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The First Order Approximation of
Non-kirchhoftf-Love Theory for Elastic
Circular Plate with Fixed Boundary
under Uniform Surface Loading

Wei-Zang Chien*

Abstract

Based on the approximation theory adopting non-Kirchhoff-Love assumption for three
dimensional elastic plates with arbitrary shapest'~41, the author derives a functional of gen-
eralized variation for three dimensional elastic circular plates, thereby obtains a set of differ-
ential equations and the relate boundary conditions to establish a first order approximation
theory for elastic circular plate with fixed boundary and under uniform loading on one of its
surface.

(I) Introduction

The axisymmetric probiem of three dimensional elastic circular plate can be treated as
threce dimensional axisymmetric problem of elasticity. We consider a circular plate with a
uniform thickness A, and set up a circumferential coordinates (r, 8) on its middle surface
with abscissa z perpendicular to it in downward dircction (Fig. 1). The stress components
are denoted by o,, 04, 0,5 Cre=04y C,p=20rss Cos==0,e and the strain comgonents are
denoted by e,, e, e,, €,=¢,, e,=e,, €,=ec, In axisymmetric problems we
have

| XTI

Fig. 1 The coordinates (r, z) in a circular plate and the displacement cotiponents U(r, z) and W(r, z) at
point P(r,z)
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(1.1

Ur0=00r=O’ 603=U¢9=0 }
er0=e0r=0, 6'9,22859—‘:0

And there are only two displacement components: the radial displacement U(r, z) and the de-

flection W(r. z). The above components of stress, strain and displacement should satisfy the

following equations.
(1) Strain-displacement relation:

_Pu _ U ) 4
er—‘arQ 6 r 9e£_‘dz’ (12)
1/2U A oW

(2) Strain-stress relation:
Ee,=¢,—v(oe+0,), Ee,=0+v)o.,
Eeo=0o—v (o, 4+0,)y, Eegu=(14+¥)04,=0 (1.3)
Ee,=og,—v(o,+0s), Eey=0+v)o,=0

Stress-strain relation:

E E

Gp= 1—11’: [8,+V1(eg+e,)], O-u=“1+lyl €z
E E

O¢=— 1_1’% [e,+v1(e,+e,)], O gz == l+11’1 €9, =0 (1.4
E E

Og= 1—11’§ [es+vl(er+ea)]9 Tor == 1+1V1 Cor =

‘where E and » are the Young’s modular and Poisson ratio respectively, and E, and », are re-
spectively the equivalent Young’s medular and Poisson ratio in plane strain problems. They
satisfy the following relations:

E v E E,

E1=—_—l_yﬁ ’ y1=l_p’ 1+V= 1+]J1 (1.5)
(3) Equilibrium equations of stress in axisymmtric problems:
1 d oo . 90,,
a0 =P =0 1.62)
20, 1 2
ozt B o =0 .6b
‘where the body forces are meglected.
(4) External forces acting on the upper surface (z =—%> and lower surface ( z =
5)
2
h .
g,=—¢, 0,=0 (z= —5 >0 for compression) (1.7a)
h
os=0, Opre=0 (2= +E) (1.7b)

It must be pointed out that the classical theory of thin plate can not take into considera-

. 2 .



tion the influence of the location of surface load, that is to say, either q exerted on the up-
per surface as compressional load or jtexerted on the lower surface as tensional load, the solu-
tion will be the same; whereas, the theory with non-Kirchhoff-Love assumption will give
differcnt solutions for the two cases.

(3) Boundary conditions on edge surface (complete fixed)

Ua, z)=0, W(a, 2)=0 (1.8)
where a 1s the radius of the circular plate.

In this paper, we will solve the 14 partial differential equations in (1.2), (1.4) and (1.6)
for the stress components o,, 09, 0,5, 0,.s C,e=0,,=0 and the strain components €y
€05 €, €., €:p=€,,=0 uncer the conditions (1.7) and (1.8). As o,y, 0z, €, and e,
are identically equal to zero, there are only 10 unknowns to satisfy the 10 partial differential
equations which are not identically equal tc zero.

(II) The Generalized Variational Principle for Elastic Circular Plate with Fixed Boundary

under Uniform Load on Its upper Surface( = ——g)

The generalized variational principle for an equilibrium elastic plate with fixed boundary
under surface loading has been studied in the previous papert*), This paper will discuss the
generalized variational principle for an axisymmetric equilibrium elastic circular plate with
fixed boundary under uniform surface loading.

The strain encrgy density s of threc dimensional elastic body in axisymmetric strain
field can be expressed by

E,

—_— T 9 2

&= 2(1—v?) Llertep+e)?*+2(0—v)) (e, —ee,~e,6,—e,6,) ] 2.1
For stresses o,y 04, 0.y 0., andstrains e,, c¢,, e,, ¢, which satisfy stress-strain relat-
ions (1.4), it is easy to prove that

de=c,0e,4-0,0¢,+,8e,+20,,0e,, 2.2)
We shall prove that the gencralized variational principle of this problem with the variab-
les o,, 0oy 0sy Ozps €., € e, €,, U, W may be written as
OIl=0 (stationary condition of variation) 2.3)
where IT is the functional of generalized variation

(1

R K IRC R R
¢ 2o 3 z/r=q~

0 O

" , 29U [,.vu d
JWololer =5 raer=C oo =57 w0 [e
1/OW  3U
._.2.<_97+?>]} omrdrdz 2.4)

where W_is the vertical displacement of the vpper surface,j- (..)dz is the integration carried
(€0}

out over the plate thickness, i.c.,

+1.2
(enenee )df:( (eeneee ydz (2.5)

.‘ (€3] J=1/2
We shall now prove that under the condition that Urs Tos Guy Oupy €., €, C,,e,., U
3 z3%zrse b4

. 3 [}



W are all independent variables, the stationary condition of variation gives all the equations.

needed for this problem: (i) strain-displecement relaticns (1.2), (ii) stress-strain relations

(1.4), (iii) equilibrium equations of stress (1.6}, (iv) boundary conditions of external force

on upper and lower surfaces (1.7), (v) boundary conditions at fixed edge surface (1.8).
Computing the variation cf II, we have

811 _—_'{ J {[ £, (e,+v,e,+vie)—o, ]Se,
)

o =
g

(e9+v10 +v.e )——0‘9:}59

(e +v.e.+ve) —-o J‘o‘(’z—!— :i[;E—‘e,z — T, i'@e } Tirdrdz

i+
U, r oW 'I N
-1l m{[ G Pt [Tl [a -5
9 W ) ¢ 28U oU

[ < 92 T >:|8<r” } dwrdrdz + JOJ‘M){G' P +a, p

_}_Uzaba__li/.*_ (98U +98 W)} smrdrdz — j (qdW ) 2mrdr ——J' [o,0U
oz Iz or o ay

+ 0, 0W+Udo,+Wdo,,],-,2madz (2.6

Integrating by parts, we can prove that

J' J a,?—aﬂmrra’rdz ==j‘ (¢,0U0) .-, 2madz — j '[ ——(ro,)0U2ndrdz
) or ) ) or

j J‘ “‘wrdrd: = j (6, 0W),_,2madz — IGJ (ro,,)0 Wemdrdz
) ) w or
J- I o‘ 27rrdrdz = j (CiOW,—0;0W ) 2wrdr—JaJ 99, OW2mrdrdz
) 0 w 9z

__2mdrdz _ j <o,;5U+—a,;aU_)2mdr_f I (2, 8Uemrdrdz
0 (¢D)

0J (n

(2.7)
Then, (2.6) may be rewritten as

‘ E, S E,
on z-[ J,(h){l: 1—vi (- tvicotie) —o i!oe, + l: —p? (es+v.e +v,e, )—0’9]6"’9

-+

(e +v,.e,4v.e,) —a,]‘ée + OI: e,, — cr,,}b‘e,z }27rrdrdz

1-{—1}1

[+
LLM{[ 95] }50, + [ea —2}509 + [e,, —%—Zi}sg,
[

+|e,,— ( QU ar )}80’,,}2'nrdrdz - IGJ‘M){[% % (ro,)

E‘(r,

T

0.,
252 [0 + | 45 (o) +

:l oW }217rdrdz
+L {0:0W,.—(q+0:)0W_+0,:0U,—0,;8U_}2mrdr
_I(h) (UBo,—}— Wao.”)':azwadz (2.8)

o 4 .



It should be pointed out that 8+,. 85y, 0., &7,,atcvery pointinside the plate and on the
edge surfuce, de,, de,, de,,de,, atevery pointinside the plate, dU, d W at every point inside the
plate and on the upper and lower surfaces are all independent variations; therefore, the station-
ary condition of variation 3II =0 leads to cquations (1.2), (1.4),(1.6), (1.7) and (1.8)Thus,
we have proved that this condition 8I1=0 represents the generalized variational principle
for the problem. Indeed, this variational principle with all the constraints of variation being
removed is the most generalized variational principle,

Functional IT entirely frec {tom all the constraint conditions is not practical for it in-
volves very complicate calculation. To kecp a part of constraint conditions will simplify
the problem.

Let us now keep (1.2) and (1 .4) as the variational constraints applied to the variables o,
Gos Tgy Tzrs €y €5, €5 O,y U, and W, Then, the functional of variation defined by
those variables mey be written as

H*Zj:j o 5'27Trdrdz——j‘: qW_ 27rrdr—"‘(h) Wo,+Wo,,),-,2madz (2.9
And 8¢ should satisty (2.2). Tf we take the variaticns of ¢,, ¢y, Gzs Ogps €py €g,€,,0,,, U
and W under the constraints (i.2) and (1.4}; then, the stationary condition of variation of
the functional II* must satisfy (i.7), (1.8) anc (1.9), and therefore must be the solution of the
problem,

() The Most General Theory of Elastic Circular Plate with Nor-Kirchhoff-Love Assump-
tion (¢.,e,, #+ 0) and Its First Order Approximation Theory

In the previous papers [1+3], it is shown that in the theory without using Kirchhoff-Love
assumptions, the values of e, and e,, are not required to be zero. So, we can express them
in terms of two polynomial series of z, i. e.,

e, = A2 (3.1a)
£
e,,= AZ‘J (Sor+2Sa41) <%h2 - 22)22" (8.1b)
=0

where A;, S,; and S,;,, are all field functions of r. It must be pointed out that e, in
the above expression already satisfy condition (1.7), which requires that the shear stresses on
the upper and lower surfaces vanish. The polynomial series for W can be obtained by integ-
rating (1 .2c) with respcct to 2. Then, substituting W into (1.2d) and integrating the result
with respect to z yields the polynomial series for U. The results are as follows

9"‘ 1 .
Wr, zy=w(r)+ %0'7("_:1—-141(")2" 1 (3.2a)
aw > 1 dA ®
U, z)=u(r) — - E_ _p+2 [ 1 1
’ dr © kzn G+D ¥y a - T2 ,golzkﬂ 4h2
2kl ] 1 71 ok+2 7.
2k+3 ’ ]“ TSt 2k+2 4 - 2k+4 22J22k 2S2"”} (3.2b)

where u(r) and w(r) are indeed the displacements of midale surface. The two variables and
Aiy Saks Sar.q are all field functions of r to be determined. The expressions for the com.
ponents e, and e, can be derived by substituting (3.2) into (1.2). The differential equations
and the relate boundary conditions which they must satisfy can be derived from the stationary

L 4 5 L 4



conditions of variation of the functional IT*. We must point out that the expressions for
TrsT0s 0190y €5y €y €, €., Uand W determined by the above method should satisfy
(1.2) and (1.4); so, the crdinary differential equations and the relate boundary conditions
foru, w, A;y, Syps Syr(k=0, 1, 2, ...)can be obtained through the stationary condi-
tions of variation 8I1*=(,

To establish a reasonable approximation theory, we may take only a few terms in the
poiynomial expressions to make the approximate calculation. In this paper, we shall take
the first two terms in the expressions of e, and e,, respectively as the bases to establish an
approximation theory—the first order approximation theory.

Let us take the following approximate expressions

e,=Ag+A4,z (3.32)
h? .
€”=<Z —z‘"’>(So+Slz) (3.3b)

where 4y, 4,, S, and §, are four undetermined functions or r. Integrating e, and e,, with
respect to z, we have U(r, z) and W(r, z) expressed by the following polynomial series of z

Wwr, z)=w(r)-‘—Aoz—i——-—;Alz"‘ (3.4a)
_ dw 1 dAo 2_ 1 dAl 1 2
Uqr, z)—u(r)———d R PR Y z“+2(4h 37 >zS0
1
h2 " 52 )z
+(4 3 >z S, (3.4b)

where w(r) and u(r) are undetermined functions. Hence, U(r,z) and W(r, z) are expressed by
u, w, Ay, A;, Soand S,. And the strain components other than e, and e,, which are
expressted by these variables in (3.3), can be written as

PU _du w1 &4y, 1 d4, +2{<h>2 1,]zdSo

"Tor Tdr ar F TS gt T T 2 3 dr
+[(§>Z_%zz }zz_‘j{_fl_ (3.52)
e ST TR NI (OB
+%[<-:—>2—- ; 22 ]2251 (8.5b)
e,o=0,y=1 (3.5¢, d)
The corresponding components of stress in (1.4) are given by
or= 1—E;§ L . ( LA >z+v,<Ao+Alz>
3@ ) —%(d:f P
wel(3) =37 (a2 () o ] (22

(3.6a)



E, (u du (1 dw dw?®
Ce=7_,T 17 +”1a;—<7 g T At AD
1/1 d4, d®4, " 1/1 d4, 3 dzAl_)-a
T 2\r dr TP == 6\r dr T f

P <§ v,—L dr >+I_< > } 2? <§r~1+ vlidsr—l—>} (3.6b)

<h>2 ; ]
AN _ L
2/ 3

e B (o s
R ) R CR R
r(gf -2 (e )l (5) -2 G ) e
o ZT%T[(—SY_ zﬂ]csmtslz] (3.6d)

Let us now simplify the expression for 0I1* under the constraint conditions (1.2) and (1 .4).
Introducing (2.2) into (2.9) and carrying out the variational calculation, we have

61]* :j’aj [Urae,+09869+o'z8ez +‘20'rz5€rz:|2’rrrdrdz
0t ()

—}wqb‘ W_ 27'rrdr-—-J‘ [Udc,+Wdo,,+00U+0,,d0W1,_,2madz 3.7
0 0
And from (1.2) we have
o0U U 90w _1/90U  2d0W
5er——‘5—, de, =7> de, =57 Be"z—'_z—( 57 +~§;—> (3.8)

Introducing (3.8) into (3.7) and simplifying the result through integrating by parts, it
follows that

_ [ 1 oy 1 1 9
o= [ {5 5 oo + Fp=felov e [7 5reen

+ 2 ] oW L amrdrds + [ {0100, ~ (o +0)8W_y2mrdr
0
_J‘U)(USGF}_ Wgarz)rzagnadz+I:(c,;3U+—Uf;aU_)27Trdr (3.9

It should be pointed out that U and W are prescribed at r = q, i.c., they must satisfy (1.8);
hence, the value of (00U + o+, 0W)._, is identically equal to zero. Next, according to
(3.6d) we have o,}=0,;=0, itfollows that the last integration in (3.9) must be identically
equal to zero.

Calculating 3U, 0W, 3o, and dg,, from (3.4) and (3.6a, b), and expressing them using
du, dw, 04y, d4,, 8S,, and 8, we can express SII* in six independent parts: OIT*, OII,*,
3T %, OILu*, ST ..*, OII*; i.c.,
OII* =M1, * +OIT,* + 811 % -+ O , ¥+ OTI o * + 810 ., * (3.10)
The stationary condition 3II*=0 must lead tc the stationary conditions for 8IJ * , OIT*,
SHAO*’ 8HA1*9 8]1 S0 9 5Hs1 3 i-e’
auu =0, Bﬂw*zo, SHAo*::O’ 6HA1*=0, 8]150*:0’ 5]131*:0 (3.11)
From (3.9) we can derive 811,*, which involves du, as



