An Introduction to Object-Oriented Programming with
‘ ,

second edition

DrawingBoard

graphic

Drawing Board

HE

An Introd\uctjon to Object-Oriented -
Programmigg with Java

second edition

Java [0] % %
BOF B if
%2

C.Thomas Wu
Naval Postgraduate School

FEXFHMRHA
McGraw-Hill Companies, Inc.

(R)BF 158 &

An Introduction to ;Object-k‘Oriente‘d Programming with Java 2nd ed.
C. Thoms Wu

Copyright © 2001 by "The McGraw-Hill Gompanies, Inc. :

Original English Language Edition Published by The McGraw-Hill Companies, Inc.

All rights Reserved.
For sale in Mainland China only.

A HR AR McGraw-Hill 74 I BARIE 4 A2 th IR AE o BB 1 (R S T 451
GG DS e T TS PR 30 7
EHLEMBHRSHUREBENT, FAREAHREHSH R,

ERHEUWE FEXFHEL MBS, AFEEREHE,
LR A RAUS EERA FI B0 S ¢ 01-2000-3920

HMHBERSRE (CIP) BB

Java EIFIXT RBEFIRIT: 82 K. ﬁ)t/%(Wu T.C)%E. ~2 OEHMR). -5t e
K H R, 2001. 1

(KREHENHEFAS)

ISBN 7-302-04220-9

T.J T.%2 . ®WHXFRES-BFLT-FL V. TP312
B iR A 0 CIP BB (2000) 45 83749 &

W : WEHERE R (JLEE K22 B E , R4 100084)
http: // www. tup. tsinghua. edu. cn

ERME « TR EEDR))

BATE : FEPIEBIEILR B4 B

: 787x960 1/16 ENik: 56.25

;2001 FF 1 A IR 2001 4E 1 A5 1 KELRY

: ISBN 7-302-04220-9/TP-2480

: 0001 ~3000

: 72.00 7T

f B % 5F A
S A S

H AR E B E

SR, BIMRESE P ERE: BT TS, miE# & ER K E S
flf 1 7 R 2P R B BN R 2 H EZ NS i BIn k¥ ARG 3h 550
E2# ;& EERSWRYHR . MR TR MU A 5 BN #Efy B 3k
R HARESN , EONE R AR TN R SRR ERIS CHBRBE RS . FE
T b, 7 IR E X B B AR 8 RSB BE R A — R « b R R A B iR
BAR, R, EXAPBRE T X TR LN A ER, B RRIT RSl
BERZSN, REFEE VIR T IE IR, HE EXIBETRA S HBNRE
HEFREMEARFES H S, ARERX T EHTE, RITAESMEA T —#ESNHTHE
PUBE T R A BE L8O BT R IR . BALIRIG B SN E & B RA R AR E R
B B B S K RS0 51 AR BS540, AT R T HER B, fEExT
R AR B A AR B R _

ATV BB M B R BB B R R R B BT, E R EN R H
BRR MBALHE R ESMEF T REALBE M, R BRI FE T EN TS (R E
BOMBR L, EE & EEITA MFE, ,

R RS At
(RFETBIBFAPBCREE))T B A
1999.6

main class p. 56

| main method p. 57

!

object declaration p. 45]

! object creation p. 4?]

constant p. 9

!

[visibility modifier p. 157

variables p. 8

arrays p. 41

this p. 439

constructor p. 152

! o

!'array creation p. 413]

i String p. 359
| primitive data types p. 85
itry-catch block p. 541]

[file VO p. 520

while p. 290
| for p. 308
do-while p. 299

switch p. 252,

exceptions p. 528
System.out p. 175

§
1

}

class SampleMain LClass Declaration Summary

public static void maini String args([])
{
Sample samplel;
sampliel = new Sample();
samplel.readFile();

class Sample

{

public static final int DEFAULT SIZE = 10;
private String filename;

private int javaCnt;

private stringl] wvalue;

puklic Sample()
{

this("sample.txt" , DEFAULT_SIZE);
}

public Sample(String filename , int size
{

this.filename = filerame;

value = new String(size]l:
}
public void readFile({)
{
String inputLine;
int cnt o= 05
try {
File inFile = new File(filename);
FileReader fileReader = new FileReader (inFile);
BufferedReader bufReader = new BufferedReader (fileReader) ;

inputline = bufReader.readLine(};

while (!inputLine.equalsIgnoreCase ("END")) {
if (inputLine.equalslgnoreCase("JAVA") {
javacCnt+-;
}
else {
value{cnt] = inputline;
cnt++;
}
inputline = bufReader .readLine (; ;
} //while
bufReader.close() ;
}
catch (IOException e} {
System.out.println("Error in ingut");

[impon statement p. §I

[java.awt p. 54 '
| Jjavabook p. 53]
[ActionListener p. 199]

Button p. 605
TextField p. 618
Frame p. 605
Dialog p. 636
Menultem p. 620
MenuBar p. 620
Menu p. 620

null p. 206

[layout manager p. 1977

| protectedp. 659 |

insets p. 779

actionPerformed p. 613

action event p. 611
mouse event p. 626
window event p. 614

import java.awt.*;

Class Declaration Summary

import javabook.*;

class SampleDialog extends JavaBockDialog implements ActionListener

{

private TextField editBox:
private Button button:
private Frame myoOwrier ;

public SampleDialog(Frame owner)

{

//set the properties of the dialog
super (owner) ;

setTitle(*Sample Dialog”);
setResizable(false);

setlLayout (null);

myOwner = owner;

//create and add GUI objects to the dialog
editBox = new TextField(*~);

button = new Button(“CLEAR"):

add (editBox) ;

add (okButton) ;

//set the dialog as an action listener
okButton.addActionListener (this):

protected void adjustSize()

{

addNotify () ;
Insets inset = getInsets();

setSize(inset.left + inset.right + 150,
inset.top + inset.bottom + 100);

editBox.setBounds (inset.left + 30, inset.top + 25, 150, 20);:
button.setBounds (inset.left + 75, inset.top + 155, 50, 25);

public void actionPerformed(ActionEvent event)

{

//tell the owner frame the value entered by the user
myOwner .valueEntered (editBox.getText () };

editBox.setText (") ; //clears the entry

Preface

We have made a number of improvements in this second edition of the book,
but the main objectives remain the same. This book is intended as an introduc-
tory text on object-oriented programming, suitable for use in a one-semester
CS1 course, and assumes no prior programming experience from the students.
Those who already have experience in traditional process-oriented program-
ming languages such as C, BASIC, and others also can use this book as an in-
troduction to object-oriented programming, graphical user interface, and event-
driven programming. The two main objectives of this book are to teach

¢ Object-oriented programming.
¢ The foundations of real-world programming.

Object-orientation has become an important paradigm in all fields of com-
puter science, and it is important to teach object-oriented programming from the
first programming course. Teaching object-oriented programming is more than
teaching the syntax and semantics of an object-oriented programming language.
Mastering object-oriented programming means becoming conversant with the
object-oriented concepts and being able to apply them effectively and systemat-
ically in developing programs. The book teaches object-oriented programming,
and students will learn how to develop true object-oriented programs.

The second objective of this book is to prepare students for real-world pro-
gramming. Knowing object-oriented concepts is not enough. Students must be

Xiif

Preface

Xiv

Chapter 1 Preface

able to apply that knowledge to develop real-world programs. Sample programs
in many introductory textbooks are too simplistic. Students rarely encounter
sample programs in other textbooks that define more than three classes. But in
real-world projects, programmers must use many classes from the libraries and
define many classes of their own. In this book, we teach students how to use
classes from the class libraries and how to define their own classes. For exam-
ple, the sample program from Chapter 15 defines 10 classes and uses numerous
classes from the existing class libraries.

New Features in the Second Edition

We would like to take this opportunity to thank the adopters of the first edition.
We especially appreciate numerous suggestions and encouraging words from
the adopters and their students. For the second edition, we focused on improv-
ing the strengths of the first edition and incorporating as many suggestions as
possible. Because all the suggestions cannot be bound into a single hardcopy of
a book, we tried to accommodate varying needs of the adopters by placing mate-
rials on our websites. Please see the section on suppomng materials for more
details on the website contents.

Before we get into the fedtures of the book we will first hxghhght briefly
what’s new with the second edition:

1. Use of javadoc comments. Except for the early chapters, all sample
code and programs are documented in the standardized javadoc style.
The updated javabook classes are also fully docamented using the ja-
vadoc comments. The HTML documentation files for the javabook
classes, generated from the javadoc comments, are available from our

websites. o
ah L 'v//”lf,c |74 T ;}‘/;{4’ s

2. Two-color pages. We received many accolades for our illusirations in
the first edition. We improved them further by using the second color
and adding a 3-D appearance. We characterize our style of explaining
hard-to-grasp concepts with informative and visually appealing dia-
grams and figures as visual teaching. We believe visual teaching is the
most appropriate way to teach introductory programming.

3. New and improved javabook classes. Two new classes are added to
the javabook package: Clock and Simplelnput. The Clock class pro-
vides basic clock functions such as reading the current time, getting
today’s date, and providing stopwatch functions. Using the stopwatch
functions, the programmer can record easily the running time of a
program. For example, they can be used conveniently to compare the
running time of different sorting algorithms. The second new class,

Simplelnput, provides non-GUI-based input routines. A number of
/\[//’n"[‘{’/ﬂﬁl fd{v!? ')./zf‘ RN
C3le. fiv 2 Wiy T ’rmf"‘ﬁ,

.

Feature 1

Major Features xv

adopters requested the functionality of InputBox for the non-GUI en-
vironment. We added this class to answer their request. In addition to
the two new classes, we made a number of minor improvements to the
existing classes.

Swing-based javabook classes. With the advent of the Swing classes
in the Java 2 platform, the Swing-based version of the javabook pack-
age is implemented. The direct benefits of using the Swing classes in-
clude the simplified implementation of several javabook classes and
new functionality such as placing an icon on a MessageBox object.
Information on the Swing-based javabook classes can be found at our
websites. Whether to use the original javabook or the Swing-based
javabook depends on the extent that the instructor covers Swing class-
es in the course. Even if Swing classes are not covered in the course,
Swing-based javabook can be used if the instructor does not plan to
get into the internal workings of the javabook package.

* 5. Additional topics. Although we feel the detailed coverage of the col-
lection classes belongs to a CS2 book, we received requests from the
adopters to include a discussion on Vector. We concur with them that
it is desirable to introduce the convenience and power of the Vector
class to the CS1 students. The Vector class is described in Chapter 9.
Another new topic we included in the second edition is heapsort. Af-
ter moving the sorting algorithms from the old Chapter 15 to the new
Chapter 10, we added heapsort to strengthen the chapter with a nonre-
cursive Nlog,N sorting algorithm. Heapsort serves as a great example

of a clever use of an array for storing heap nodes.

6. Improved supporting materials. We improved the existing support-
ing materials and added many new ones. Please read the Supporting
Materials section on page xxiv for a detailed information on what’s
available from our websites.

Major Features

There are many pedagogical features that make this book unique among the in-
troductory textbooks on object-oriented programming.We will describe the ma-
jor features of this book.

Java

We chose Java for this book. Unlike C++, Java is a pure object-oriented lan-
guage, and it is an ideal language to teach object-oriented programming because
Java is logical and easy to program. Java’s simplicity and clean design make it

e0BjeId

Preface

XVi

Feature 2

Chapter 1 Preface

one of the most easy-to-program object-oriented languages. Java does not in-
clude any complex language features that could be a roadblock for beginners in
learning object-oriented concepts. Although we use Java, we must emphasize
that this book is not about Java programming. As this book is about object-ori-
ented programming, we do not cover every aspect of Java, We do, however,
cover enough language features of Java to make students competent Java pro-
grammers.

The javabook Package

We provide a class library (a package in Java terminology) called javabook that
includes a number of classes we use throughout the book. We wrote a series of
articles in 1993 on how to teach object-oriented programming in the Journal of
Object-Oriented Programming (Vol. 6, No. 1; Vol. 6, No. 4; and Vol. 6 No. 5).
The core pedagogic concept we described in the series is that one must become
an object user before becoming an object designer. In other words, before being
able to design one’s own classes effectively, one first must learn how to use pre-
defined classes. The use of javabook is based on this philosophy.

There are many advantages in using the javabook package:

1. It shows students how real-world programs are developed. We do not de-
velop practical programs from scratch. Instead, we use predefined classes
whenever possible. One of the major benefits of object-oriented program-
ming is the enhanced programmer productivity by reusing the existing
classes. Students will get hands-on experience of code reuse by using classes
from the javabook package.

2. It minimizes the impact of programming language syntax and semantics.
The use of javabook classes lets students concentrate on learning concepts
instead of the Java language features.We have seen many cases where nov-
ice programmers started out with a well-designed program, yet ended up
with a very poorly constructed program. Often, because they do not under-
stand the programming language fully, their design is not translated into a
syntactically and semantically correct program. When they encounter an er-
ror while developing a program, instead of correcting the program code,
they change their program design. Using predefined classes minimizes the
impact of programming language because these predefined classes hide the
complexity of underlying programming language. Students will have a
much easier time implementing their program design into a working pro-
gram code using the javabook classes.

3. It allows students to write useful programs from very early on, which
helps to sustain the students’ initial interest and motivation to learn. With-
out using predefined classes, students must learn far too many details of
programming language before they can start writing interesting and practi-

Major Features xvii

cal programs. But before they reach that point, many of them would lose in-
terest in programming, drowning in the boring details of language syntax
and semantics. Using the predefined classes from the standard Java libraries
such as java.awt from the beginning, however, is not practical because these
classes require programming sophistication that beginning students do not
possess. Easy-to-use and intuitive predefined classes such as the javabook
classes are more appropriate for beginning programmers.

4. It provides a necessary foundation before students can start designing
their own classes. The ultimate goal of learning object-oriented program-
ming is to master the skills necessary for designing effective classes. But
before being able to design such classes, students must first learn how to use
existing classes. Again, teaching how to use the standard Java classes to
novice programmers from the beginning is not pedagogically sound because
the majority of the classes from java.awt, java.io, and others are not easy
enough for beginning programmers to use. We designed the javabook class-
es with novice programmers in mind.

5. You can customize the javabook package to meet your needs. For exam-
ple, there is a class called MainWindow in the package that serves as a top-
level window of a program. You can easily extend this class to display your
school’s logo when this window appears on the screen. Or you can add a
help menu that will list your T.A.’s office and phone numbers. You can ex-
tend other javabook classes as well. The javabook package also can be a
training ground for your graduate or upper-division undergraduate students.
By designing classes for the javabook package used by hundreds of begin-
ning students, they will learn first hand what it takes to make classes reli-
able and truly reusable.

One concern raised about the use of javabook is whether the students would
be able to write programs without using the javabook package. The answer is. of
course, yes. The javabook package is not an end, but a means for students to
learn the standard package. It is a stepping stone, a kind of training wheel for the
standard packages. In addition to the javabook classes, we cover many classes
from the standard Java packages such as java.awt and java.io.

The source cede of all javabook classes is provided, and students are en-
couraged to study them as they are practical examples of reusable classes. After
finishing Chapter 13, students can understand almost all of the javabook classes.
We say “almost” because some of the classes in javabook are implemented us-
ing the standard classes that are not explained in the book. If the students take
time to look up these standard classes in a reference manual, then they shouid be
able to understand the javabook classes 100 percent.

aoeje.d

Preface

xviii Chapter 1 Praface

3 Full-lmmersion Approach
Feature We adopt a full-immersion approach in which students learn how to use objects

from the first program. It is very important to ensure that the core concepts of
object-oriented programming are emphasized from the beginning. Our first
sample program from Chapter 1 is this:

/*

Program FunTime

The program will allow you to draw a picture by

dragging a mouse (move the mouse while holding the left mouse
button down; hold the button on Mac). To erase the picture and
start over, click the right mouse button (command-click on Mac).

*/
import javabook.*;

class FunTime

{
public static void wain(Stringl] args)
SketchPad doodleBoard;
doodleBoard = new SketchPad();
doodleBoard. setVisible(true) ;
}
This program captures the most fundamental notion of object-oriented program-
ming. That is, an object-oriented program uses objects. As obvious as it may
sound, many introductory books do not really emphasize this fact. In the pro-
gram, we use a SketchPad object called doodleBoard that allows the user to
draw a picture. Almost all other introductory textbooks begin with a sample pro-
gram such as
/*
Hello World Program
*/

class HelloWorld
public static void main(String args{])

System.out .println{"Hello World");

/*
*/

Major Features xix

or

Hello World Applet

import java.applet.*;
import java.awt.*;

public class HelloWorld extends Applet

/*

*/

.public void paint(Graphics g)

g.drawString ("Hello World", 50, S50);

Both programs have problems. They do not illustrate the key concept that
object-oriented programs use objects. The first program does indeed use an ob-
ject System.out, but the use of System.out does not illustrate the object declara-
tion and creation. Beginners normally cannot differentiate classes and objects.
So it is very important to emphasize the concept that you need to declare and
create an object from a class before you can start using the object. Our first sam-
ple program does this. :

Another problem with the System.out program is that no real window-
based programs use it for output. Some textbooks not only use System.out in
their first program, they rely on System.out almost exclusively for program out-
put. This is not real-world programming. In this book, we use System.out only
to output data for verification purposes while developing programs.

The second HelloWorld program is an applet, which, as its name suggests, is
a mini-application with a very specific usage. Although applets are fun, teach-
ing applets exclusively is a problem because students will learn only a very lim-
ited view of programming. We will discuss more on applications versus applets
later in the preface.

Another major problem with these two programs is that they are not adapt-
able to real-world situations. In contrast, our first sample program can be a main
program of a commercial application by replacing SketchPad with another
class, say, WordProcessor. In fact, our second sample program from Chapter 2
is this: (Note: This is the first program we actually explain line by line.)

Program MyFirstApplication

The first sample Java apblication.

import javabook.*;

ooBjeId

Preface

XX

Chapter 1 Preface

class MyFirstApplication

public static void main(String args(l)

Feature 4

Feature 5

MainWindow mainWindow;
mainWindow = new MainWindow() ; //create and
mainWindow.setVisible(true);//display a window

The structure of this program is identical to the structure of the first sample pro-
gram. Our second sample program reinforces the concept that we program by
using objects and by changing objects, we create a different program.

Mustrations

We believe a picture is worth a thousand words. Difficult concepts can be ex-
plained nicely with lucid illustrations. We use object diagrams to show the rela-
tionships among objects and classes. Diagrams are an important tool for
designing and documenting programs, and no programmers will develop real-
world software applications without using some form of diagramming tools. We
use simple and informal diagrams, but the diagrams we use in this book are
modeled after the industry standard object diagrams. After becoming comfort-
able with the object diagrams in this book, students are well prepared to study
more formal object-oriented design methodology. For those who would like to
introduce formal object diagrams, we have UML diagrams for the sample pro-
grams and javabook classes available for viewing and downloading from our

.websites.

This book includes numerous illustrations that are used as a pedagogic tool
to explain core concepts such as inheritance, difference between private and
public methods, and so forth. Notations used in the object diagrams are used
consistently in all types of illustrations. Figure 1 is one example from Chapter 2,
and there are over 230 such illustrations and diagrams in this book. Other repre-
sentative illustrations can be found on pages 90, 165, 243, 378, 387, 428, 498,
669, and 724.

In addition to object diagrams, we use method call sequence diagrams that
indicate the sequence of method calls such as the one shown in Figure 15.1 on
page 711. The method call sequence diagrams are very useful in showing the
flow of messages. We use method call sequence diagrams extensively in docu-
menting an advanced sample program in Chapter 15.

Incremental Development

We teach object-oriented software engineering principles in this book. Instead
of dedicating a separate chapter for the topic, we interleave program develop-
ment principles and techniques with other topics. Every chapter from Chapter 2

FIGURE 1

Major Features xxi

Correspondence between message sending as represented in the object diagram and in
the actual Java statement.

~ mainWindow
MainWindow

<[L true

4 \j v
mainWindow . setVisible ([true)

to Chapter 14 includes at least one sample program to illustrate the topics cov-
ered in the chapter, and we develop the program using the same design method-
ology consistently. Chapter 15 is the case study chapter in which we develop a
substantially large program for the CS1 standard.

One major problem with many of the other introductory programming
books on the market today is that they teach a two-decade-old structured pro-
graming, which just does not work with object-oriented programs. This book re-
ally teaches a software design methodology that is conducive to object-oriented
programming. All sample programs in this book are developed by using a tech-
nique we characterize as incremental development. The incremental develop-
ment technique is based on the modern iterative approach (some call it a spiral
approach), which is a preferred methodology of professional object-oriented
programmers.

Beginning programmers tend to mix the high-level design and low-level
coding details, and their thought process gets all tangled up. Presenting the final
program is not enough. If we want to teach students how to develop programs,
we must show the development process. An apprentice will not become a mas-
ter builder just by looking at finished products, whether they are furniture or
houses. Software construction is no different. It is often the case with other text-
books that a single chapter is dedicated to showing software development. This
is not enough. We must show the development process more than just once. In
this book, we develop every sample program incrementally to show students
how to develop programs in a logical and methodical manner.

Source code of all sample programs at every step of development is avail-
able from our websites. However, we do not encourage students to simply fol-

oorJald

Preface

Xxii Chapter 1 Preface

low the development presented in the book and read the source code. We
encourage students to actually build the sample programs following the devel-
opment steps presented in the book. This is the surest and quickest way for the
students to truly master the software development.

Feature 6 Design Guidelines, Helpful Reminders, and Quick Checks
Throughout the book, we include design guidelines and helpful reminders. Al-
most every section of the chapters is concluded with a number of Quick Check
questions to make sure that students have mastered the basic points of the sec-

tion.
Design guidelines are indicated with a pencil icon like this:

Design a class that implements a single well-defined task. Do
not overburden the class with multiple tasks.

Helpful reminders come in different styles. The first style is indicated with a
thumbtack icon like this:

Watch out for the off-by-one error (OBOE).

The second style is Dr. Caffeine’s monologue:

| On occasions, programming can be very frustrating because no amount of effort
T on your part would make the program run correctly. You are not alone. Profes-
" | sional programmers often have the same feeling, including this humble self. But,
2 if you take time to think through the problem and don't lose your cool, you will
| oy find a solution. If you don't, well, it's just a program. Your good health is much
1 more important than a running program and a good grade.

The third style is a dialogue between Dr. Caffeine and his honor students
Ms. Latte or Mr. Espresso. Ms. Latte and Mr. Espresso appear in alternate chap-
ters.

Ms. Latte: I appear in the odd-numbered chapters and ask great questions.
Or. Caffeine: That's right, and your guestions are insightful and helpful to other
students.

Mr. Espresso: I appear in the even-numbered chapters and also ask questions.

- Dr. Caffeine: Yes, and I like your questions, tao.

