Addison RFEIEZR ‘:§7IJ B #
O ALEVE:
I AT

Watts S. Humphrey

PSP"

SElI SERIES IN SOFTWARE ENGINEERING

A B Hp B ki it

POSTS & TELECOMMUNICATIONS PRESS

B TR 5 A

™R &Y e
(8 X hR)

Introduction to the Personal Software Process

Watts S. Humphrey

A KRB B WK

B L2 R T EAH
TMEEFERE (R

¢ E Watts S.Humphrey
RILHE @ W

& ARMBHARMHRET bR eR s mes) is 5
BR4R 100061 BT A 315@ptpress.com.cn
M4t http://www. ptpress.com.cn
AR 010-67132705
AR PR E X it A R A =l
AR BRI e
BAEDE BEIR TN

® FEA: 800X 1000 1/16

EpFk: 19.25
¥ 319 FF 2002 4E 10 HE 1R
Ef%: 1-4 050 A 2002 5 10 HIbEH 1 RETRI

FERAEFBZE EE: 01-2002-3748 5
ISBN 7-115-10349-6/TP * 2908
EYr: 32.00 70
APMBONRFEREE, H5AHER BiF: (010)67129223

AERE

(MBS R) (FFR “PSPi”), & Watts S. Humphrey F 1997
FHAXERE -FREERENERE. PP TREBRENRMG T
PRI A TAZ R 5, 551 RA AT BRI Bt R 3
THBISEHTTE, FHRETREAIRFE T EFEXLE .

3% Embry-Riddle §i % KZEHHEIBZRURBR BB, HizEk
—ERFEPFR TXMRE, 2RI, XxEREERN SRR GtE
WARMBEHER . BEZFEMAIE, UEDETEEISEEZENE
BERE T ABREBRNZHRTEN R ERKG TESRERFEH,
BTUAREINESTRPIRB5, R #WPHENEEE 1108, &
FBoFHPURERAREE (5 10),

FHEAMSTIEEEER, ARSI ENK G TRIERNH
¥, BAER TREERA R B2 AMEREE B, AT RmdEK
HARES) BERE SW-CMM M MEES %R . ABREEHT®
HRAEBEAR . KETFRMELHE. BFERAN—REEZHEEFRK
GRE =8

Introduction to the Personal Software Process (MEKMIERET|8) XA
FAE R Watts S. Humphrey $7ii 4 K% —EREZERE HEEHD . ZH#R
TREZRENRG TREITE KRG TREER FE, LA Humphrey
FANRTFEERER, HRE|ETRELIRFBYSEEHEXB L. BiE
% H Carnegie-Mellon (FREME) K¥EHM4 TR AP Humphrey %A
WISCEEIE, ERAT PSP ZJE, HIFRZT BRBRMIERAD T 58.0%, &
TR BRIRHIBIER ST 71.9%, £ EBRET 208%. FEH,
Embry-Riddle Ji =2 R¥E VT EHRIE RFBAUA BB A, HiZR—F
REEVRTXNERE, RETREFNRE, BELTRRRESTRT
XITRE. RIS, INERFERNSRAOBGEVARBEREDY.

A THEALTHT PSP, RERELENKILE, FEHASROH
RHGENEM, THERERF25ARNRERSE. R, H8ENME
BHAEAREKEH AR RN ERENE, FEAMIKEECHIEY
X ER, AMTEHRAENTECHT/ESIMR, A SR EE s,
EEEEAFEEN G REAEAMIE CHEEEREN s
Mfa, ABRBEE#THE. Hit, # Matd B EEINERS
BOREERL, JIER N REEGE NS .

MMERAI R - TTEBRERBRNEN, FEALRERSABET
BB PSP RIFERE. A THEHRAS, WAOEESE, WL PSP B2
BEFERWTHI SHEREBAELESENR. E£&IES Humphrey K— KB
&, fAAhmREHBR N EHATR (PSP) 28T, seift—sgitd®
ZHIREE, XEAR PSP B EREAEEEH.

WA, PSP AVEMIRINS®, R FEhT3IMB R EE2%)
FSERIX SRS o ZANFEEHTA A PSP BHEURASRK, HHEE

2 F

SR, AERERE,. BECKER RS 5 RER PSP FERE .
ATLLAK, BR R PSP REMAT AR NI L, RUHHRE PSP RENE
AR,

7£ Embry-Riddle i %5 K% vH AR 2 R 5 1% RO AR B S RET
& UK Humphrey A NZEABIEXXMAEBEENFFF, #4FH3RHA
KEHEAOEENE, R E T ATEAEEEE, FUMKENE
WEH 2B Bk, BAIESES) PSP BEN, BERIEHIOTEEM,
B 71 AR PSP RRAMERE MBI S, IR EESHSIE, 8
S TR SRR 5147 PSP IR . 4R, EBIR PSP K7, MUEEI
H2 55X PSP {l, BREABELREEMLEIAETH—SRE. W
BAYRE. ATLLACK, XREE PSP HikME AR,

BM 1994 SELL3E, Humphrey —H K HBSXMFHH:, MEEEEL
ERBNTFIHEAT PSP 7%, KB TRIFHER. THIEM 1996 EFFHE, K
TESREARHELRE (WHRDAREFTELR) TSP ik, NiZigd, W
RAHLEA R CMM SGELAE, W PSP Ml TSP &5 CMM 5248407
89, R —ANMALUE B B CMM G2, WA < PSP # TSP [,
ATPAAARKA CMM SERRBEE RS at. MEBOEE#—H38H, ATL
£ PSP & 1E CMM A Z i 12, T8 TSP B4 CMM HE rBt 4l 2.
P ER BOhBAT RS R e, AR A8 BB SW-CMM.,
MEB AR FE PSP MBS R TSP R=# B & ok, #igitid
BIEHERHER, HERE. SEANE, BR—IHEXRE. Rassg
HI¥lk, —EREBURRIFRIZE.

#=3£ [Carnegie-Mellon K4 TIRBF IR 4 FF R FER P, 4
WAL PSP AT T A EM. Hep “MEkadEale” 2—115
BB RIERE, T8 7T PSP HIXBES U BRHAMAEMEL, A%t
TERAASMBHARAIRET RS . 9 RA TRIFIFRE PSP 3R
BT, BoITTRREHE R, B0 HARA SRR, §EE
RAR. EF 118D, BT ITRMEEETHE, B THENE. 3
BT, AT 5 8 SO S i T AN B YR DL R T AT i R R i)
. BITREBTHARMEERE. iR, RiH%iF. W% pSP [
FTAREME U REABATIIRA RS, X5 1EEH2 L. Humphrey
P& —&F5 (R TEMIEY (The Discipline for Software Engineering)
HEE.

AERMBMR K LR TRIFTHTM 1997 EFEERET R EDF

7 3
B MERAETES R B8, RIERERESRMERNRG TERERH
PSP AR, SEEX—EA R R TRITHIT T PSP FII, XL
BAT WK, HEATERNEAAK, BEXESAE, FEHL—F
BEIESREGRERE.

M 2000 FTFREK, EREKRGESVAKLE I RBEER
(CMMO PG IR - R AR HH O R, TR RE) R EAR Y SW-CMM
18 AN REEP. B 12 N5 AMEKAEIERE PSP BFAEX, B 16
SREKAEE TSP BHEMX. FHilk, WRERBMEk LR PSP AR
HRMIFE TSP, MUEBFIEME THERR, MAbLEEEHTA
LIRS E . ATLARL, B X% UHE PSP M1 TSP 8, W34
AR A AR B R AR R RS R AR S e

BAINZES, ERAESUSEREESE LB R e K FEa MY
KWERE. B2, BIIAIRMEMERRE, £oA0Z8. BAINZIN
LB, BEHXRRN ER, R4 TEERANRE TREEHAH@m,
EERAMEBIETERIEPITZ ARNKME TENFERME . B
AL, NEELE, ARSMEAREESHANBENSEXENREE
B KNEFRBENERNBRENERETEAR, FHAEAFESLAH,
RBRHRENG . BEE, ANRMBE BRI Introduction to the
Personal Software Process XAZEEZEIHAR, EIERERERI—NEE
BRI AR E = KR 8 7 AR, 4 B RESFHERAP R T
BEARAAWFHEES T, —EREFIRRNRESIER.

BV

2002 %9 H 20 H T4k

FOR BARBARA

My love, my life, my wife

FACULTY FOREWORD

We used a draft version of this book to teach process principles in the first year:
Computer Science program at Embry-Riddle Aeronautical University. The book
provides a subset of the Personal Software Process (PSP)SM elements and activi-
ties that a freshman can easily assimilate with the more traditional first-year pro-
gramming topics. The book also provides the motivation and a structure for
introducing students to disciplined personal practices. We have enjoyed using this
book and feel it is helping our students to become competent software profes-
sionals.

For some years we have been trying to provide our students with realistic
software engineering experiences. We have had moderate success with introduc-
ing software engineering theory and practice early in the curriculum and adding
team projects to some upper division courses. Unfortunately, we have found that
when students work on these projects, they do not understand time management,
scheduling, and quality management. As industry has found, the ability of engi-
neering teams to develop quality software products efficiently and effectively
greatly depends on the ability of the individual engineers. On reflection, the stu-
dents’ problems with time and quality management are not surprising since we
had not provided courses that show students how to plan and manage their work.
We thus decided to try introducing process concepts at the beginning of the un-
dergraduate curriculum.

We felt that beginning college students could best learn and benefit from time
management practices, so we started by introducing this book’s Chapter 1 through
Chapter 10 materials in CS1. Although all students entering our CS1 course had

SMpersonal Software Process and PSP are service marks of Carmegie Mellon University.

2 Faculty Foreword

some programming experience, they were not yet ready for a formally defined
software development process. They first needed exposure to the problems of
modem software development before they could truly comprehend the roles and
practices of software engineers. ‘

After finishing CS1 and completing their first college semester, students were
ready for a more disciplined way to develop prégrams. We then introduced the
PSP process in CS2, using the materials in Chapters 11 thorough 20. Here, the stu-
dents planned each of their programming projects. Following the defined PSP
practices, they used their own historical data to estimate size, effort, and quality
(defect projection). They also collected and recorded actual data for each project
on a summary report form.

After a year of experience, we have found that the approach of introducing
process activities to beginning computer science students can work. What we
mean by “can work” is that students can learn how to use the process outlined in
the book. They do, eventually, see the value of recording effort, size, and quality
data, and they can use these data in planning projects and analyzing their personal
effectiveness. Collecting data on their own work gives them a quantitative basis for
estimating. They regularly perform structured reviews and they learn to follow de-
fined development phases in their work (e.g., planning, design, coding, compil-
ing, testing, and postmortem). We also feel that delaying the introduction of PSP
for another semester (or year) would allow sloppy and undisciplined programming
practices to become more entrenched and would make the students more resistant
to change.

The PSP has helped the students understand the importance of a disciplined
approach to developing software. It also provides a more rigorous foundation for
Tater introducing more advanced individual and team topics. For the most part, stu-
dent data are accurate, but one must be careful to analyze and reject suspicious
data. Unfortunately, the students did not become better at scheduling their work.
Many still put off assignments until near their due date—a perennial beginning
programmer problem.

Not surprisingly, we discovered that the success of the PSP approach was
highly dependent upon our ability to motivate students to learn and practice these
concepts. We used the ideas and arguments in this book to encourage a positive
view of process methods. We found that providing the class with regular feedback
and analysis of class data stimulated students’ interest in looking more closely at
their personal data. Inviting industry professionals to discuss their process experi-
ences with the class was also very helpful.

There were some problems at first in teaching the new courses. Initially, we
did not sufficiently integrate the PSP materials with the rest of the CS1 and CS2
courses. The students thus had trouble relating the time management activities to
their programming work. We also failed to provide sufficient feedback of class ag-
gregate data.

Faculty Foreword 3

An interesting and beneficial side effect of the PSP is the large supply of data
available to the teacher. In CS1 we get weekly activity reports on how students
spend their time in the course. In CS2 we get a PSP summary on each program-
ming project that provides size, effort, and defect data. These data often provoke
discussion about the methods taught in the course and how they affect programmer
productivity and program quality. The PSP provides a quantitative basis for de-
tailed analysis and discussion of such questions.

We are continuing to teach the PSP in the freshman year of our program. We
also require students who have completed CS! and CS?2 to use the PSP in the Data
Structures and Algorithms course that follows CS2. We believe this will better pre-
pare them for the more complex team projects they will face in their junior and se-
nior years. We also plan to guide students in extending and enhancing the PSP for
their subsequent courses.

We have found this book helpful in introducing our students to professional
software disciplines and hope that other students and teachers using this book will
experience similar benefits.

Thomas B. Hilburm, Aboalfazl Salimi, Massood Towhidnejad
Embry-Riddle Aeronautical University

STUDENT FOREWORD

After we finished the PSP course in our freshman year, a couple of the faculty at
Embry-Riddle Aeronautical University asked if we would like to collaborate on
writing a foreword to the finished textbook. We agreed. Since we were not sure
how to write a foreword, they suggested that we merely answer some questions.
Here are the questions and our answers:

1. What type of tasks did you do in the PSP course?

We kept track of all the time we spent on programming assignments and pro-
Jects. There was a lot of paperwork to keep track of. We also kept track of

program size and defects and used the data we collected to estimate time,
size, and defects on future projects.

2. How did it work? How did this material fit with the material in the other
freshman courses?

It fit well into the course work, and having an estimate helped provide confi-
dence in what you were doing.

At the beginning it looks like the PSP work is a hindrance to the other course
work, but once you get to the end of the course, you realize that these activities ac-
tually help you complete your work. You go through the course and keep asking
yourself, “Why am I doing this?,” but later you start to see that having an estimate
of what it is going to take you to complete a program actually helps you.

It is very important not to fudge the data (times) because then the data you
collect are not as helpful.

2 Student Foreword

3. What did you learn?

In addition to what we have already talked about, you learn how you can use
your time more efficiently and do some work before you get to the computer.
You end up doing a lot of werk on paper before you get to the computer.

You also learn about your mistakes and other people’s mistakes (through ex-
amples and discussions). It also helps you keep your programming organized
(since you do work on paper before you get to the computer). The PSP is also
something that can be used in other activities (not only in software development),
although the forms need to be modified.

4. What would you recommend to other students who will use the PSP in the fu-
ture?

Do it right. Don’t fudge it. Follow instructions. Try to understand the big pic-
ture and understand the concepts. Don't let the paperwork get to you; it will
pay off.

Ben Bishop, Andrew Henderson, Michael Patrick
Embry-Riddle Aeronautical University

PREFACE

If you are studying to be a software engineer, this book is designed for you. It de-
scribes the methods many experienced engineers use to do competent work and it
provides exercises to help you learn these methods. Each chapter describes a sin-
gle topic in which you will become skilled as you practice the homework exer-
cises. Completed examples of each exercise will help you to check your work.

Why | Wrote This Book

Developing software products involves more than just stringing programming in-
structions together and getting them to run on a computer. It requires meeting cus-
tomer requirements at an agreed cost and schedule. To be successful, software
engineers need to consistently produce high-quality programs on schedule and at
their planned costs. This book shows you how to do this. It introduces the Personal
Software Process (PSP), which is a guide to using disciplined personal practices
to do superior software engineering.

The PSP will show you how to plan and track your work and how to consis-
tently produce high-quality software. Using PSP will also give you data that show
the effectiveness of your work and identify your strengths and weaknesses. This
tool is like the stop-watch and distance measures you need to test yourself on join-
ing a track team and deciding which events to try for. To make an intelligent deci-
sion, you would need such measures to know where you excel and where you need
to improve. Like a track team, software engineering has many specialties, and en-

1

2 Preface

gineers have widely varying skills and talents. To have a successful and rewarding
career, you need to know your skills and abilities, strive to improve them, and cap-
italize on your unique talents in the work you do. The PSP will help you do this.

Using the PSP

By using the PSP, you will be practicing the skills and methods professional soft-
ware engineers have developed through many years of trial and error. Building on
the experiences of your predecessors will help you to leamn more quickly and avoid
repeating their errors. The essence of being a professional is understanding what
others have done before you and building on their experiences.

How Students Will Benefit

While the PSP is now generally introduced in graduate software engineering pro-
grams, its principles can be learned and practiced by beginning students. This
book is designed to introduce the PSP methods in gradual steps as you do your
other course work. As you read each chapter, do the exercises at the end. These
show how to manage your time, how to plan and track your work, and how to con-
sistently produce high-quality programs.

Since it takes time to develop effective skills and habits, you should practice
the PSP methods with every software assignment. If you do this, you will have
learned, practiced, and perfected these skills before you need them in software en-
gineering work.

How Working Engineers Can Use This Book

Practicing software engineers can also use this book to learn the rudiments of the
PSP. I suggest that you work through the exercises from the beginning of the book
to the end, using them as guides for improving the,way you do your regular work.
Practice each exercise until it feels natural, then read the next chapter and add its
methods. Again, practice both the new and the already learned methods before ad-
vancing to the next step. The key is to take the time to master one method before
progressing to the next.

With some dedication and discipline, you should have no trouble mastering
this material by yourself. Success is more likely, however, if you do this work in a
class or with a group of co-workers with whom you can exchange experiences and
share ideas. In any case, plan to spend about an hour or two each week studying

Preface 3

the textbook, recording and analyzing your PSP data, and adapting the PSP meth-
ods to your work. Although the time you need to learn the PSP will depend on
your current habits and practices, once you have completed this material, you will
have a sound foundation for continued professional development. Note, however,
that the key to learning the PSP is to look at and think about the data on your work
and what these data tell you about your personal performance.

Some Suggestions for Instructors

This book is designed as a companion text for traditional two-semester computer
science or software engineering courses. It makes no assumptions beyond a col-
lege preparatory education. The book presents the PSP in steps that students can
use with their regular course work. The exercises in the first ten chapters are quite
general and can be used with programming or nonprogramming work. The exer-
cises in the final ten chapters are designed for use with about six to eight or more
small programming exercises.

Although some students first learn to program in college, many now learn
basic programming in high school. This material is thus designed for use in either
a first programming course or a more advanced course. Whether the students al-
ready know how to program or are just learning, they should readily understand
the material and find it immediately helpful.

This material is an introduction to the PSP and not a replacement for it. The
book does not, for instance, cover the statistical techniques needed for accurate
estimating or data analysis. It also does not cover the methods for scaling up the
PSP for larger projects or the process definition and improvement techniques used
in applying the PSP to tasks other than writing small programs. The full PSP
should thus be taught at a later point in the student’s educational program.!

As you lead students through the material of this book and they complete
the assignments, they will learn to track and monitor their work, to manage their
time, and to make plans. In the second semester, they will learn about program
quality and ways to do reviews and use various quality measurement and man-
agement methods. They will also learn about defects, their causes, and the engi-
neers’ personal responsibility for the quality of the products they produce. At
the end of the two-semester course, the students will have learned the rudiments
of the PSP. To build on this foundation and to give them added experience with

'The PSP and the PSP course are described in more detail in my textbook A Discipline for
Software Engineering (Reading, MA: Addison-Wesley, 1995). The textbook support mate-

rials include an instructor’s guide and an instructor’s diskette with lecture overheads and as-
signment materials.

[U

4 Preface

these methods, later courses should require the students to continue using the
PSP.

A Teaching Strategy

Since this book is meant to be used in conjunction with a two-semester introduc-
tory computer science or software engineering course, its material is divided into
a first semester that covers time management (10 chapters) and a second semester
that covers quality. Teaching this material takes about six lecture hours spread over
the two semesters. Since the students use PSP methods while doing their currently
required course work, this material does not add significantly to student workload.
Any additional time students spend learning these methods is very likely com-
pensated for by the efficiency they gain.

As you progress through the textbook, assign the exercises at the back of each
chapter. Experience has shown that it is best to cover the first 10 chapters in the
first few weeks of the first semester. The students then have the rest of the semes-
ter to practice the methods introduced. The second semester should follow the
same strategy of introducing the PSP topics in the first few semester weeks and
then using these methods during the balance of the semester.

It is crucial to present this material as an integral part of the course. Explain
that these are essential software engineering methods that the students must leam
and practice to satisfactorily complete the course. As you assign each exercise, ex-
plain that the students’ grades will depend both on the quality of their work and on
how well they apply the PSP methods. They must do each PSP exercise and then
continue to use each PSP method after it is first introduced. The course strategy,
suggested lecture contents, and assignment kits are included in the instructor’s
guide and support materials described on the last page of this text.

Instructor Preparation

In teaching this course, you will find it helpful to have used these methods your-
self. You could, for example, use the planning and time management methods to
prepare the class lectures or grade homework. After you have personally used the
PSP, you will better appreciate the personal discipline required. This background
will help you explain the PSP to the students and guide them in its use. When they
find that you have used the PSP, they are more likely to use it themselves.

