Y EY

VIR S S

OPERATING SYSTEMS

Covers principles underlying all the major
operating systems _

e
Includes DOS, UNIX, & Linux

Solved examples from simple to comprehensive

Perfect for professionals
refreshing core concepts

(%) J. Archer Harris %

@ B T b KR 3
-l China Machine Press

BERA
w5 i S

(ZE3Zhi)

OPERATING SYSTEMS

[IIJ

S I
(%) J. Archer Harris &

LII_IM

hhhhhhhhhhhhhhh

John R Hubbard:.Data Structures With C++(ISBN 0-07-118358-2).

Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved.

Jointly published by China Machine Press/McGraw-Hill. This edition may be sold in the
People’s Republic of China only. This book cannot be re-exported and is not for sale outside

the People’s Republic of China.

#4538 REN R B 2% Bl McGraw-Hill 2 Gl FEAXHLAE Tk ARt A8 b B AR SE R K
HIRKAT, RSBHEMZBFT, FELMEMYRPE. EHISTFRALHERBS .

A HB 3 WA McGraw-Hill2 51 83OEH (4%, EREZEABHEE.

WAL, RS,

A BN EIZS: B=F: 01-2002-1883

B+ 7ER SR B (CIP) 3iiR

BIE RSV E SRE/ (£) W EST (Harris, JLA.) #. - 4650 YU T Ik H AR,
2002.8

(&ELZ2HEINRFRI)

453 Operating Systems

ISBN 7-111-10617-2

1B O I #@ERGERMN) - 218 - %3 V. TP316-44

o A P I CIPRiR B = (2002) 30518505

HUME Tl A AL Clescdiaseis i 0 IR A#T 224 - iBgfy 100037)

T gas: 1w
JescA= It 2LENRY CEDRY - B EBEIL R R TR KT
200248 H B AR S Lk EN R

787mm x 1092mm 1/16 - 15.25E05K
EN%: 0 001-3000/
£ 25.007C

FUtAS, wA eI, EI. B, mAHRITEESR

PREFACE —————

My first experience with operating systems was on a DEC PDP-11 computer
running Unix Version 6. With the source code in hand, I learned about a fascinating
piece of software which was both elegant and complex. An operating system is the
ultimate challenge for a programmer, encompassing everything from low-level
device manipulation, to concurrency, to object-oriented design.

This book explores the design principles found in modern operating systems. It is
intended for those wishing to learn more about operating systems in general or for
those with interest in a particular system who desire a broader perspective on its
operation. As in all Schaum’s Outline Series books, each chapter includes a concise
presentation of the material and numerous solved problems. The book is suitable for
use as a companion to a standard operating systems text, as a supplement to a
course, or as a review guide for students preparing for graduate entrance or
comprehensive exams. ‘

The emphasis of this book is on design principles, not the detailed characteristics
of any particular operating system. However, examples from various operating
systems are cited, with DOS, Windows, and Unix being the most frequently
referenced. The book concentrates on generally applicable design features and
does not cover more specialized topics such as real-time or distributed systems.

I wish to thank all the staff at McGraw-Hill who helped produce this effort. I
thank my students and my colleagues at James Madison University for their
understanding and support. A special acknowledgment to Dr. Ramén Mata-
Toledo for his part in bringing this book to life.

Finally, I express my profound gratitude to my wife and colleague, Nancy Harris.
In addition to emotional support, her critical review was invaluable.

Although it is hoped all material in this book is accurate, the possibility does
exist that some errors are present. Notification of errors, omissions, or suggested
improvements should be sent to schaumos@mailgate.cs.jmu.edu. Updates on the
book may be found at URL http://www.cs.jmu.edu/users/harrisja/schaumos.

J. ARCHER HARRIS

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

Introduction

1.1
1.2
1.3

Machine Hardware
Operating System Structure
Outline of the Rest of This Book

Process Management

2.1
2.2
2.3
24
2.5
2.6
2.7

Process Scheduling

Process State

Scheduling Criteria

Scheduling Algorithms

Scheduling Algorithm Performance
Process Attributes

Process Supervisor Calls

Interprocess Communication and Synchronization

3.1
3.2
33

Interprocess Communication
Process Synchronization
Deadlock

Memory Management

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9

Single Absolute Partition
Single Relocatable Partition
Multiprogramming
Mutltiple Partitions

Simple Paging

Simple Segmentation
Segmentation with Paging
Page and Segment Tables
Swapping

4.10 Overlaying

O W s b

14

15
15
18
19
23
2%
26

45

45
49
59

- 87

87
88
88
89
92
93
95
95
97
97

Contents

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

INDEX

Virtual Memory

5.1 Demand Paging
5.2 Segmentation

File System Management

6.1 Directories and Names

6.2 Types of File System Objects
6.3 File System Functions

64 Information Types

6.5 File System Architecture

Device Management

7.1 Hardware 1/0 Organization
7.2 Software Organization

7.3 Devices

Security

8.1 Authentication
8.2 Prevention

8.3 Detection

8.4 Correction

8.5 Identification

8.6 Threat Categories
8.7 Program Threats

Bibliography

124

124
130

152

152
157
157
158
159

185

185
190
195

218

218
220
221
221
221
222
222

229

232

systems provide a capability for gathering data, performing computations,
ormation, communicating with other computer systems, and generating
rts. Some of those capabilities are best implemented in hardware, others
. An operating system is the software that takes the raw capabilities of the
d builds a more practical platform for the execution of programs. The
stem manages hardware resources, provides services for accessing those
nd creates higher-level abstractions such as files, directories, and

Bl computer system contains five major components: the hardware, the
stem, systems programs, application programs, and users (Fig. 1-1). The
es all the actual work and includes the memory, the central processing
and the input and output (I/O) devices. The operating system provides
es to programs. The user interacts with the operating system indirectly,
brograms. Systems programs are a set of utility programs supplied with
system to provide basic services for users. Examples of systems
lude a window manager for a graphical user interface (GUI), a
prpreter, and programs to rename, copy, or delete files. Application
ide the computer with the functionality the users require. Examples of
pgrams include tax preparation software, a financial planner, a word
a spreadsheet.

f heart and brain of a computer system. It contains a number of
 registers, an arithmetic logic unit (ALU), and the control logic
kode and execute instructions (Fig. 1-2). Connected to the CPU by
Minication bus are the memory and the /0 devices. The operation of
Btrolled by the instructions the CPU fetches from memory. The I/O
i, are commanded by the CPU.

Introduction

1.1 Machine Hardware

CHAPTER 1 Introduction

' ! ' L B
Editor Print Word Spreadsheet Game |
spooler processor l
Systems Application
programs programs
z
Operating ;
system |
Hardware |
o

Fig. 1-1. Computer system components.

The operation of a CPU can be described in terms of a simple loop, where each
time through the loop one instruction is executed. The basic process by which
instructions execute never varies.

e An instruction is fetched from the memory location specified by the special
register called the program counter. All instructions to be executed are
fetched from main memory.

o The instruction is placed in a special register called the imstruction register.
o The program counter is incremented so it points to the next instruction to be
executed.

o The mstruction is decoded 1o JEARTIINT Wht 2EHOR i 4O br performed. The
action is specified by the instruction’s epcode (operation code) bits. The
machine architecture defines which bits contain the opcode.

& |

LISl |
: : | i Control
| : | logic
|| L
[Registers |
ALL
CPU

Fig. 1-2. CPU organization.

CHAPTER 1 Introduction

o Depending on the operation to be performed, the value of one or more
operands are fetched from memory.

o The operation specified in the opcode is performed. Five basic categories of
operations exist.

(1) Movement: Move a value from one location to another. The locations
involved may be registers or memory locations.

(2) Computation: Send one or more operand values to the ALU and have a
computation performed.

(3) Conditional Branch: If the branch condition is true, reset the program
counter to point to the branch address. For an unconditional branch, the
branch condition is always true.

(4) Procedure Call: Save the current value of the program counter. Then
reset the program counter to point to the beginning of a procedure. At
the end of the procedure, a branch instruction specifying the saved
program counter will allow the program to return to the current point of
execution. The saved program counter may be stored in a register, in
memory, or on the stack.

(5) Input/Output: Transfer information concerning an input or output
operation between the CPU and an 1/0 device.

o If required, a value is stored back into main memory.

1.1.1 TRAPS AND INTERRUPTS

Traps and interrupts are events that disrupt the normal sequence of instructions
executed by the CPU. A trap is an abnormal condition detected by the CPU that
usually is indicative of an error. Examples of trap conditions include dividing by
zero, trying to access a memory location that does not exist or for which the
program does not have access, executing an instruction with an undefined opcode,
or trying to access a nonexistent I/O device. '

An interrupt is a signal sent to the CPU by an external device, typically an I/G
device. It is the CPU’s equivalent of a pager, a signal requesting the CPU to interrupt
its current activities to attend to the interrupting device’s needs. A CPU will check
interrupts only after it has completed the processing of one instruction and before it
fetches a subsequent one.

The CPU responds to traps and interrupts by saving the current value of the
program counter and resetting the program counter to a new address. This allows the
CPU to return to executing at the point the trap or interrupt occurred, after it has
executed a procedure for handling the trap or interrupt. The address the CPU jumps
to is determined by the hardware architecture. On some machines, a unique address
is associated with each trap and interrupt. More commonly, the architecture defines
an address in memory to be the location of an interrupt vector. Each trap and
interrupt is associated with an index into that vector. The branch address is
determined by the contents of the memory location in the vector pointed to by
the trap or interrupt’s index.

CHAPTER 1 Introduction

Other state information is also typically saved when a trap or interrupt occurs. On
many machines, that information is stored in a special program status word (PSW)
register. :

Interrupts may be associated with a hardware priority level. The CPU is also
associated with a priority. Only interrupts with priorities higher than the CPU’s are
processed. An interrupt with a lower priority is left unprocessed until the CPU
lowers its priority. CPU priority level is stored in the PSW and can be reset by
changing the appropriate bits in the PSW.

One difference between traps and interrupts is traps are synchronous and
interrupts are asynchronous. Given the same machine state and input data, a trap
will occur at the exact same point of program execution each time a program runs.
The occurrence of an interrupt, however, is dependent on the relative timing
between the interrupting device and the CPU. Interrupts present a challenge to
the debugging process since errors affected by the timing of the interrupt may not be
easily repeatable.

1.1.2 MULTIMODE EXECUTION

To provide an operating system with privileges not granted to application programs,
the hardware must support multiple modes of execution. Most commonly, two
modes of execution are supported: kernel (or supervisor) mode and user mode. A
single bit in the PSW records the system’s execution mode. Attempts to perform
certain activities while in user mode result in a trap. The restricted activities consist
of those things normally reserved for the operating systems such as the execution of
certain instructions (privileged instructions), accessing certain registers, and acces-
sing 1/0 devices.

A system can enter kemel mode from user mode in one of three ways. A special
instruction called a supervisor call (SVC) or a system call is similar to a procedure
call except it sets the system’s state to kernel mode. Unlike procedure call
instructions, supervisor call instructions are not supplied with a branch address.
The instruction’s operand is a number that serves as an index into a vector similar to
the interrupt vector. The branch address is determined by the contents of the
memory location pointed to by the supervisor call operand. The vector is located in
memory controlled by the operating system so the switch into kernel mode
coincides with a jump to an operating system entry point.

Traps and interrupts are the other two mechanisms for switching into kernel
mode. Like supervisor calls, the switch coincides with a jump to a kernel entry
point. Application programs cannot change the system into kernel mode and remain
executing in their own code.

On Unix systems, one user called the superuser is given special access
privileges. The superuser may read or write any file and kill any process. The
superuser should not be confused with kemnel mode execution. Application
programs running as the superuser are granted extraordinary access rights by the
kernel, but those programs do not run in kernel mode and must use supervisor calls
to request operating system services.

CHAPTER 1 Introduction <4>»

1.2 Operating System Structure

The operating system provides applications with a virtual machine. The supervisor
calls implemented by the operating system expand the instruction set capability
provided by the raw hardware. The supervisor calls support new abstractions such as
processes and file systems.

In addition to providing the system call interface, the operating system has the
responsibility for managing the underlying hardware resources. Applications cannot
access I/O devices or execute privileged instructions. The operating system
performs these tasks on behalf of the application programs. In doing so, it attempts
to efficiently utilize the resources available to it and protect the integrity of the
applications that must share those resources.

The tasks performed by an operating system can be divided into four areas.

o Process Management: A process is an executing program. Associated with a
process are its code, its data, a set of resources allocated to it, and one or more
“flows” of execution through its code. The operating system provides
supervisor calls for managing processes and must manage the allocation of
resources to processes. If multiple processes can exist simultaneously, the
operating system must be capable of providing each process with an
appropriate virtual environment in which it can run, ‘

e Memory Management: At a minimum, memory must be shared by an
application program and the operating system. On more sophisticated
systems, memory can be shared by a number of processes. The operating
system must manage the allocation of memory to processes and control the
memory management hardware that determines which memory locations a
process may access.

¢ File System Management: Computers process information. That informa-
tion must be transmitted, processed, and stored. A file system object is an
abstract entity for storing or transmitting a collection of information. The file
system is an organized collection of file system objects. The operating system
must provide primitives to manipulate those objects.

o Device Management: A computer communicates information through its
input and output devices. Processes access those devices through the operat-
ing system supervisor calls provided for that purpose. The operating system
attempts to manage those devices in a manner that allows them to be
efficiently shared among the processes requiring them.

1.2.1 OPERATING SYSTEM TYPES

Users rarely had direct access to early computer systems. Computer input, both
programs and data, was prepared on the input media, typically paper tape or punch
cards. Users would hand their input to an operator and return minutes (if you were
lucky) or.hours later to pick up whatever output their program or “job” generated.

CHAPTER 1 Introduction

The operator would assemble the similar jobs into “batches” and run the batches
through the computer. Each job had total control of the machine until it terminated.

A batch mode operating system manages a machine run in this manner. A batch
operating system provides minimal functionality since it need not worry about the
complications of sharing resources with multiple processes.

On multiprogrammed batch systems, jobs are read into a job pool stored on a
disk. When one job is unable to execute because it is waiting for an I/O operation to
complete, another job may be allowed to run. The sharing of computer resources by
concurrently executing processes greatly increases operating system complexity.

Time-shared operating systems allow for interaction between user and process.
In batch systems, all data is supplied at the time the program is input. This is fine for
a program taking payroll information and printing weekly paychecks, but for
programs that must interact with the user, the operating system must support an
environment that allows programs to respond to user inputs in a reasonable amount
of time. The operating system must not only share resources among the various
processes, but it must create the illusion that processes are running simultaneously.
It does this by shifting execution rapidly among all the active processes.

Increasingly, computers exist not as stand-alone entities but as part of a network
of computers. At a basic level, this has limited impact on the operating system itself.
An I/O device allows the computer to communicate on the network. However,
network communications involve complex protocols and, for the reliability of the
network, support for those protocols is built into a networked operating system. The
general-purpose operating system of today is a networked time-shared system and is
the focus of this book. Such systems may also have support for some form of batch
processing.

A real-time operating system is designed to support execution of tasks within
specific wall clock time constraints. Normally, users want the computer system to
execute their programs as soon as possible, but no exact timing is required. In real-
time systems, the correctness of a processing task is dependent on the wall clock
time at which the processing occurred. For example, a real-time system sensing loss
of coolant to a nuclear reactor may be required to initiate a backup system within a
fraction of a second. The operating system must guarantee the task can be executed
within a specified time constraint. Use of real-time systems is mostly limited to
dedicated applications such as industrial control systems, weapon systems, and
computer-controlled products.

What are desirable features in a time-shared system, resource sharing and
management of I/O devices by the operating system, become detriments in a
real-time system. Minimization of delays in the completion of tasks discourages
resource sharing and encourages low-level access to hardware. For this reason, the
design of general-purpose operating systems is much different from the design of
real-time systems. The design of real-time systems will not be covered in this book.

Another specialized form of an operating system is a distributed operating
system. With a network operating system, the resources on each machine on the
network are managed by that machine’s operating system. Operating system support
facilitates communications among the machines. With a distributed operating
system, the operating systems on all the machines work together to manage the
collective network resources. A single collective distributed operating system

CHAPTER 1 Introduction

manages the network resources provided by each network computer or node.
Distributed operating systems are also beyond the scope of this book.

1.2.2 OPERATING SYSTEM KERNEL

The operating system kernel is the code designed to be executed while the hardware
is executing in kernel mode. The kemnel should not be considered a program. It is
more accurately described as a subroutine library. One or more procedures in the
library execute following a trap, an interrupt, or a supervisor call. At some point, the
hardware is reset into user mode and control returns to a user program (although
possibly not the same program that was executing when the kernel was entered).

To some, the kernel is the operating system. Each of the four areas of operating
system management is implemented in the kernel, with supervisor calls triggering
execution of functions in that area. In addition, device interrupts result in the
execution of device management functions, and traps generated by memory
management hardware activate memory management code. Every time the kernel
is entered, the process scheduler may be called as the last step before returning
control to a user program. _

While systems featuring such large monolithic kernels are common, there has
also been interest in microkernel operating systems. In these systems, the kernel
contains minimal functionality. Essential functions such as control of memory
management hardware, interprocess communications facilities, and interrupt and
trap handling are provided by the kernel. Higher-level functions such as file system
services are provided by server processes. A program seeking file system services
would use interprocess communication system calls to send requests to the file
system server process.

The use of server processes enhances flexibility. New servers can be activated
without even rebooting the system. The small size of the microkernel simplifies the
implementation and porting to new systems. Microkemels are well suited for
distributed systems since, when using interprocess communication facilities, it
makes little difference whether the process is on a local or remote system.

If the definition of an operating system is expanded to include some services
provided by user-level processes, the distinction between system program and
operating system becomes blurred. Services such as a print spooling system or a
window manager are difficult to classify. An argument could be made . for
considering them part of the operating system's device management capabilities.
In this book, the design features typically found in a monolithic kernel are explored.
Although some of those features may be implemented outside the kernel, the design
principles do not change. Higher-level services commonly considered to be systems
programs, like print spooling systems, are not covered.

1.2.3 THE BOOT PROCESS

When power is first supplied to a computer system, a program in read-only memory
(ROM) executes. After performing some diagnostic checks, a stage-0 boot program
is executed. The program checks for the presence of one or more boot devices. Ona
PC, a boot device could be a floppy disk, a CD-ROM, or a hard disk. Once found,

a» CHAPTER 1 Introduction

the stage-0 boot program reads the first sector from the boot device into main
memory. The first sector of the boot device is known as the boot sector and should
contain a stage-1 boot program. After it has been loaded into memory, the stage-0
boot program branches to the stage-1 boot program.

There is no guarantee the book sector will contain a boot program. If the boot
sector has never been initialized, undefined values will be copied into memory.
Before transferring control to the next stage in the boot process, the current boot
program will check one or more bytes at the end of the boot sector for a “magic” bit
pattern which is used to indicate that the sector contains a valid boot program.

On some systems, the stage-1 boot program then reads in the operating system.
On others, a series of bootstrap programs must be copied into memory and
executed. In either case, the operating system eventually gets copied into memory
and the final boot program branches to the operating system’s initialization entry
point. '

On a PC booting from a hard disk, the boot sector also contains a partition table.
The disk may be divided into at most four primary partitions. The partition table
contains the starting and ending location of each partition. The partition table also
defines one partition as active. The stage-1 boot program reads the partition table
and copies into memory the first sector of the active partition. The first sector of the
active partition contains a stage-2 boot program designed to work with the operating
system contained in that partition. It may also have capabilities for loading boot
programs or operating systems from other partitions. At its simplest, the stage-2
boot program loads the partition’s operating system into memory.

At the end of the boot process, the operating system has been loaded into
memory and the boot program has branched to the operating system. The machine is
executing in kernel mode. Any data structures (such as the interrupt vector), not set
when the operating system was loaded, must be initialized. System registers and
devices are initialized as is needed.

Once the operating system is ready to service processes, it creates any processes
that provide operating systems services and also creates one or more processes to
execute initialization system programs. On a simple system like DOS, this might
only be a process to execute a command interpreter. On a more complicated system,
an init system program may be provided that creates additional processes as
specified in a configuration database. In either case, once the system is switched
into user mode and control switches to the user mode processes, the operating
system has completed its boot responsibilities and the system is running.

1.3 OQutline of the Rest of This Book

Chapter 2, “Process Management,” and Chap. 3, “Interprocess Communication and
Synchronization,” explore the design issues related to processes. Process character-
istics, process scheduling, and supervisor calls for controlling processes are covered
in Chap. 2. Chapter 3 covers those issues that arise when processes work
cooperatively. Synchronization and communication primitives are discussed, as
are ways of dealing with deadlock.

CHAPTER 1 Introduction

Chapter 4, “Memory Management,” and Chap. 5, “Virtual Memory,” discuss the
allocation of memory to processes. The hardware support required to implement the
various memory management options is discussed, as well as the operating system
design issues. Chapter 5 focuses on those memory management schemes that allow
the computer to operate as if it had more memory than it actually does.

Chapter 6, “File System Management,” looks at the structure of both the overall
file system and the individual files within the file system.,

Chapter 7, “Device Management,” covers the physical characteristics of key
input/output devices and the operating system requirements for controlling those
devices. Particular emphasis is placed on disks. A discussion of disk scheduling and
RAID systems is included.

The book concludes with Chap. 8, “Security.” In many ways, security is more
of a management and policy issue than an operating system design issue. However,
at the very least, operating system design and security are dependent on each other.
Chapter 8 presents a brief look at security measures and the type of threats they are
designed to deal with.

Solved Problems

1.1 What are the two main functions of an operating system?

Answer:

The two main functions of an operating system are managing system resources and
providing application programs with a set of primitives that provide higher-level
services.

1.2 What does the CPU do when there are no programs to run?

Answer:

There is always a program to run (as long as the computer is turned on). The cycle of
fetching, decoding, and executing instructions never stops. When there are no user
programs to run, the operating system will execute in a loop that does nothing (called
a busy-wait loop or idle loop) until an interrupt occurs.

1.3 What characteristic is common to traps, interrupts, supervisor calls, and subroutine
calls?

Answer:

Traps, interrupts, supervisor calls, and subroutine calls all save the current value of
the program counter and branch to a new location in memory.

1.4

1.5

1.6

CHAPTER 1 Introduction

What characteristic is common to traps, interrupts, and supervisor calls, but different
in subroutine calls?

Answer:

Traps, interrupts, and supervisor calls cause the machine to shift into kernel mode. A
subroutine call does not change the execution mode.

Which of the following instructions should be privileged (can only be executed in
kernel mode)?

(a) Change memory management registers
(b) Write the program counter

(¢) Read the time-of-day clock

(d) Set the time-of-day clock

(e) Change processor priority

Answer:

(@) Yes
Changing memory management registers would allow a process to access
memory locations it was not authorized to access.

(b)) No
Writing the program counter is no different than executing on unconditional
branch.

(¢©0 No
Although direct access to devices is usually unwise, read access of the clock
should not be harmful.

(@ Yes
Changing the clock could disrupt scheduled events and is typically not a right

granted to a user process.
(e) Yes
Changing the processor’s priority could cause interrupts to be lost.

An operating system could implement a memory 1/0 device. I/O operations to the
device cause the corresponding memory location to be read or written. What is the
disadvantage of providing such a device? Should it be accessible to users or just to
system administrators?

Answer:

If users could access a memory device, they could read or write any memory
location, subverting the operating system’s protection mechanisms. The operating
system itself could be overwritten, giving user programs the ability to execute
instructions in kernel mode. Providing that capability to any user, even the system
administrator, threatens the integrity of the operating system.

CHAPTER 1 Introduction

1.7

1.8

1.9

Classify the following applications as batch-oriented or interactive.
(@) Word processing

(b) Generating monthly bank statements

(¢) Computing pi to a million decimal places

Answer:

(a) Interactive
(b) Batch
(c¢) Batch

This job is almost 100% CPU-bound. A batch system without multiprogram-
ming would attain nearly 100% CPU utilization running this program.

Why must a computer start in kernel mode when power is first turned on?

Answer:

When power is first turned on, the contents of memory is undefined. The boot
program in ROM must read the code from the boot device to load into memory. To
perform the input operation, the hardware must be in kernel mode. Since the
operating system is not loaded, there are no supervisor calls the ROM boot program
could use if it was in user mode. ‘

What is the maximum size of the stage-1 boot prdgram at the beginning of a hard
disk, assuming a 2-byte bootstrap magic bit pattern and a 512-byte sector size?

Answer:

The stage-1 boot program must fit in the initial sector. Assuming a sector size of 512
bytes, and 2 bytes for the magic bit pattern, the maximum size of the boot program is
510 bytes. (On PC systems, which also store a partition table in the first sector, the
boot program can be at most 446 bytes.)

Supplementary Problems

1.10

1L.11

1.12

Name hardware features designed to explicitly assist the operating system.

What characteristic is common to traps, supervisor calls, and subroutine calls, but
different in interrupts?

What characteristic do subroutine calls and supervisor calls have, but traps and
interrupts do not?

