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Intent

The theory and methods of higher algebras are used in many branches of mathematics and in the fields of
engineering and science. The study of modern algebra helps equip the reader with the devices and the reasoning
skills necessary to solve such problems as encountered in these diverse areas.

This book provides a unified perspective; it helps in the comprehension of abstract algebra for both the
student and the professional alike, either for those applying the theory to other fields or as a tutorial review of
the subject.

It is designed to: (1) compile the classic topics of the field into a single reference; (2) identify selected
significant theorems as well as canonical examples and counter-examples; (3) recommend some classical
problems, such as may be encountered in a traditional undergraduate or graduate course of study or in
preparation for preliminary examinations; and (4) present the interrelation of topics, as a launching point for the
reader’s own efforts to unify the concepts and discover a cohesion among the myriad theorems, definitions, and
structures—a “big picture.”

The intended purpose of this book is as a digest of foundations and insights into introductory, general
material. It is effective especially as a supplement to other texts and authorities: those other resources which,
though exhaustive, traditionally make no overtures to present the big picture—the existence of which is the
main goal of this outline.

For more robust and detailed treatments of the many topics condensed here, the reader is referred to
authoritative texts, where motivations and elucidations, can be found.

Moreover, since this study is introductory, it will not undertake more specialized or advanced topics (such
as projective algebras, number theory, lattice theory, non-associative algebras, etc.). Matrices and linear algebra
are appropriately introduced in their natural context of non-commutative rings, and are generalized in Chapter 5,
on vectors; however, you will not study the mechanics of matrices in minutiae here, so as to avoid overlap with a
more complete development as can be found in Schaum’s Outline on Linear Algebra. Similarly, although an
introduction to Galois Theory is covered in Chapter 8, it is by no means an exhaustive treatment of the theory of
numbers and equations, which is better studied as an independent course.

A list of recommended readings on various related topics is provided in the bibliography.

The empbhasis of this reference is on the core entities of modern abstract algebra, and the powerful methods
it employs, from which the other forms and structures can be intuitively and automatically derived, and which
permits us such liberal interpretation so as to obtain the primitive forms with which we are already farniliar.

This “top down” approach is preferable in the study of higher mathematics, while it provides a complete
comprehension of the subject in context and in toto.

Format

The book roughly adheres to the following scheme: the structural entities of a given topic will be defined,
and illustrated by examples; the- devices employed in developing the theory will be reviewed; then the structure
and dynamics will be described by citing or demonstrating significant results/theorems, as well as typical
problems and exercises. In attempting to unify the myriad concepts and synthesize them for ease of
comprehension, it relies on the abundant use of heuristics, especially in the form of “quick notes,” which
are topic overviews that serve as indispensable study aids, to make the esoteric material accessible and obvious
at a glance. This rigorous digest of the subject helps to render it more palatable.
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Notation

Conventional notation will be employed whenever possible. The reader who is unfamiliar with the notation
encountered here may refer to the glossary for this purpose. For example, with respect to maps, the relation
f:x—y, is denoted f(x) =y (in contrast with the notations xf' = y, or x/ = y); also, the terms monomorphic
(one-to-one), epimorphic (onto), and isomorphic (one-to-one correspondence), are used to mean “injective,”
“surjective,” and “bijective.” Also, we will denote the natural numbers, for example, by either 4" or Zt
interchangeably. Generalized sums and products will be represented by the notations ), [] respectively.

Abbreviations are often employed (“e.g.” rather than “for example”; “i.e.” instead of “thatis ...”; w.rtin
place of “with respect to ...”; w.l.o.g. written as an abbreviation of “without loss of generality”) and QED is
employed to designate the completion of a proof (the demonstration of that which was to be shown). On the
other hand, the customary symbols of mathematical logic are omitted in favor of the more familiar “such that”,
“given any”, etc. ‘

Again, the reader is referred to the glossary for unfamiliar symbols, and is encouraged to become
acquainted with them, as they will most likely be encountered again in future study.

Credits

My most heartfelt gratitude goes to those who have been steadfast in their encouragement and those who
have contributed in grooming the resulting work, especially Dr. Peter Winkler at Bell Labs, for his unwaivering
faith in my efforts, the reviewer and copy editor for their eéxpert critique of the manuscript, to Mary Loebig Giles
for her extraordinary professional support and astute guidance, to the fine staff at Techset, and to Maria and
Louis Arangno, for ... everything.



INTRODUCTION

Once principally a discipline devoted to such fundamental problems as the solution of polynomial
equations, algebra has gained appreciation in modern times for the elegance, power and versatility provided
by its axiomatic approach. Often the rigorous logical methods of algebra prove as significant as the general
solutions to problems obtained by them. To wit, no longer are compass and ruler required to determine roots of
polynomial equations, once Galois Theory had been articulated, and suddenly quantum theory and computer
technology are made possible, . .. entirely through the devices, structures and methods of abstract algebra.
Indeed, its importance in other branches of mathematics is only recently being fully appreciated, even as the
modern algebra itself matures, but its immediate use for the student is readily apparent in his or her continued
study.
Algebra provides the formal language by which we can describe systems and relationships, both practical
and theoretical—from solutions to puzzles to quantum physics. The student is better equipped to formulate
problems, approach their solution, and master abstract material in every discipline, when acquainted with

algebraic forms and strategies.
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Rudiments

This chapter is devoted to establishing the key concepts upon which the study of Algebra is based. All
the branches of Algebra stem from a logical framework, as a natural consequence of some very basic and
. familiar tools, namely; set theory, maps, and operations. (For a reliable reference on general set theory,
refer to Halmos, or to Schaum’s Outline series on Discrete Mathematics, College Algebra, and Set Theory

and Related Topics.)
All subsequent algebraic systems, from the most basic to the most sophisticated, will rely on the

axiomatic approach used to develop the familiar basic arithmetical systems which we will review in"this

chapter.
We will examine the development of those ordinary number systems, and the properties they exhibit,

because we can generalize the axiomatic approach used in their construction to obtain more abstract
number systems which all adhere to the same basic principles and general forms. We will also review the
devices and tools that relate basic structures (called sets); specifically, maps, relations and operations.

Finally included are two significant results of elementary algebra; the existence of greatest common
divisors, and the Fundamental Theorem of Arithmetic (the Unique Factorization Theorem), which we will
encounter in more advanced study (such as in our discussion of Principal Ideal Domains).

1.1 SETS

Sets

e Any collection of objects, whose properties are “well-defined” (that is, membership in the collection
can be determined by the nature of the objects, without ambiguity), is called a set.

Usually denoted by a capital letter, conventional representations of a set include:

braces: A ={Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday}
B={a, b,c, ...]

“set builder” notation: A = {x|x is a day of the week}
B = {x|x is a small case letter of the alphabet}

o All objects satisfying the conditions of membership in a given set 4 (that is, all objects displaying the
properties defined by set A), are called elements of A4.
Written x € A, we say “x is an element of 4,” “x belongs to 4,” or “x lies in 4.”

We write x & A if x is not an element of A.
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e Two sets 4, B are said to be equal if they contain the same elements, in which case, we write 4 = B.
(That is, when we state 4 = B we mean x € 4 iff x € B.)

e The set which contains no elements is called the empty set, or the “null set,” and is written & = { }. If
a set A is non-empty, we denote this as 4 # .

e Wk take all sets under consideration as being subsets of a universal set, U, which may or may not be
explicitly defined, but often is implied from its context, and is understood to be the greatest set U #
which contains all the elements being discussed.

e Given sets 4 and B, if every element of B also is contained in A, then B is said to be itself contained in
A, and is called a subser of A, written B C A.

If A contains other elements besides those in B (that is, there exists x € 4, such that x ¢ B), we specify
that B is a proper subset of A, written B < 4.

o The collection of all the subsets of a specified set 4 is called the power set of A4, and is denoted
P(4) = {S|S C 4).

Observe that the empty set and the entire set 4 itself are elements of the power set of 4.

EXAMPLE 1

(@) Given the set 4 = {a, b. ¢}, we can define its power set, 2(4) = {J, {a}. {b}, {c}, {a, b}, {a, ¢}, {b. c}. A}.

(b 2(2) =1}

Operations on Sets

“Given sets 4 and B we define the following operations: -

— The union.of sets A, B is defined as the set of all elements contained in either A or B (which does
not preclude the possibility that there may exist elements in common to both sets); denoted by
AUB = {x|]x € A or x € B}.

We can also define the general union of sets 4,.4,.4;....,4,,as |J A; (Note: “union” is the
i=1,...n

set theoretic equivalent of the logical “either/or”, i.c., the logical sum.)

— The intersection of sets A, B is defined as the set of all elements contained in both A and B; denoted
by ANB = {x|x € 4 and x € B}. (Note: “intersection” is the set theoretic equivalent of the logical
“both/and”, i.e., the logical difference.)

We say the sets 4, B are disjoint if their intersection is empty, thatis AN B = (.

— The complement of B in 4 is defined as the set of all elements which lie exclusively in 4 but not also
in B; denoted 4 — B = {x|x € A, x ¢ B}.

Conversely, the complement of A in B is defined as the set of all elements which lie in B but not also
in'A; denoted B — 4 = {x|x € B,x ¢ A}.

Given a universal set U which contains both 4 and B, the complement of 4 1s defined with respect to
all the elements of U, denoted by 4 =4’ = U — A= {x € Ulx ¢ A). (The reader should verify
also. that if a set 4 is a subset of B then B¢ C A4.)

The following laws apply to the operations of the union and intersection of sets:
Idempotent law: (i) AUA =4

(i) ANA4A=4
Involution law:  (49) = A

In Exercise 1.1.1, we also prove:
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Theorem 1.1.1 Laws of Operations with Sets:

(/) Commutative laws of U and N:

AUB=BUA
ANB=BNA

(if) Associative laws of U and N:

AUBUC)=(4UBUC
ANBNC)=(ANBNC

(iii) Distributive laws:

AUBNC)=(AUBNAUC)
ANBUC) =ANB)UMANC)

The complementation of sets is governed by DeMorgan’s Laws (illustrated in Example 9), which we
demonstrate in Exercise 1.1.2:

Theorem 1.1.2 DeMorgan’s Laws: Given (non-empty) sets 4, B, C as subsets of a
universal set U, the following laws of complementation hold:
() (AUBY =A°NB
(ANB) =A°UB
() A—(BUC)=A—-B)NA-C)
A-BNCO)=U—-BUU-C)

(These laws of set operations can also be reviewed in the Schaum’s Qutlines previously mentioned.)

e Iftwo sets 4, B have no elements in common, that is, their intersection is empty (4 N B = (&), we say
they are disjoint; in which case, also, we observe that A — B =4, B— A4 = B, etc.

e IfANB =AU B, then 4 = B. This implies that 4 = B = AN B = 4 U B. That is, sets are equal if their
union and intersection agree, in which case we can also write 4 ~ B = (J = B — A.

e If two sets can be placed in one-to-one correspondence with each other, they are said to be “cardinally
equivalent,” that is, they have the same cardinality. (See section 1.2.1 for further discussion of one-to-
one correspondences as maps between sets.)

EXAMPLE 2 Any set which can be placed in one-to-one correspondence with the set {1,2, 3} has precisely
cardinality 3.

EXAMPLE 3 The set of even integers has the same cardinality as the set of odd integers.

EXAMPLE 4 Any set which has the cardinality of the natural numbers, 4/, referred to as “aleph-0” (X)), is said to
be “countable.”

EXAMPLE 5 Any set which has the cardinality of the real numbers, R, referred to as “aleph-1” (X)), is said to be
“uncountable.”

EXAMPLE 6 The set given in Example 1, 4= {a,b,c}, has cardinality 3, hence its power set,
P(A) = (. {a}, (B}, (¢}, {a. B}, {a, c}, B, ¢}, 4}, has cardinality 2°> = 8.
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EXAMPLE 7 In general, if a set 4 has cardinality n, then its power set has cardinality 2".

Venn diagrams
o Venn diagrams (Fig. 1-1) provide a pictorial representation of sets 4. B within a given universal set U.

Inspection of such an illustration of sets helps us to visually identify and describe the regions
containing elements resulting from operations between those sets, as depicted in the following
examples.

U

Fig. 1-1

EXAMPLE 8 - Figure 1-2 shows examples of Venn diagrams in illustrating operations between sets:

AUB ANB

A-B (U-B)= B¢

Fig. 1-2
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B-A4 (U-A4) = A°

Fig. 1-2 (Cont.)

EXAMPLE 9 An example of DeMorgan’s First Law (Fig. [-3).

m L f

Important Note: Be cautious not to mistake the use of Venn diagrams as proof of a claim; such
diagrams are intended to be heuristic only, to serve to illustrate the operations involved. :

Partition of a Set

e Aset {4}, ., of non-empty subsets of a given set 4, which are pair-wise disjoint, and whose union
equals all of 4, is called a partition of A.
Specifically, we say that 4 is the “disjoint union” of those subsets, denoted by 4 = _i=l,n A;, (since

A;NA; = & for each pair of indices, i # j).

EXAMPLE 10 If (B, C) is a partition of a set 4, then BU C = 4, and BN C = . Observe moreover, that:

e B-C=8B
o C°=4-C=8B C°=A4A—-C=B
o BUC =4

There exist more than one partition of a given set.
(Note: This is an important concept not only in the study of Algebra, but also in Analysis and

Topology.)
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Cartesian Product
e Given two sets A and B, we define the Cartesian product, A x B, to be the set of ordered pairs (x. y)
such that x € 4, and y € B.

Specifically, we write the product set as 4 x B = {(x, y)Ix € 4; y € B}
We note that elements (a, b), (d’,b’) € A x B are “equal” if and only if a =a' and b= 4.

EXAMPLE 11 Let A ={1,2), B={3,4}; then 4 x B = {(1, 3),(1, 4), (2, 3), (2. 4)}, which is distinct from the
product set B x A = {(3. 1), (4, 1), (3, 2), (4, 2)}.

Note: We can represent these sets of ordered pairs as points in the real plane (which is itself the
product set R x R), using the Cartesian coordinate system, as shown in Fig. 1-4.

B B
A AxB ‘r Bx4
44 o o 4
3 (o] (o] 3+
24 24 o o
1 14 o °
T T | R M—— T T T — 4
1 2 3 4 i 2 4
Fig. 14

EXAMPLE 12 Given sets 4 = {x|0 < x <4}, B = {y|ly = x}, then 4 x B can be represented by the graph in
Fig. 1-5.

oo
 J

Fig. 1-5

Note: Our familiar representation of “functions,” to be examined in the next section, relies on this
construct of the Cartesian product of sets, and moreover, we are already acquainted with a geometric
interpretation of functions defined over the real numbers R as “graphs” on the real plane, R x R, ie., as
subsets of that greater product set, using “Cartesian coordinates.”



