Even though
" many modern programming concepts are adapted in Ada, but some language features are inadequate
[Dennis87]. For instance, we identified that FIFO nature of the task entry queue in rendezvous and the
limitations of the task'’s priority assignments.

There are many other real-time languages, but many cases the language fails to provide "time"
encapsulation mechanism. It also lacks an advanced compiler which can statically analyze the timing
requirements among cooperating modules

4 Current Status and Plan

ARTS operating system is being designed and implemented on a network of SUN3 workstations. The
current ARTS kernel can provide a multiprogramming environment, but the porting of the ime-driven
scheduler from VAX11/784 has not been completed yet. However, every module is written in C, so the

machine dependent portion only needs careful porting. The scheduling policy modules we have
developed include
¢ SEPT (Shortest Estimated Processing Time First)

e MAXVAL (Maximum Value First)

o MAXVD (Maximum Value Density First)

o LSLACK (Least Slack Time First)

o DL (Earliest Dead Line First)

e DL2, ..., DL5 (Modified DL Scheduler with various heuristics)
¢ BE (Best-Effort Scheduling)

The implementation plan of ARTS OS is that we first focus on the development of the integrated

Position Paper

time-driven scheduler in a single node. Then, we will coordinate with /O and communication scheduler,
and coordinate each node so that we can perform network-wide scheduling in a transparent manner.

5 Conclusion

The construction of a next generation distributed real-time operating system is essential to the
systematic development of large-scale real-time systems. Since the operating system can manage the
network-wide resources for its users to meet the timing and reliability constraints, programers can now
concentrate on the design and implementation of real-time application.

Many related issues has been studied by various researchers [Mok83, Ramarithan84, Shaw86]. We
have investigated some of the important issues in computational model, network-wide scheduling
algorithms, and reliability mechanisms. However, many research problems still remain to be solved. In
CMU ART project, we are actively studying these issues from both theoretical and systems points of
views.

References

[Cornhillg7] Cornhill, D., Sha, L., Lehoczky, J.P., Rajkumar, R., and Tokuda, H., "Limitations of Ada for
Real-Time Scheduling”, To appear in Proc. of ACM SIGAda, International Workshop on Real-
Time Ada Issues, May 1987.

[Lehoczky86] Lehoczky, J.P. and Sha, L., "Performance of Real-Time Bus Scheduling Algorithms®, ACM
Performance Evaluation Review, Special Issue Vol. 14, No. 1, May 1986.

[Lehoczky87] Lehoczky, J.P., Sha, L. and Strosnider, J.K., "Aperiodic Scheduling in A Hard Real-Time
Environment”, ART Tech. Report, Computer Science Department, Carnegie Mellon University,

Apr. 1987.

[Locke85] Locke, C.D., Jensen, E.D. and Tokuda, H., "A Time-Driven Scheduling Model for Real-Time
Operating Systems”, Proc. IEEE Real-Time Systems Symposium, San Diego, Dec. 1985.

[Locke86] Locke, C.D., "Best-Effort Decision Making for Real-Time Scheduling,” PhD thesis, Computer
Science Department, Carnegie Mellon University, 1986.

{Mok83] Mok, A.K. "Fundamental Design Problems of Distributed Systems For The Hard Real Time
Environment", PhD thesis, M.L.T., 1983.

[Moss81] Moss, E., "Nested Transactions: An Approach to Reliable Distributed Computing”, Technical

Report, M.I.T. Laboratory for Computer Science TR 260, Apr. 1981.

[Ramarithan84] Ramamrithan, K. and Stankovic, J.A., "Dynamic Task Scheduling in Hard Real-Time Distributed
Systems",. |EEE Computer, Jul. 1984.

[Sha8s] Sha, L., "Modular Concurrency Control and Failure Recovery -- Consistency, Correctness and
Optimality,” PhD thesis, Carnegie Mellon University, 1985.
[Shasgg] Sha, L., Lehoczky, J.P. and Rajkumar, R. "Solutions for Some Practical Problems in Prioritized

Preemptive Scheduling”, Proc. of IEEE Real-Time Systems Symposium, New Orleans,
Louisiana, Dec. 1986

[Shaw86] Shaw, A. C., "Software Clocks, Concurrent Programming, and Slice-Based Scheduling”, Proc. of
IEEE Real-Time Systems Symposium, New Orleans, Louisiana, Dec. 1986

[Tokuda85a] Tokuda, H., Locke, D.C. and Clark, R.K. "Client Interface Specification of ArchOS", Tech.
Report, Computer Science Department, Carnegie Mellon Univ., Oct. 1985.

[Tokuda85b) Tokuda, H., "Compensatable Atomic Objects in Object-oriented Operating Systems”, Proc. of
Pacific Computer Communication Symposium, Seoul, Korea, Oct. 1985.

[Tokuda87] Tokuda, H., Wendorf, J.W., and Wang H.Y., "Implementation of Time-Driven Scheduler for Real-

Time Operating Systems”, ART Tech. Report, Computer Science Department, Carnegie Mellon
University, Apr. 1987.

Topic: A Programmable Standard Executive for Multiprocessor Real-Time Systems

Greg Scallon and Becky Riley, Boeing Aerospace, Seattle, WA 98124-2499

M/S 82-53
Addressing: /

» Issues in developing next generation real-time operating systems
« Implications for the design and development of real-time applications software

The increasing reliance on multiprocessor computer systems for medium-to-large scale
real-time military applications raises a spectrum of design and performance issues which
need to be addressed by next generation real-time operating systems and real-time software
development methodologies. It is still current practice in the aerospace industry to build
such systems from scratch for each new application. Typical systems incorporate a unique
real-time executive, and are costly and time consuming to build and maintain.
Furthermore, the complexity of such systems often precludes accurate or comprehensive
design or performance trades.

The need to reduce the cost and development time of such systems, and to facilitate
early, but accurate, real-time performance predictions, led to the present Boeing research
effort. Based on a set of standards derived from experience with the design and
development of multiprocessor real-time systems, the research has focussed on:

* a standard executive which is general enough to be used for a wide variety of
multiprocessor resident and non-resident real-time applications , and which is

» programmable (and thus may be parametrically tailored to meet the particular
requirements of a given system).

We are currently developing a prototype implementation of such a standard real-time
executive (the Real-time Executive (REX)!) targeted to multiprocessor hardware
configurations with hierarchical (and shared) memory resources. REX incorporates
standards for the specification, organization and run-time management of application
software components, and is programmed via a formal system specification language.2
This language functions as a combined PDL (preliminary design language), MIL (module-
interconnect language), JCL (Job Control Language), and system design language.
However, it is not used to build functional application code. Designers use this language
to write system specification programs which reference application procedures

26—

3

i

written in conventional programming languages. Such programs specify a plan for the
organization of (and communications between) procedures and their run-time control on a
given hardware configuration. Thus, the application consists of two levels:

« the architectural level (the formal system specification), and

« the procedural level (the application procedures, which perform all the "useful" work)
Note that unlike other executive approaches, REX is not a set of standard operating

system services or utilities which are called from an application program. Rather, the

application procedures themselves are invoked by the executive according to the plan of the
formal system specification.

[
standard

main

RTOS application

program

\

system
specification

application
procedures

modules
L e—

I4_,__._—— /
o je—
B & e 4

This approach forces the designer to break the application into manageable sized
procedure modules whose execution and communication with other procedures is then
synchronized and controlled across multiprocessor hardware by the executive.

The standard executive performs many typical real-time operating system functions,
and in fact, these services are implemented and supported by traditional lower level RTOS
routines. The lower level RTOS services are dependent on the hardware configuration and
specific to the host machine, but the executive provides a clean, standard interface between
these lower level RTOS services and the application. It may be viewed as a standard
virtual machine on which the application executes, effectively hiding the underlying
hardware and operating system details from the designer.

(The Standard Executive Interface
SR Y,
4 e)
reusable 7~ executes A
RIS sy © e ot
modules executive specification i el
— ol
| | l |
standard g L
: ! application
virtual machine PP
_ _J

The widespread adoption of Rex-like interface and run-time control standards at the

executive level could have significant implications for real-time software system design and
development in the future . In particular,

* the standard executive interface enforces the separation between application and
operating system, ensuring that application procedures are independent of
hardware/operating system configuration and implementation details, and thus potentially
reusable between system designs. This also ensures that the designs themselves are
portable between different, but REX-interfaced (multiprocessor) hardware configurations.

- communication interface standards force procedures to communicate via explicit,
formal parameters, also facilitating their potential reusability. This suggests that the
definition of additional standards for the specification of procedure argument artributes
would make possible the use of automated tools to propagate such attributes through all
specified interfaces within a system design to verify compatibilities. Procedures built to
the proposed interface standards would then be inherently reusable, "plug-in" parts of a
system specification.

« run-time control standards allow the operating system execution environment to be
modeled with fidelity. Though the designer sacrifices some flexibility in the scheduling
and real-time control schemes that may be used, the standard REX run-time control strategy
is well-defined and can be accurately modeled. This makes feasible the use of automated
tools for the performance testing of system designs. If the target system is interfaced with
the same standard executive, then the real-time performance of a given system in that target
environment can be accurately predicted. Furthermore, the tested system specification may
theoretically be translated directly to product code for the target hardware, since it was
developed in the same standard environment.

Following up on some of these possible implications, Boeing is researching and
developing some of the companion tools necessary to exploit the automated design, testing
and translation which the standard executive approach makes feasible. These include:

« standard diagrams for the representation of real-time system designs,
« automated system design and performance analysis tools, and

« a system assembler to build the programmable real-time executive control tables from a
system specification.

In particular, we have identified four standard design representation diagrams (and
corresponding parts symbols) necessary to capture the information required to build a
formal system specification. We have constructed a real-time executive simulator, and
extended the formal system specification language for system modeling. These form the
exercisor and input language, respectively, of a computer-based rapid prototyping tool (the
Architectural Design and Prototyping Tool (ADAPT)). ADAPT supports automated, static
(e.g. parts interface) and dynamic (e.g. real-time performance) testing of system designs.
It may be used to incrementally refine or expand the scope of system models. We have
also designed (but not yet implemented) a system assembler (the Architectural Design to
Operational Product Translator (ADOPT)). It transiates a system specification into standard
executive control tables, supporting the direct evolution of tested prototypes to executable
code for a REX-interfaced target hardware configuration.

Our future plans are to extend ADAPT with fully automated design optimization
capabilities, allowing the designer to specify objective functions and success criteria and

have the tool identify optimal design solutions meeting those criteria. We also plan to
build the ADOPT assembler. But more importantly, we are developing the concept of a

real-time system design and development methodology based on the standard executive
approach.

The above prototype tools (and yet to be constructed tools), made possible by the
adoption of interface and run-time control standards at the executive level, can be integrated
into an automated methodology to be applied across the real-time system design and
development lifecycle. A parallel may be drawn between this approach, and that used for
the design and development of hardware. Just as TTL parts and interface standards,
MILSTD 806B standard logic symbols, and standard timing diagrams (all arbitrary, but
standard conventions) made VLSI design automation processes feasible, so similar
standards for software parts, interfaces, and run-time control make feasible (and justify the
expense of) powerful tools for real-time system design and testing. Then, just as hardware
is designed in an efficient top-down manner with "plug-in" standard (and tested) parts, and
thoroughly tested prior to construction, so software systems can be built up from standard
reusable (and tested) components and their real-time performance analyzed prior to
construction. Furthermore, tested prototypes can be translated directly to product code.

We are already using parts of this new methodology to accomplish cost and
development time reductions and performance prediction improvements on real-time system
design work at Boeing. Ultimately, just as has happened in the hardware development
world, we expect that full implementation and use of this methodology will help us realize a
compounding of productivity improvements due to the interchangeability of parts and
designs, and automated system design and testing prior to construction. We think the
implications are revolutionary!

4% .

