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Thermal Radiation in Packed and Fluidized Beds

C. L. Tien*

1 Introduction

Many modern technologies and industrial processes utilize packed and fluidized beds of
selid particles operating at temperatures high enough for thermal radiation to be a signifi-
cant mechanism of heat transfer (Flamant and Arnaud, 1984; Saxena et al,, 1978). Some cx-
amples are coal combustors, chemical reactors, and nuclear fuel rods.  Other types of packed
beds in which thermal radiation is important, even though the temperatures may not be high,
are those where other modes of heat transfer have been suppressed, such as packed cryogenic
microsphere insulations (Tien and Cunnington, 1973). Since mest packed and fividized
beds are characterized by either high volume fractions of particles or large particles, or both,
many features are unique for analyzing such systems. These features are discussed in this paper.
Only gas systems ace considered here since most applications of interest, such as those
mentioned above, fall in the category of gas fluidized and packed beds.

Packed beds are usnally characterized by densely packed particles that do not move dur-
ing normal operation, The high volume fraction is generally coupled with either an absence
of fluid motion or low fluid velocities. This restricts the convection contribution and renders
radiation a dominant mode of energy transport. Fluidized beds, on the other hand, have
lower volume fractions but higher fluid velocities. In many applications, however, the con-
tribution of radiation to the total energy transport remains significant due to the high opera-
ting temperatures. Table | shows various representative values that characterize packed
and fluidized beds (Ulrich, 1984; Flamant and Arnaud, 1984). A schematic depiction of the
various types of packed and fluidized beds is presented in Fig. 1. A review by Haughey and
Beveridge (1969) describes the structural properties of packed bed systems.

Previous studies of radjative heat transfer through packed and fluidzed beds have emp-
loyed a variety of analystical and experimental techniques. Vortmeyer (1978) summarized
some earlier radiation models using unit cell representations for analyzing packed beds. Such
celt amd layer models, in conjunction with Monte-Carlo methods, are also used by Chan
and Tien (1974a) to evaluate radiative characteristics of packed beds of fixed porosity and
regular structure, by Yang et al. (1983} for randomly packed beds of uniform spheres, and
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Table 1 Characteristics of gas fluidized and fixed heds

I Type of Bed
Fluidized Fixed
Bed diameter (m) 1-10 0.3-4.0
Bed height () 0.31-5.0 0.3-30.0
Porosity 0.6-0.8 0.35-0.70
Particle diameter (1) 10751072 <0.1x{bed dia)
Fluid velocity (m /sy 0.1-5.0 0.005-1.0
Pressure drop (kPa | m) 5-15. 0.001-1.0
Temperature (T)
Carbon steel 450 450
Stainless steel 750 750
Nickel alloys . 1200 1200
Brick-lined 1500 1500
Overall heat transfor |
coefficient (J / sm*K) 400-800 20-80

- ! . -
Percent of radiation in
tota! heat tramsfer (750C) 10-40

rouinrzen BED Packrp 3ED

LXTEANAL FLOW

INTERNAL FLOW

‘Fig. 1 Types of packed and fluidized beds

by Kudo et al. (1985) who examined different types of ‘packing and variation in volume
fraction. Brodulya and Kovensky (1983) used the cell approach by evaluating exact view
factors in the unit cell by assuming the surfaces o be isothermal and diffuse. Heat transfer
in fluidized beds was reviewed by Saxena et al. (1978). Glicksman and Decker (1982) ex-
amined the role of radiation and particle packing on the heat transfer from immersed surfaces
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Nomenclatare

b= single-particle back- n= index of refraction v=frequency of incident
scatter fraction N= number of particles radiation
B= bed back-scatter fraction in volume ¥ H= function defined in
¢== interparticle clearance P= radiation transmission Table 4
€= cross section number p= reflectivity
{,= specific heat at con g= heat flux o= radiative coefficients
stant pressure Q= efficiency T optical path length
D— diameter of the particles r— position vector &= azimuthal angle
e— unit vector R= ratio of radial @ — scattering phase function
E - exchange factor distance to particle X = parameter in the liquid
fo= solid volume fraction = diameter = r/ D; model
ANT(D) 2P |3V reflectance w= angular frequency =2mv;
F(f)=— form factor to account f= time scattering albedo—a,/ o,
for coherent addition of T= transmittance; 1= solid angle
intensities temperature Subscripts
&(R)-— radial distribution of v= velocity vector a= absorption
number density, V= volume b= blackbody
normalized by N/ ¥V xy,2= Cartesian coordinates d—= diffraction
G= geometric cross-sec- = size parameter=7D [ A e= extinction
tional arca B= 4asin (#/2) i= incident radiation
H{(B)=3(sinf~— BeosB) /8 = function defined by j/= particle identification
i= A/T equation (22) L= Jength of medium
I= intensity, energy / €= m®; emissivity M~ Mie theory for one
steradian / projected area { = near-field complex particle
k— propagation constant = correction factor N= N particles
27f%; thermal #== function defined by  r= radiative
conductivity equation (26) ref= reflection
L==length of the one- 6= polar angle s= scattering; specular
dimensional medirm k= index of absorption = transmission
m= complex refractive A= wavelength of incident 0= background dielectric
index =p-}-ik radiation matrix; coordinate otigin
A— function defined in A= wavelength
Table 4
w= cos f

to particles in fluidized beds. Combined wall-to-fluidized bed heat transfer was studied by
Flamant and Menigault (1987). Brewster and Tien (1982a) examined the issue of dependent
versus independent scattering in packed and fiuidized beds.

Combined radiative and conductive heat transfer in packed beds has been the subject of
many studies (Chan and Tien, 1974b; Bergquam and Seban, 1971).  Simultaneous radiative-
convective transfer in packed and fluidized beds has also been studied (Echigo et al.,1974;
Tabanfar and Modest, 1987). Experimental measurements of radiant transmission through
packed and fluidized media have been reported by various rescarchers. The cffective scatter-
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ing and absorption cross sections of isothermal beds of glass, aluminum oxide, stecl, and
silicon carbide spheres, cylinders, and irregular grains were obtained by Chen and Churchill
(1963). Similar measurements through packed and fluidized beds of glass beads were repor-
ted by Cimini and Chen (1987). Local heat transfer coefficients in large-particle fluidized
beds were measured bv Goshayesbi et al. (1986) and wall-to-bed heat transfer by Flamant
and Menigault (1987).

2 Theoretica) Basis of Thermal Radiation in Packed / Fluidized Beds

Packed and fluidized beds are multiphase systems consisting of solid particulates and ga-
ses (liquid systems are not considered here). Thermal radiation within these beds usually is
the result of emission by the hot walls and the gas-particle mixture. This radiation under-
gocs complex interactions with the bed primarily due to absorption and scattering processes.
The three primary radiative properties that characterize the interactions of radiation with the
particulate bed are the scattering coefficient, the extinction coefficient (i. e., sum of scatter-
ing and absorption coefficients), and the scattering phase function. These properties are
adopted primarily duc to the following considerations: () the theory of electromagnetic in-
teraction with particles yields these values first, (7/) they can be directly obtained from experi-
mental measurements, and (#i) other values can be inferred from these primary properties.
For example, the absorption coefficient cannot be directly measured from light scattering ex-
periments. It is obtained indirectly by measuring the scattering and extinction [osses from
the incident beam and evaluating the difference between the corresponding extinction and the
scattering coefficients.

Computation of the transport of thermal radiation in the particulate system requires an
accurate knowledge of these primary radiative characteristics. This is evident by consider-
ing the propagation of radiation within an absorbing, emitting, and scattering medinm, which
is governed by the equation of transfer (Kerker, 1961 ; Siegel and Howell,1981; Ozisik, 1973):

e VT )= —(0 st oulki (T, € g an Ln(T{H) +-222 L L{r, e )d{e,—~e)dQ" (1)

4

where I, is the monochromatic radiation intensity , T the medium local temperature, r the
position vector, ef2 the unit vector in the direction of consideration, and Q the solid angle
centered around e,. The coefficients are denoted by ¢ and the subscripts 4, e, s refer to absorp-
tion, extinction, and scattering, respectively. The first term on the right-hand side of the
equation of transfer represents the attenuation of intensity due to absorption and scattering,
the sccond term represents the gain due to emission, and the last term is the gain due to the
inscattering into the direction eg from ail otber directions, The intensity J, is defined as
the energy per unit area per unit solid angle per unit wavelength and the scattering phase
function @(e, —ey) is a specification of the radiation intensity scattered from the direction
¢ into the direction under consideration, normalized by the isotropic scattered radiation
intensity, i.e., @(es—>eg)=1 for isotropic scattering. The different methodologies for solving
equation (1) are discussed in Section 4.

The radiative coefficients are defined as the fraction of the corresponding energy loss from
the propagating wave, per length of travel. The units for the coefficients o are inverse of
length, whereas the phase function is dimensionless. The radiative coefficients aze functions
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of the optical constants of the bed materials and of the particle size, shape, and packing,where
the optical constants are functions of the wavelength. The phase function is a strong func-
tion of shaps and varies from the predominantly forward scattering for large particles to the
semi-diffuse for small.

Thermal radiation in packed and fluidized beds is unpolarized by nature and 7, repre-
sents the unpolarized intensity. Anothet important quantity, which is of greater interest than
the intensity, is the heat flux. The radiative heat flux vector q, is given as {Ozisik, 1973)

a@=a e[ | 4o edesre,do (2)

where &, is the unit normal vector to the unit area across which the flux is being mcasured.
Integrating equation (1) over all angles and wavelengths yiclds the following cquation for the
divergence of the radiative flux (Ozisik, 1973):

vt @ = 40| oud (T B o [ I, (5, ¢) dd. ®
\ .

The energy i for radiation, convection, and conduction modes of cner-
gv transfer and can be written in the form (Siegel and Howell, 1981)

sC, [%+(V-V)T]:VckVT+v-qr @

where Tis the temperature, v the velocity vector, p the density, C, the specific heat, k the
thermal conductivity, and 7 time. ‘The effect of viscous dissipation has been neglected in the
above equation. The energy equation obtained by combining equations (1),(3), and (4) is inte-
gro—differential and nonlinear, and cannot be simplified to a differential equation in most
situations without neglecting readiative processes in the energy transfer. The full equation does
not lend itself to simple closed-form solutions and direct numerical solutions require im-
mense computational effort. Combinations of radiation with the other modes of heat transfer
were first studied for cases where only radiation and conduction were present, which is char-
acteristic of packed beds. In fluidized-bed systems, convection and radiation are the impor-
tant mechanisms of energy transfer as indicated by experimental studies {Goshayeshi et al.,
1986). Solutions have been obtained by incorporating simplifying approximations such as
an isotropically scattering gray medium (Yener and Ozisik, 1986), and a linearty anisotropic
scattering medium (Azad and Modest, 1981).

The focus of this section so far has been on the transport of radiative energyas described
by the equation of transfer. The equation of transfer treats the medium as a continuura whe-
re each volume element absorbs, emits, and scatters radiation. The exact positions of the dif-
ferent particles in the volume are not considered; only volume-averaged values of the radia-
tive propetties are used. Other methods, which do not treat the medium as a continuum and,
instead, take into account the position of Pparticles and the boundaries between the solidand
the gas ph ase, are termed the discrete models of radiative transfer, Such models wsually ufi-
lize ray-tracing or view-factor techniques and are most useful for analyzing beds with large
particles and high volume fractions. These models are discussed in Section 4,

3 Thermal Radiation Characteristics of Packed / Fluidized Beds

In homogencous media such as gases, absorption and emission are the major radiative
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mechanisms. 1f the medium containg inhomogeneities, such as the particles in packed or flu-
idized beds, the additional mechanism of scattering is introduced. These absorption and
scattering processes are governed by electromagnetic field equations and their associated boun-
dary conditions at all interfaces. The resuiting analytical problem is formidable and is usval-
Iy solved by using simplifying assumptions: idealized geometry of the scatterers, independent
scattering and absorption, homogeneous distribution of particles, and others discussed in the
follcwing sections.

Absorption and Scattering by a Single Particle. The absorption and scattering charac-
teristics of a single particle are described by the solution of the clectromagnetic field equa-
tions. Physieally, they can be explained by the processes of reflection, refraction, and dif-
fraction. When an electromagnetic wave strikes the particle surface, a portion of it is reflec-
ted while the remainder penetrates the particle. The beam within the particle may experi-
ence some absorption and multiple internal reflections before it escapes out of the particle in
different directions, giving rise to scattering. This scattering is the contribution by refraction.
The diffraction scattering process originates from the bending of the incident beams near the
edge of the particle. Consequently, even a completely absorbing particle scalters radjation.

Scattering and absorption characteristics of a particle are governed by three factors: the
particle shape, the particle size refative to the wavelength of the incident radiation, and the
optical properties of the particle and the background medium {Tien, 1985). For the particle
shape, general solutions are available for only a few common shapes such as spheres, cylinders,
and sphercids (Kerker, 1961; Bohren and Huffman, 1983). The solutions are complicated
even for these simple cases. The second factor is commonly expressed by a size parameter
a, Which is defined as (=D /o) for spheres, where D is the diameter and A is the wavclength. The
last factor is represented by the complex refractive index m defined as (n+4-ik) whete # if the in-
dex of refraction and X is the index of absorption. It should be noted that mr— (n—ik} isthe
incident wave is assumed proportional to exp (iw?), where  is the angular velocity and 7 is
time. In this paper it is assumed that the proportionality is exp(—iw?) and hence m=n-t ik ).
The background medium is assumed to be nonparticipating, i.c., m=1.0, and thus requires no
further consideration,

The solution of the electromagnetic field equations yields the internal and scattered elec-
tromagnetic fields from which the corresponding extinction and scattering cross sections C,
and C, are obtained. The cross sections are defined as the ratio of the energy loss to the inci-
dent energy flux and have the units of area. FEfficiencies are defined as the dimensionless ra-
tios of cross sections to the geometric cross-sectional area G, ie.,

Q=CplG  (p=ae.s) &]
where G=uD? / 4 for spheres of diameter . The phase function for spheres is defined as

@ (eg>eg) =

6

where I, is the intensity of the incident wavelength. The scattering phase functions for sphe-
rical particles of three differcnt sizes have been plotted in Fig. 2. Figurc 3 shows the absorp~
tion, extinction, and scattering efficiencies for a range of size parameters 0<Za< 15, m=1.29+-
0,472,

The solutions of the electromagnetic fields are usvally in the form of an infinite serics (Bo-

Dt I, (egre, )
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hren and Huffman, 1983; Wiscombe, 1980) or complicated functions of « and m. However,
simple expressions exist for some limiting cases that are of greatest importance for fluidized and
packed bed applications. The first of these is the small particle limit, i.e., a< I, which is im-
portant for packed-bed systems such as microsphere insulations. ‘This is called the Rayleigh
limit. The second is the large particle, or geometric limit, characteristic of packed and flu-
idized bed combustors. The Rayleigh limit offers simple algebraic equations for radiative
properties of small particles though no significant saving of computational time. In contrast
to this limited mumerical expediency, large computational savings are possible by using
geometric scattering assumptions over the Mie theoty.

For a small (Rayleigh) isolated particle of size parameter «, the extinction and scattering
efficiencies corresponding to unpolarized incident radiation, obtained from the Mie theory (to
terms of order a*, a«1) are (Kerker, 1961; Bohren and Huffman, 1983)

cte meanl( ] 1oL () |

a
®

e—1

C,{a, & =—§—a‘ P




where e=m?®. The corresponding phase function is
B(0)= 1+ cost ) ©

where @ is the polar angle between scattering and incident directions.

The simplicity of the Rayleigh-scattering approximations makes them appealing for com-
puting radiative charactetistics of small particles. Bven though the limit a1 is used to in-
dicate the Rayleigh timit, Ku and Felske (1984) have discussed in some detail the range of
parameters @ and m for which the above equations can be used without causing significant er-
rot. Packed beds of microspheres and ultrafine powder, used for insulation purposes, and cer-
tain finidized beds fall in these categories.

The geometric or large-particle limit is difficult to handle through exact solutions involving
series expansions because large numbers of terms (approximately 2a+ 2) are required to ob-
tain convergence (Wiscombe, 1980). Additionally the iarge value of the arguments of the
mathematical functions involved makes the terms in the series very difficult to evaluate. To
overcome (hese hurdles concepts from geometric optics are introduced to analyze particles
with large size parameters. Geometric optics uses the method of tracing rays as they undergo
refractions and multiple reflections at the interfaces and absorption within the parlicle.

The total energy scattered by a large sphere may be written as the sum of diffracted, reflec-
ted, and transmitted components. Comsequently the scattering efficiency is expressed as

Q=04+ C@rer+ Qs Qu=1 10y
where the subscripts ¢, ref, and ¢ denote diffraction, external reflection, and transmission, res-
pectively. For large absorbing spheres all the energy entering the sphere is eventually ab-
sorbed, yielding 0;=0. The extinction efficiency for large spheres is shown to be (Boheren
and Huffman, 1983; Kerker, 1961)

limQ, =2 an
implying Q,=~1—0,.;,~ @;. The phase function for large particles is strongly fowrard scate
tering and must be determined by ray-tracing methods.

For large opaque spheres the efficiencies can be approxi d as (Siegel and Howell, 1981)

O,=6, Qy=l-¢ (12

where ¢ is the emissivity of the surface of the particles. The phase function is approximately
isotropic, ie., d{@y=1, if the sphere is specularly reflecting, and is

B(6)= (sind - 6 cost) a3

if the spheres reflect diffusely. Since large particles in most packed and fluidized beds such as
chemical reactors and coal combustors are diffuse, the expressions presented above repre-
sent a significant saving of computational resources compared to the complete Mie series solu-
tion.,

If the diffraction component is treated as part of the propagating beam, restrictions are pla-
ced on the lower size limit for the geometric scattering to ensure that the scattercd portion
due to diffraction is indeed in the forward direction. The extinction efficiency is taken to be
equal to unity instead of two since the diffraction pottion is omitted. Similarly Q,— Orer1 O1
=1-~0, 1f the scattered light in a cone of half angle of 5 deg is considered as part of the
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