Y EDBESHNEDIRE
@IMEBERRESRARRIIE SRS

ITEIEZE
—— B ESSE

(E=H RERR)

] COMPUTER ALGORITHMS

Introduction to Design and Analysis

(Third Edition)

B Sara Baase
Allen Van Gelder

BEEZEFHMR

Higher Education Press
Pearson Education

H W F

BEHEFHAE I RE
ESMEFHE R FESRRRFIHFEAF

HENER

WitS o HhEit
(EB=hE SZENRRD)
COMPUTER ALGORITHMS
Introduction to Design and Analysis
(Third Edition)
Sara Baase
Allen Van Gelder

WS KB MR M
W Pearson Education H 154 H

E=x: 01-2001-2170 £

English Reprint Copyright © 2001 by PEARSON EDUCATION NORTH ASIA LIMIED and HIGHER
EDUCATION PRESS

Computer Algorithms: Introduction to Design and Analysis from Addison Wesley Longman's edition of the
work

Computer Algorithms: Introduction to Design and Analysis, 3rd edition by Sara Baase, Allen Van
Gelder, Copyright © 2000 1

All Rights Reserved ‘
Published by arrangement with ADDISON WESLEY LONGMAN, a Pearson Education company

This edition is authorized for sale only in the People’s Repﬁblic of China (excluding the Special
Administrative Regions of Hong Kong and Macau)

BB ERS B CIP)Y ¥R

HEIEE — RS0 2e: B/ GO BH

(Baase,B.) Z. —BHA., —JtZ . BESHFHE
#*,2001.7

ISBN 7 - 04 -010048 - 7

I.it,.. I.®... 0O OmFiIHEN-Bxigit
“REER-EM-EXOHEFITEN-BEST-B
FER-BM-EX N, TP301.6

O E R A 1 CIP g F (2001) % 045055 8

HENBEE —RITS4WIBREGEER BEED
Sara Baase %%

HIERIT BEFEHFHHE
3 i EEHARERYHEESE 55 BBBIARER 100009

] 1% 01064054588 1& B 010—64014048
| i http://www. hep. edu. cn ‘

http ://www. hep. com. cn

& W FEREERERTR
B Bl REHET SR

¥ & 787X1092 1/16 i W 2001 7 ARER
En ¥ 44.5 21| W’ O20014E7 A% 1 KER

% ¥ 1066000 E #t 39.50 7T

APWART FHN. L TERERE. BRFURBHEBIRARR.
IBBRATR AR

jilll;

Al

20 2K, U ENFRERARARENEERERER, AERNEF. £,
M. #EF. X TEETENRRTETRAWYH, HATAENELES LD
BRAEREFRBEN . SN2 HAL, FEHTIRAENEES L, WmATH
SRR AR

ATHRREELE S bev#tf, ARE (HBREFPLLLRETNEF RS
) F, AHRY “UERAFH T b, REEARY, TARLETHHERR
ZR. " BRFYHMERE S EKI. EREMA W G, REEEZ LHEE
BSR4 FHTRHER. RERBRRLERBATEERFEABRALNS D 54
%.

E0HELK, REGFESVERFHARELR, B5ERA#ERML, 2ER
B’ ATHEARIABRERAAT, KELFREEERATWER, HHES
FR-AMRAAERE LRI OBALEEREAAL, RARBEEF LAERER
AAFHL2ERE. hit, ZEEHRHEHTARELTHRERRBNKNEN, &K
HMEDEAHESEIREIMERPERYLENER L, WEIHENLARRE, AR—L
BREEE, REIHEFRAGEREDEREMXCLOHETE, EXSFE.
RXREECRGENER 21 #4500 LA EANEEREAERREHM LR
L, EAFGAREFERNELERAFREARRI HAEREIM BN YD G
BT RERNERS, UEEREATENSY E5ERARAKTHEE, Aug
AHTRUEKERFENWIEATL.

ATHEEREW, ESN— LB E WO EAHMN, —RERELKAR XK
HHATHFHERL, HERBEERTALLHERHEERT EREF BRI IMFE
RAFPHRREEARAKFR AR RRA RSB HB AT, A5
R® B IR # AT HF A & A

AAGIHANAFIEHHYPHRIAE, RESREBRE LR FREAR L LR
BEXERRM BT TR LRFN, FPTHROEMYEREZESGRK

BifE EMF R CXKARNERE, KESLFHE RS A E RS HM KSR
FHEBAANEST . ARHNAFITEN: BORMNENEN Y5 RE K ¥ HMH
Y.

HARBESHA AR LY DA M BELBHRE IR, FEAXRFRA, EA
BRAALERFRIFRH R G, AFEHAGNERE, RERPOHEHANESR,
BEMBRETHE, UESIRES. EF. EEANIEHNRLEHBTH .

FlBf, BB XHERAR TG AT RIS, RWESHEIAFXQ
#5E RHIfE,

HFEEHEHF T
ZO0O0—4mH

To Keith—always part of what I do S.B.

To Jane—for her patience AVG.

Preface

Purpose

This book is intended for an upper-division or graduate course in algorithms. It has suffi-
cient material to allow several choices of topics.

The purpose of the book is threefold. It is intended to teach algorithms for solving
real problems that arise frequently in computer applications, to teach basic principles and
techniques of computational complexity (worst-case and average behavior, space usage,
and lower bounds on the complexity of a problem), and to introduce the areas of NP-
completeness and parallel algorithms.

Another of the book’s aims, which is at least as important as teaching the subject
matter, is to develop in the reader the habit of always responding to a new algorithm with
the questions: How good is it? Is there a better way? Therefore, instead of presenting a
series of complete, “pulled-out-of-a-hat” algorithms with analysis, the text often discusses
a problem first, considers one or more approaches to solving it (as a reader who sees the
problem for the first time might), and then begins to develop an algorithm, analyzes it, and
modifies or rejects it until a satisfactory result is produced. (Alternative approaches that are
ultimately rejected are also considered in the exercises,; it is useful for the reader to know
why they were rejected.)

Questions such as: How can this be done more efficiently? What data structure would
be useful here? Which operations should we focus on to analyze this algorithm? How
must this variable (or data structure) be initialized? appear frequently throughout the text.
Answers generally follow the questions, but we suggest readers pause before reading the
ensuing text and think up their own answers. Learning is not a passive process.

We hope readers will also learn to be aware of how an algorithm actually behaves
on various inputs—that is, Which branches are followed? What is the pattern of growth
and shrinkage of stacks? How does presenting the input in different ways (e.g., listing the
vertices or edges of a graph in a different order) affect the behavior? Such questions are
raised in some of the exercises, but are not emphasized in the text because they require
carefully going through the details of many examples.

Most of the algorithms presented are of practical use; we have chosen not to empha-
size those with good asymptotic behavior that are poor for inputs of useful sizes (though
some important ones are included). Specific algorithms were chosen for a variety of reasons

viii

Preface

including the importance of the problem, illustrating analysis techniques, illustrating tech-
niques (e.g., depth-first search) that give rise to numerous algorithms, and illustrating the
development and improvement of techniques and algorithms (e.g., Union-Find programs).

Prerequisites

The book assumes familiarity with data structures such as linked lists, stacks, and trees,
and prior exposure to recursion. However, we include a review, with specifications, for the
standard data structures and some specialized ones. We have also added a student-friendly
review of recursion. '

Analysis of algorithms uses simple properties of logarithms and some calculus (dif-
ferentiation to determine the asymptotic order of a function and integration to approximate
summations), though virtually no calculus is used beyond Chapter 4. We find many stu-
dents intimidated when they see the first log or integral sign because a year or more has
passed since they had a calculus course. Readers will need only a few properties of logs
and a few integrals from first-semester calculus. Section 1.3 reviews some of the necessary
mathematics, and Section 1.5.4 provides a practical guide.

Algorithm Design Techniques

Several important algorithm design techniques reappear in many algorithms. These in-
clude divide-and-conquer, greedy methods, depth-first search (for graphs), and dynamic
programming. This edition puts more emphasis on algorithm design techniques than did
the second edition. Dynamic programming, as before, has its own chapter and depth-first
search is presented with many applications in the chapter on graph traversals (Chapter 7).
Most chapters are organized by application area, rather than by design technique, so we
provide here a list of places where you will find algorithms using divide-and-conquer and
greedy techniques. ;

The divide-and-conquer technique is described in Section 4.3. It is used in Binary
Search (Section 1.6), most sorting methods (Chapter 4), median finding and the general
selection problem (Section 5.4), binary search trees (Section 6.4), polynomial evaluation
(Section 12.2), matrix multiplication (Section 12.3), the Fast Fourier Transform (Sec-
tion 12.4), approximate graph coloring (Section 13.7), and, in a slightly different form,
for parallel computation in Section 14.5.

Greedy algorithms are used for finding minimum spanning trees and shortest paths in
Chapter 8, and for various approximation algorithms for NP-hard optimization problems,

such as bin packing, knapsack, graph coloring, and traveling salesperson (Sections 13.4
through 13.8).

Changes from the Second Edition

This edition has three new chapters and many new topics. Throughout the book, numerous
sections have been extensively rewritten. A few topics from the second edition have been
moved to different chapters where we think they fit better. We added more than 100 new

exercises, many bibliographic entries, and an appendix with Java examples. Chapters 2, 3,
and 6 are virtually all new.

Preface

Chapter 2 reviews abstract data types (ADTs) and includes specifications for several
standard ADTs. The role of abstract data types in algorithm design is emphasized through-
out the book.

Chapter 3 reviews recursion and induction, emphasizing the connection between the
two and their usefulness in designing and proving correctness of programs. The chapter
also develops recursion trees, which provide a visual and intuitive representation of recur-
rence equations that arise in the analysis of recursive algorithms. Solutions for commonly
occurring patterns are summarized so they are available for use in later chapters.

Chapter 6 covers hashing, red-black trees for balanced binary trees, advanced priority
queues, and dynamic equivalence relations (Union-Find). The latter topic was moved from
a different chapter in the second edition. '

We rewrote all algorithms in a Java-based pseudocode. Familiarity with Java is not
required; the algorithms can be read easily by anyone familiar with C or C++. Chapter 1|
has an introduction to the Java-based pseudocode.

We significantly expanded the section on mathematical tools for algorithm analysis in
Chapter 1 to provide a better review and reference for some of the mathematics used in the
book. The discussion of the asymptotic order of functions in Section 1.5 was designed
to help students gain a better mastery of the concepts and techniques for dealing with
asymptotic order. We added rules, in informal language, that summarize the most common
cases (Section 1.5.4).

Chapter 4 contains an accelerated version of Heapsort in which the number of key
comparisons is cut nearly in half. For Quicksort, we use the Hoare partition algorithm in
the main text. Lomuto’s method is introduced in an exercise. (This is reversed from the
second edition.)

We split the old graph chapter into two chapters, and changed the order of some
topics. Chapter 7 concentrates on (linear time) traversal algorithms. The presentation of
depth-first search has been thoroughly revised to emphasize the general structure of the
technique and show more applications. We added topological sorting and critical path
analysis as applications and because of their intrinsic value and their connection to dynamic
programming. Sharir’s algorithm, rather than Tarjan’s, is presented for strongly connected
components.

Chapter 8 covers greedy algorithms for graph problems. The presentations of the Prim
algorithm for minimum spanning trees and the Dijkstra algorithm for shortest paths were
rewritten to emphasize the roles of priority queues and to illustrate how the use of abstract
data types can lead the designer to efficient implementations. The asymptotically optimal
®@(m + nlog n) implementation is mentioned, but is not covered in depth. We moved
Kruskal’s algorithm for minimum spanning trees to this chapter.

The presentation of dynamic programming (Chapter 10) was substantially revised to
emphasize a general approach to finding dynamic programming solutions. We added a
new application, a text-formatting problem, to reinforce the point that not all applications
call for a two-dimensional array. We moved the approximate string matching application
(which was in this chapter in the second edition) to the string matching chapter (Sec-
tion 11.5). The exercises include some other new applications.

Preface

Our teaching experience has pinpointed particular areas where students had difficulties
with concepts related to P and NP (Chapter 13), particularly nondeterministic algorithms
and polynomial transformations. We rewrote some definitions and examples to make the
concepts clearer. We added a short section on approximation algorithms for the traveling
salesperson problem and a section on DNA computing.

Instructors who used the second edition may particularly want to note that we changed
some conventions and terminology (usually to conform to common usage). Array indexes
now often begin at O instead of 1. (In some cases, where numbering from 1 was clearer,
we left it that way.) We now use the term deprh rather than level for the depth of a node
in a tree. We use height instead of depth for the maximum depth of any node in a tree. In
the second edition, a path in a graph was defined to be what is commonly called a simple
path; we use the more general definition for parh in this edition and define simple path
separately. A directed graph may now contain a self-edge.

Exercises and Programs

Some exercises are somewhat open-ended. For example, one might ask for a good lower
bound for the complexity of a problem, rather than asking students to show that a given
function is a lower bound. We did this for two reasons. One is to make the form of the
question more realistic; a solution must be discovered as well as verified. The other is that
it may be hard for some students to prove the best known lower bound (or find the most
efficient algorithm for a problem), but there is still a range of solutions they can offer to
show their mastery of the techniques studied.

Some topics and interesting problems are introduced only in exercises. For example,
the maximum independent set problem for a tree is an exercise in Chapter 3, the maximum
subsequence sum problem is an exercise in Chapter 4, and the sink finding problem for
a graph is an exercise in Chapter 7. Several NP-complete problems are introduced in
exercises in Chapter 13.

The abilities, background, and mathematical sophistication of students at different uni-
versities vary considerably, making it difficult to decide exactly which exercises should be
marked (“starred”) as “hard.” We starred exercises that use more than minimal mathemat-
ics, require substantial creativity, or require a long chain of reasoning. A few exercises have
two stars. Some starred exercises have hints.

The algorithms presented in this book are not programs; that is, many details not
important to the method or the analysis are omitted. Of course, students should know how
to implement efficient algorithms in efficient, debugged programs. Many instructors may
teach this course as a pure “theory” course without programming. For those who want to
assign programming projects, most chapters include a list of programming assignments.
These are brief suggestions that may need amplification by instructors who choose to use
them.

Selecting Topics for Your Course

Clearly the amount of material and the particular selection of topics to cover depend on the
particular course and student population. We present sample outlines for two undergraduate
courses and one graduate course.

Preface

This outline corresponds approximately to the senior-level course Sara Baase teaches
at San Diego State University in a 15-week semester with 3 hours per week of lecture.

Chapter 1: The whole chapter is assigned as reading but I concentrate on Sections 1.4
and 1.5 in class.

Chapter 2: Sections 2.1 through 2.4 assigned as reading.

Chapter 3: Sections 3.1 through 3.4, 3.6, and 3.7 assigned as reading with light cover-
age in class.

Chapter 4: Sections 4.1 through 4.9.

Chapter 5: Sections 5.1 through 5.2, 5.6, and some of 5.4.
Chapter 7: Sections 7.1 through 7.4 and cither 7.5 or 7.6 and 7.7.
Chapter 8: Sections 8.1 through 8.3 and brief mention of 8.4.
Chapter 11: Sections 11.1 through 11.4,

Chapter 13: Sections 13.1 through 13.5, 13.8, and 13.9.

The next outline is the junior-level course Allen Van Gelder teaches at the University
of California, Santa Cruz, in a 10-week quarter with 3.5 hours per week of lecture,

Chapter 1: Sections 1.3 and 1.5, and remaining sections as reading.
Chapter 2: Sections 2.1 through 2.3, and remaining sections as reading.
Chapter 3: All sections are touched on; a lot is left for reading.

Chapter 4: Sections 4.1 through 4.9.

Chapter 5: Possibly Section 5.4, the average linear time algorithm only.
Chapter 6: Sections 6.4 through 6.6.

Chapter 7: Sections 7.1 through 7.6.

Chapter 8: The entire chapter.

Chapter 9: Sections 9.1 through 9.4.

Chapter 10: Possibly Sections 10.1 through 10.3, but usually no time.

For the first-year graduate course at the University of California, Santa Cruz (also 10

weeks, 3.5 hours of lecture), the above material is compressed and the following additional
topics are covered.

Chapter 5: The entire chapter.

Chapter 6: The remainder of the chapter, with emphasis on amortized analysis.
Chapter 10: The entire chapter.

Chapter 13: Sections 13.1 through 13.3, and possibly Section 13.9.

The primary dependencies among chapters are shown in the following diagram with
solid lines; some secondary dependencies are indicated with dashed lines. A secondary
dependency means that only a few topics in the earlier chapter are needed in the later

chapter, or that only the more advanced sections of the later chapter require the earlier
one.

xi

xii

Preface

While material in Chapters 2 and 6 is important to have seen, a lot of it might have
been covered in an earlier course. Some sections in Chapter 6 are important for the more
advanced parts of Chapter 8. ,

We like to remind readers of common themes or techniques, so we often refer back
to earlier sections; many of these references can be ignored if the earlier sections were not
covered. Several chapters have a section on lower bounds, which benefits from the ideas
and examples in Chapter 5, but the diagram does not show that dependency because many
instructors do not cover lower bounds.

We marked (“starred”) sections that contain more complicated mathematics or more
complex or sophisticated arguments than most others, but only where the material is not
central to the book. We also starred one or two sections that contain optional digressions.
We have not starred a few sections that we consider essential to a course for which the book
is used, even though they contain a lot of mathematics. For example, at least some of the
material in Section 1.5 on the asymptotic growth rate of functions and in Section 3.7 on
solutions of recurrence equations should be covered.

Acknowledgments

We are happy to take this opportunity to thank the people who helped in big and small ways
in the preparation of the third edition of this book.

Sara Baase acknowledges the influence and inspiration of Dick Karp, who made the
subject of computational complexity exciting and beautiful in his superb lectures. Allen
Van Gelder acknowledges the insights gained from Bob Floyd, Don Knuth, Ernst Mayr,
Vaughan Pratt, and Jeff Ullman; they all teach more than is “in the book.” Allen also
wishes to acknowledge colleagues David Helmbold for many discussions on how to present
algorithms effectively and on fine points of many algorithms, and Charlie McDowell for
help on many of the aspects of Java that are covered in this book’s appendix. We thank
Lila Kari for reading an early draft of the section on DNA computing and answering our
questions.

Of course, we’d have nothing to write about without the many people who did the
original research that provided the material we enjoy learning and passing on to new
generations of students. We thank them for their work.

In the years since the second edition appeared, several students and instructors who
used the book sent in lists of errors, typos, and suggestions for changes. We don’t have a
complete list of names, but we appreciate the time and thought that went into their letters.

The surveys and manuscript reviews obtained by Addison-Wesley were especially
helpful. Our thanks to Iliana Bjorling-Sachs (Lafayette College), Mohammad B. Dadfar
{Bowling Green State University), Daniel Hirschberg (University of California at Irvine),

NL J NL 1

Preface

Mitsunori Ogihara (University of Rochester), R. W. Robinson (University of Georgia),
Yaakov L. Varol (University of Nevada, Reno), William W. White (Southern Illinois Uni-
versity at Edwardsville), Dawn Wilkins (University of Mississippi), and Abdou Youssef
(George Washington University).

We thank our editors at Addison-Wesley, Maite Suarez-Rivas and Karen Wemnholm,
for their confidence and patience in working with us on this project that often departed from
standard production procedures and schedules. We thank Joan Flaherty for her painstak-
ingly careful copy editing and valuable suggestions for improving the presentation. Brooke
Albright’s careful proofreading detected many errors that had survived earlier scrutiny; of
course, any that remain are the fault of the authors.

We thank Keith Mayers for assisting us in various ways. Sara thanks him for not

reminding her too often that she broke her wedding vow to wark less than seven days a
week.

Sara Baase, San Diego, California
http://www-rohan.sdsu.edu/faculty/baase

Allen Van Gelder, Santa Cruz, California
http://www.cse.ucsc.edu/personnel/faculty/avg.html

June, 1999

xiii

Contents

Preface

Analyzing Algorithms and Problems:
Principles and Examples

1.1 Introduction 2
1.2 Java as an Algorithm Language 3
1.3 Mathematical Background 11
1.4 Analyzing Algorithms and Problems 30
1.5 Classifying Functions by Their Asymptotic Growth Rates
1.6 Searching an Ordered Array 53
Exercises 61
Notes and References 67

Data Abstraction and Basic Data Structures

2.1 Introduction 70
2.2 ADT Specification and Design Techniques 71
2.3 Elementary ADTs—Lists and Trees 73
2.4 Stacks and Queues 86
2.5 ADTs for Dynamic Sets 89
Exercises 95
Notes and References 100

Recursion and Induction

3.1 Introduction 102

3.2 Recursive Procedures 102

3.3 WhatIs aProof? 108

34 Induction Proofs 111

3.5 Proving Correctness of Procedures 118

43

Vil

69

101

xvi

Contents

3.6
37

Recurrence Equations 130
Recursion Trees 134
Exercises 141

Notes and References 146

Sorting

4.1 Introduction 150

4.2 Insertion Sort 151

4.3 Divide and Conquer 157

44 Quicksort 159

45 Merging Sorted Sequences 171

4.6 Mergesort 174

47 Lower Bounds for Sorting by Comparison of Keys 178
48 Heapsort 182

49 Comparison of Four Sorting Algorithms 197
4.10 Shellsort 197

4,11 Radix Sorting 201

Exercises 206
Programs 221
Notes and References 221

Selection and Adversary Arguments

51
5.2
5.3
5.4
55
5.6

Introduction 224

Finding max and min 226

Finding the Second-Largest Key 229

The Selection Problem 233

A Lower Bound for Finding the Median 238
Designing Against an Adversary 240
Exercises 242

Notes and References 246

Dynamic Sets and Searching

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Introduction 250

Array Doubling 250

Amortized Time Analysis 251

Red-Black Trees 253

Hashing 275

Dynamic Equivalence Relations and Union-Find Programs 283
Priority Queues with a Decrease Key Operation 295

Exercises 302

149

223

249

| |

A

AT

10

Contents

Programs 309
Notes and References 309

Graphs and Graph Traversals 313

7.1 Introduction 314
7.2 Definitions and Representations 314
7.3 Traversing Graphs 328
7.4 Depth-First Search on Directed Graphs 336
7.5 Strongly Connected Components of a Directed Graph 357
7.6 Depth-First Search on Undirected Graphs 364
7.7 Biconnected Components of an Undirected Graph 366
Exercises 375
Programs 384
Notes and References 385

Graph Optimization Problems and Greedy Algorithms 387

8.1 Introduction 388
8.2 Prim’s Minimum Spanning Tree Algorithm 388
83 Single-Source Shortest Paths 403
8.4 Kruskal’s Minimum Spanning Tree Algorithm 412
Exercises 416
Programs 421
Notes and References 422

Transitive Closure, All-Pairs Shortest Paths 425

9.1 Introduction 426
9.2 The Transitive Closure of a Binary Relation 426
9.3 Warshall’s Algorithm for Transitive Closure 430
9.4 All-Pairs Shortest Paths in Graphs 433
9.5 Computing Transitive Closure by Matrix Operations 436
9.6 Multiplying Bit Matrices—Kronrod’s Algorithm 439
Exercises 446
Programs 449
Notes and References 449

Dynamic Programming | 451

10.1 Introduction 452
10.2 Subproblem Graphs and Their Traversal 453
10.3 Multiplying a Sequence of Matrices 457

xvii

xviii Contents

10.4 Constructing Optimal Binary Search Trees 466
10.5 Separating Sequences of Words into Lines 471

10.6 Developing a Dynamic Programming Algorithm

Exercises 475
Programs 481
Notes and References 482

11 String Matching

11.1 Introduction 484
11.2 A Straightforward Solution 485
11.3 The Knuth-Morris-Pratt Algorithm 487
11.4 The Boyer-Moore Algorithm 495
11.5 Approximate String Matching 504
Exercises 508
Programs 512
Notes and References 512

12 Polynomials and Matrices

12.1 Introduction 516
12.2 Evaluating Polynomial Functions 516
12.3 Vector and Matrix Multiplication = 522
* 12.4 The Fast Fourier Transform and Convolution
Exercises 542
Programs 546
Notes and References 546

13 NP-Complete Problems

13.1 Introduction 548
13.2 Pand NP 548
13.3 NP-Complete Problems 559
13.4 Approximation Algorithms 570
13.5 BinPacking 572
13.6 The Knapsack and Subset Sum Problems 577
13.7 Graph Coloring 581
13.8 The Traveling Salesperson Problem 589
13.9 Computing with DNA 592
Exercises 600
Notes and References 608

474

483

515

528

547

