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PREFACE

This text is intended for use in a first course on digital signal processing (DSP), typically in
senior or first-year graduate level. It may also be useful to engineers and scientists who use digital
computers to process measured data. Some elementary knowledge on signals and systems is
helpful but is not necessary. An attempt has been made to make this text as self-contained as
possible.

As anintroductory text, we discuss only two major topics: computer computation of frequency
contents of signals and design of digital filters. These two topics follow logically a basic text
or course on Signals und Svstems, which now often covers both continuous-time (CT) and
discrete-time (DT) cases. To be self-contained. we start from scratch. Chapter | introduces CT
signals, DT signals. and digital signals. We discuss why CT signals are now widely processed
digitally and how they are converted into digital signals. We also discuss why we study in this
text, as in every other DSP text. only CT and DT signals even though digital signals are the
signals processed on digital computers. In Chapter 2. we first discuss the frequency of CT and
DT sinusoidal signals. We then introduce CT and DT Fourier series (frequency components) for
periodic signals and establish their relationships. We then use the fast Fourier transform (FFT)
to compute their frequency components.

Chapter 3 extends CT and DT Fourier series to CT and DT Fourier transforms (frequency
spectra) that can reveal frequency contents of aperiodic signals as well. We establish the sampling
theorem and discuss the etfects of truncation of signals on frequency spectra. In Chapter 4, we
show that computer computation of DT Fourier transform (DTFT) leads naturally to the discrete
Fourier transtorm (DFT). which differs from the DT Fourier series only by a fraction. We then
introduce a version of FFT, an etficient way of computing DFT. We use FFT to compute frequency
spectra of DT and CT signals and to compute DT and CT signals from their frequency spectra.
This completes the discussion of spectral computation of signals.

The second part of this text discusses the design ot digital filters. We introduce in Chapter S
the class of digital filters (linear, time-invariant, lumped. causal, and stable) to be designed and
the mathematical wols (convolutions. impulse responses, z-transform, and transfer functions)
to be used. We then introduce the concept of frequency responses for stable systems. Chapter
6 discusses specifications of digital filters and how to use poles and zeros to shape magnitude
responses of simple digital filters. Chapter 7 introduces various methods to design finite-impulse-
response (FIR) digital filters. In Chapter 8, we first discuss the reasons for not designing directly
infinite-impulse-response (1R) digital filters. We then introduce analog prototype filters, which
are lowpass filters with 1 rad/s as their passband or stopband edge frequency. All other analog and
all digital frequency-selective filters can then be obtained by using frequency transformations.



The

last chapter discusses a number of block diagrams for digital filters and some problems due

to finite-word-length implementation. This chapter is essentially independent of Chapters 7 and
8 and may be studied right after Chapter 6.

Although most topics in this text are standard, our presentation and emphasis are significantly
different from other existing DSP texts. They are discussed in the following.

Most DSP texts discuss systems and signals intertwined. This text discusses in the first part
only signals and their spectral computation. Thus the discussion can be more focused. It is
also more efficient for those who wish to learn how to use FFT to analyze measured data.

This text shows that the frequency of a DT sinusoidal sequence cannot be defined from its
fundamental period as in the CT case. It is then defined from a CT sinusoid and justified
using a physical argument. Thus this text uses the same notation to denote frequencies in
CT and DT signals as opposed to different notations used in most DSP texts. We do use
different notations when the analog frequency range (—o00, 00) is compressed into the
digital frequency range (—m, 7] in bilinear transformations.

Assuming the reader to have had Fourier analysis of CT signals, most DSP texts cover only
Fourier analysis of DT signals. Because signals processed by DSP are mostly CT, this text
covers Fourier analyses of both CT and DT signals. The discussion of the CT part, however,
is not exhaustive. It is introduced to the extent to show the differences between CT and DT
Fourier analyses and to establish their relationships. We establish sampling theorems for
pure sinusoids, periodic signals, and general signals.

Most DSP texts assume the sampling period 7 to be I in DT Fourier analysis. Although
the equations involved are simpler, they become more complex in relating spectra of CT
signals and their sampled sequences. This text does not assume 7 = 1 and discusses how
to select T in spectral computation of CT signals from their time samples. In digital filter
design, however, we canselect T to be 1 or any other value such as 7 in MATLAB,' as
discussed in Section 5.3.2.

Many DSP texts introduce DFT after the Fourier transforms and discuss it as an independent
mathematical entity Our discussion of DFT is brief because it is essentially the same as the
DT Fourier series. It is introduced as a computational tool.

Most DSP texts introduce first the two-sided z-transform and then reduce it to the one-
sided z-transform. This text does not need the two-sided transform. Thus we concentrate
on the one-sided :-transform and give reasons for forgoing the concept of the region of
convergence. which is a difficult concept and rarely needed in application.

Fourier analysis of DT systems are covered in most DSP texts. It is not covered in this
text because Fourier analysis of DT systems is less general and more complex than the
z-transform (Section 5.5.3).

Most DSP texts use exclusively negative-power transfer functions. This text uses both
negative-power and positive-power transfer functions because the latter is more convenient
in introducing the concepts of properness, degrees, poles, and zeros. Furthermore, both
forms are used in MATLAB.

" MATLAB is a trademark of the MathWorks. Inc,



* The bilinear transformation introduced in many DSP texts normalize the frequency range
by assuming T = | and yet introduce the factor T /2 where T may be different rrom 1. This
is inconsistent. We introduce an arbitrary factor and show that the design is independent of
the factor. This is more logical and can also justity the inconsistence.

In addition. this text discusses a number of topics not found in most DSP texts. We list some of
them in the following:

* Give a formal definition of the frequency of sinusoidal sequences and give a precise
frequency range (—x/T. x/T] for DT signals (Section 2.2).

* Establish a simplified version of the sampling theorem for periodic signals and then use FFT

to compute frequency components of CT periodic signals from their sampled sequences.

Discuss how to use the MATLAB functions fftshift, ceil, floor and a newly defined function

shift to plot FFT computed frequency components in (—n/T, 7/ T]or {—n/T. 7/T)

(Sections 2.6 and 2.7).

Discuss the nonuniqueness of inverse DFT and a method of determining the location of a

time signal computed from frequency samples of its frequency spectrum (Section 4.7).

* Use FFT to compute the inverse Z-transform (Section 5.4.2).

* Discuss steady-state and transient responses of digital filters, and give an estimated time for
atransient response to die out (Section 5.7.1). Compare two ways of introducing the concept
of frequency responses. We argue that although the concept can be more easily introduced
by assuming an input to be applied from —o¢, two concepts of practical importance may
often be concealed (Section 5.7.3).

* Give a mathematical justification of using an antialiasing analog filter in digital signal

processing (Section 6.7.1).

Introduce a discrete least squares method to design FIR filters. The method, although very

simple, does not seem to appear anywhere in the literature. The method is more flexible

than the method of frequency sampling and leads naturally to the MATLAB function firls

(Sections 7.6 and 7.6.1).

* Introduce an analog bandstop transformation that yields better bandstop filters than the ones

generated by MATLAB (Section 8.4).

Although FFT is very efficient in computing the convolution of two long sequences, we

give possible reasons for not using FFT in the MATLAB function conv (Section 9.4.1).

All terminology in this text is carefully defined. For example, both the Fourier series and
Fourier transforms of periodic signals are often called discrete frequency spectra in the literature.
This text reserves frequency spectra exclusively for the Fourier transforms, and calls Fourier se-
ries frequency components. We attempt to make all discussion mathematically correct; however,
we will not be constrained by pure mathematics (Section 3.9 and the footnote in Section 6.3). As a
textintended for practical application, the discussion is not necessarily rigorous. For example, we
use the terms “very close” and “practically zero™ loosely. Because of the information explosion,
we all have less time to study a subject area. Thus the discussion in this text is not exhaustive: we
concentrate only on concepts and results that, in our opinion, are essential in practical application.



MATLAB is an integral part of this text. We use while loops and if-else-end structures to
develop MATLAB programs. However, our emphasis is not on MATLAB but rather on basic
ideas and procedures in digital signal processing. Thus this text lists only essential MATLARB
functions in most programs and skips functions that adjust shapes and sizes of plots, and draw
horizontal and vertical coordinates. It is recommended that the reader repeat each program. Even
though he may not obtain identical results, all essential information will be generated. Clearly
any other DSP package can also be used.

All numerical examples in the text and most problems at the end of each chapter are very
simple and can be solved analytically by hand. The reader is urged to do so. After obtaining
results by hand. one can then compare them with computer-generated results. This is the best
way of learning a topic and a computational tool. Once mastering the subject and tool, we can
then apply the tool to real-world problems. A solutions manual. in which complete programs
are listed for problems that use MATLAB. is available from the publisher.

This text is a complete restructure and rewriting of One-Dimensional Digital Signal Pro-
cessing, published in 1979. We deleted the discussion of the two-sided :-transform, its region
of convergence. and the topics such as error analyses, Wiener FIR. and [IR filters. that require
statistical methods. All aforementioned sections, except Section 6.6.1, are new in this text.

I am indebted to many people in developing this text. First I like to thank Professors Petur
Djuric. Adrian Leuciuc, John Murray. Nam Phamdo. Stephen Rappaport. Kenneth Short, and
Armen Zemanian, my colleagues at Stony Brook. | went to them whenever I had any question
or doubt. Many people reviewed a earlier version of this text. Their comments prompted me to
rewrite many sections. I thank them all.

[ am grateful to my editor Peter C. Gordon for his confidence in and enthusiasm about this
project. Many people at Oxford University Press including Christine D" Antonio, Jacki Hartt.
Anita Sung. and Jasmine Urmeneta, were most helpful in this undertaking. Finally I thank my
wife, Bih-Jau. for her support.

Chi-Tsong Chen
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