

"TP316
43

I/ Hs T heke s BpHE SRARE Bkt

RIERIR: MRS
(SR _hi SCIEERRAAR)
(583 hif)

Operating Systems: A Modern Perspective
Second Edition
Lab Update .

Gary Nutt

ARBB B REH

EHEERARE (CIP) B

BAERG: DUCA: B2 TREFR: B3R/ () i (Nuw,G.) SRE.
—IbR: ARHFERHBA, 2002.8

H4 E 2 B E A B SRR EZEH

ISBN 7-115-10344-5

Lo¥... IL #.. I HERSE K —AEEE—8H—%L IV, TP3i6
ER A EBE CIP BIEZF (2002) 3 055202 5

MR E B
English Reprint Edition Copyright © 2002 by PEARSON EDUCATION NORTH ASIA LIMITED and POSTS &
TELECOMMUNICATIONS PRESS,
Operating Systems: A Modemn Perspective, Second Edition, Lab Update
By Gary Nutt
Copyright © 2002
All Rights Reserved.
Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addison Wesley.
This edition is authorized for sale only in People’s Republic of China (exciuding the Special Administrative Region
of Hung Kong and Macao). '
FHHTWMHA Pearson Education (EER B HAEE) RABHFEE, THESERENE,
EsF £ B FRBE RN FEERARBEH
BIERG: MEME (M TREHAE)
(B3RO

* K Gary Nutt
BiIHE ZF B

& ARSPHRHREBBRRT RrmRxEsmee 4
BE4 100061 BEFEHM I15@ptpress.com.cn
Bk hitpwrwew. ptpress.com.cn
EENE 010-67180876
RN RE SRR A HE

JC M B ENRIT ENRY
T BEREIL R RITHREY
4 F&: 5001000 116
Egg: 445
TH: 95 T 20024E8 A% 1R
FN¥: 1-3 000 it 2002 iF 8 AdLRE 1 KR

EERERBE EF: 01-2002-3752
ISBN 7-115-10344-5/TP * 2903
FEHr: 52.00 7T
FHUNBNERBITE, RSEHBER BiF: (010)67129223

N R E

APR—ABERKREENZIEM, SHHEFHNE. B8N
ERAPHAT, BREIBERANEM, KPP —SABRERTRN
ARBERZRIMARBIS ROBRE: B BABMAFERIRERE,
HAREHAERERL: BSENBRERENERALRLIEE, B
MEABHEHNRAL. NEESHARARTRERENENELS, Bk
EFAENARSTHE, HUREEHER. SHRARERT. EAEE
E+ENBHEETE, HOEANSARERNTEES. BRASNER
B ELEABEERE: BASINEERORDSFE SNAENEH
BHES TS S FEARRMAE. £5 SN ETHEEE, 8+
“ENARMMEEE, B+ ESAEAEE, SIS BRI
MZEER. B+HEEHLEABTEHIB R EOREREER,
HYE+RAENMBRBEHE, BIAESNBTEIAEE; £HLENE
STV, QESARBREE. WEEENE. TR RS AR
NEER, BSES T ABNET — LB ERKLH], A3 UNIX. Linux.
Windows NT. Mac OS 1 Chorus f A i EE4ER .

ARREDTENRENTREASUEMREK, BT LA
nE%.

th kR 5t B

2001 F, HEMEORT OF “TH” YT ERSEHETEMBERESRENELY. %
XHHHIEY, WA MARERBESE “FESEM, 2EREER” FEEST. #
BT HFEBARNE, =ET KM EAHCERaNHEM . ATMEEREERN CERR,
HArm 8 3% TG T8 e, - B8R AERR, TeEsAEEnE
ARBITRHFHRAEREENTE., RSO ARRE, BNEESEH5I3TE.
N, FLENESRREBRESERR YRS SRR REH N0 . BRBET Y GRED
BRNFE, BXHEAEE., TR SGEEMEFEHM . BEESIHEMBESERE,
ISR SIS B B A, (R 53 SR B A HE .

RN EERTE 1977 FRAFHIEDY. “F3134 B8, RSN EEM FERBER.”
FEEREMA WTO, FEMLIEEFSH B EET, RODFRRERS M ETERES
FRENMBAFERERAL . 86 B — MR T, Hin—RBEH RBNES,
i HER G TIRS F R A ERNELEF . SIS ESEREAM, TR R ER KN
B, REFEMRIKPHEIRS, FERIMEFRG00E4E G BRKE.

ATEMTR “HEXNE” K7, BRAENRSEEEMERHTE, ARBEHEBR
HEPFEREEREWE, SEIMMLREMHRARSE, REs— a5k
MBFEH . BB N T TR0, RESNE L B bR AT A s,
EMAEEBRAMXFEETR AN TRESE. REHM AT, o T HEREER
MBB AR, NEmRRRE GRS ARSEEAT YHER E Xz,

MR E S E 2R FR K E B ESERRFRMO TSR - KN, BB
e, BAMH (www.ptpress.comen) A8 T RAIGHEEHH OB B EEE R, HigEE.
BRI KRBT EAAE T R AR RBRARL], RITHRIBE N R sst
BATRI LA, HEHE B FAT 5 RIS SRS SRR M .

AR e AR At
2001 & 12 A

5

BRERGRUENAZEELINAZRMYG, CEEERAENNOSZH®RME., 3
g, MHEFRE-ADFE. % 4. EMERTENN THERE.

ARR—FBERFFENEM, REEFNTRN L X¥ETEVREF Gary
Nutt BBEMEM (BRIERZK: BAIAY ME R TRFHKR, RIESTEKY
FHREREHEPEFH R TERN . XEHEMERTHRERENEARS. T
EIR KRR, THESSHNE LTBREAN. APt EHRNE
BHE S, BREEMTMETRERZENEE S, 24T X8 UNIX. Linux.
Windows FYSCERACES . ik, KB/ i BN SRR 4R ST RE

ABEREM, RUET 4 FHIEFERANAE: F—, STEIE, ﬁﬁ):
ARG T EFHRLE I, ﬁ%ﬁk%?ﬁﬁﬁfﬁ%%ﬁﬁﬂﬁ@ﬁﬁﬂﬂ%, 2, M
HEA BT, ATWHRREREARITEFANERBERENRENELATE, X
EWAR. FER. FEROMRINET 2 ARSNER, 5=,),
XSk 5 LR R RGEH (IS 52) 5 Bh A B AR AR 4 AR 00N 300 2 0 A SR TR A9 5
HP, LB, BNEIBRE—ANEE, R EHXE RS, RN
WFR A R) 7 TR, AT DS AR ERAESE S, M 3R 8 I 4 A
Windows 1 UNIX fIZ0 25,

FRUNTNE., E—FHENERNBUNE, BEIBERSNILRM, B
TR -ENBRERER T ATRERERMAREIASRKWIURN; S-S/
BUMAERBRERE, FHREHBERERS: E=SNHREZRENEAHAR
AR, BB AT S EH bk%i‘i—%ﬁﬁz‘ﬁﬁﬁ:rﬁﬁfﬂ%ﬂﬁ%/“ﬁﬁ
7, BHRERLEMTREEE, BHEEAER, EHRAGEKES, %/\
BFERTENFHBEEE, HPBEANINAESNELSES. HRARNREY
B:; BLENAEREE: FNAENFEANFRD HE SAENEERENRS
Tk BTENBESRE. EE T -ENBNEETE, S-S0 A8RAE
EFH, BH=SA84EE, FNENBEPVFMZL%E, B+HEE
TEEABT XBESHRTEOREREER, HPE+FSNERNESHE, &
TAREAATRHEE: E-EENMBIATE, AESHFRIRBRTE. WA

1

Figflhl, cRESERRANSAAANFERE. BREESTAENAT —HBRER
#3LPF|, 1945 UNIX. Linux. Windows NT. Mac #1 Chorus T WAZHE1E R 4.

S HRERTEIRIZN TEERVEM RSN, Balf{EGXBHEARSE.
AT HRBHEBENEESR, BFUNEMREHEERERT, BOFHERE.
BEMGE, FEEZMEER RN, NRE 0T S ML) B KR
JCH R T EYE W ENIGREFEE D, UMEMSRE.

ﬁﬁf

 E B B R R
FleS

X%

R B B R BT
ST R Pt

’I;) my wife and best friend, Mary, and my
grandson and best buddy, Scott

Preface

To the Student

Operating systems is an exciting software
area because the design of an opérating
svstem (O8) exerts a major influence on
the overall function and performance of
the entire computer. When studying oper-
ating systems for the first time, [believe
that it is important to understand the prin-
ciples behind the designs of all operating
systems, and also to see how those princi-
ples are put into practice in real operating
systems. The goal of this book is to pro-
vide a complete discussion of OS princi-
ples, supplemented with code, algorithms,
implementation issues, and lab exercises
to provide you with an understanding of
contemporary OS practice. I have
attemnpted to differentiate the conceptual
material from the applied material by dis-
cussing the principles in the main flow of
the text, and placing much of the practice
material in supplemental discussions and
lab exercises.

The heart of the matter is the con-
ceptual material. Many OS principles can
be described in formal (mathematical)
terms or in informal discussion. Informat
descriptions are relatively easy to read,
but formal descriptions are more precise.
For example, an informal discussion of a
dictionary might explain that it is “a list of
terms with their definitions,” whereas a

Features at a Glance

This boek provides a comprehensive description of OS
principles, supplemented with the following:

8 Analytic exercises to stimulate thinking about GS

principles.
In the Hangar sections to show how the principles are

applied in practice in the UNIX family and Windows
operating systems.

Performance Tuning sections to explain how system
designers have exploited the basic principles to
achieve higher performance than could otherwise be
achieved.

Laboratory exercises to allow students to gain hands-
on experience with the details of how to use Windows
and UNIX. Each lab exercise begins with a problem
statement, followed by a Background section, and an
Attacking the Problem section. The Background sec-
tion is a detailed discussion of information needed to
gain comprehensive understanding of the problem and
to create a design for the solution. The Attacking the
Problem section provides specific guidance for solving
the problem. In early lab exercises, the background and
solution design discussions are more comprehensive
than they are in later exercises. This allows students to
get a significant amount of help in solving the early
exercises but requires them to develop their design
skills with each subsequent exercise.

formal description might indicate that a dictionary is “a mechanism, f, to map a ternt, x,
to its definition, f(x).” The first explanation is intuitive, the second focuses on the

FPREFACE

logical intent of the dictionary. The first description suggests a list or table implementa-
tien, the second admits implementations ranging from tables, to lists, to associative
memories, 10 databases, to network servers, and so on. The informal definition connotes
word dictionaries, but the formal definition applies just as well to compiler symbol
tables. My goal is to explain general OS principles so you will have a deep understand-
ing of how an OS is designed. This goal is best supported using formal descriptions
because they focus on the logical intent of the concept rather than on an example of how
the concept is implemented. This has motivated me to describe OS concepts using
informal or specific descriptions in the early chapters, but with increasing amounts of
formal discussion as you progress through the book. In Chapter 7 you will see some for-
mal discussion about scheduling coupled with the informal discussion, then more
formal discussion about deadlock in Chapter 10, and even more in the discussion of vir-
tnal memory in Chapter 12. The formal discussion of concepts is always accompanied
by informal discussion and examples.

Operating systems are designed around performance issues. However, detailed dis-
cussions of performance tend to obscure the concepts. In this case I decided to forgo exten-
sive coverage of analysis and performance theory in favor of a generally informal
explanation of perfor-
mance issues. This will

encourage you to develop
your intuition on perfor-
mance issues so that you
can study them formally

7.3 W NDWRNEEMETEVE SIMATEGIEY 203

SAEMFORMAKCE THNING

Predicting Wait Times for FCFS
later. If the comments

g V16 ook deificuit W pre- sl L oof hem o be processed. When p, wrives, L = % the
about performance fit natu- diet umalyteally a The svcrage tims for the enimuted waking time for p,

. . Process’s wait titne under process that 19 already wdng s thus

rally into the description of FCPS sohicdaling, Suppose the U ot of iy servien e 2

we know the servioe rtte, 1. tme, or M), Acconding to P Pa = LA+ 1420
the concept, [have Lt £ be the length of the the FCES policy, only the load z :&1;3001 + 150
. . R goene 3 the time process p dhat is pressor when process p B
included them with the dis- s We can hen eximate smmses s eleosnt moe acy Notee tat dn chimte

cussion of the concept.
However, in those cases
where the performance
issues add a level of com-
plication to understanding
the principle, I have sepa-
rated that discussion from
the conceptual material by
placing it in a distinct Per-
Jformance Tuning section.
As | mentioned ear-
lier, experimentation with
real OS code provides you
with an understanding of

the nime that 1he new procesa,
B waill have to it befors 5
begunsg 10 recerve service:

Wiph = L1 + 121104
@ LA+ b

Here i the raomake for this
eaprewion: I each job: in e
e oAsE un mverage of 14
tme yuls for service, L1}

wall be the amoant of time for

snbaequenl provedscs wall be
wtrved after process p
n the example, we could

citimate Wip,), which 15 1200
in the Gamm chert, by compui-
ing the service fime
{lfh or 7Y of the first four
Prodsss:
=AM 125 ¢ 475 4 25O

=1 X4

= 300 time yyits,

ssouyes half of a job hes
akresdy mxccuted (W did mot
assyme ghus i e Ganom chart ¥

tlmes will never he served This Intat starvatn of lange processea may be & serlous ha-

bility of the scheduling algonthn.
Agan suppase the ready bist contus the proveanss shewn i Table 7.1, The arrlval
srder 1s wovelevant bere provided all of the processh are dleady in the qrewsa the time

how OS concepts are implemented in real systems. 1 have also provided two other types

of material to help you learn about current OS practice: In the Hangar examples and
Laboratory Exercises.

2 Jn the Hangar examples explain
how concepts are used or imple-
mented in UNIX, Linux, Windows,
or other operating systems. Many
of the In the Hangar scctions are
code examples. The intent of
including code examples is w pro-
vide you with insight into how an
0S8 can implement the theory.
A few of these code examples are
complete programs that have
been compiled and executed. Most
examples, however, are simply
descriptions of algorithms or
techniques using the C program-
ming language. These abbreviated
descriptions deliberately omit fine
detail that would be necessary inan
actual implementation but that do
not contribute to the understanding
of the algorithm, The context in
which the code appears should
make clear when the code is an
actual implementation: otherwise it
should always be assumed (0 be a
description of an algorithm or tech-
nigue. 1 have experimented with
using pseudocode languages for
these descriptions, but students and
reviewers have consistently pre-
ferred the use of C, Be careful not
to interpre1 the descriptions in C as
complete implementations.

The book also includes several
Laboratory Excrcises; each exer-
cise poses a problem then provides
you with comprehensive back-
ground information needed 1o solve
the problem, and 4 section to help
you plan your solution. These exer-
cises will give you valuable prac-
tice with wvarious UNIX and
Windows operating systems. Your
instructor may have chosen for
your course to go into more detail

PREFALE

91 F B LOW-LEVEL FILE [VPLEMENTATIONS

= IN THE HANGAR

425, A28

The UNIX file stiicture uses a variant of the indexed allocaton scheme The
storage device detall part of the inede contains pminters to 15 different storage blocks
of 4KB each {see Figure 13.13), The first 12 blocks of the file are indezed directly
from the first 12 of 15 pointers m the inode, The bast three pointers are used lor indi-
rcet pointers through indey Blocks, If the lile manager 15 configured with KB
blocks, the 12 dircet poimters m the wnode sccomipodae files up ko 48KB.
Expericnce indicates Gris 15 an efficient mechansgm for addresming the blocks (see
[Omsterhout et al. 1985])). I a fue requires more than 12 blocks, the file system

mede E‘ [lata
Tode N
wwner : L T
[grgt Bk 3 i ; D‘%ta
Jgr i 7 nECEEE

[DirectBluck T
Mapect Biock L] -4
Single Indiect
Drouble Indioeed 1+
Triple indirect -}

[- ——

; Index

; A

L2 EXEICISE OBSFAYIML 0% BLHAWLIS 111

Lab Exercise:
Observing 05 Behavior

| This 4610 wan b acvrd o Solans and L, <y e

In s chapter you have learned that the 95 's o program that wses varpus data
sbructires Like al progeis 11 exccubion, you can detarmine the pertormance and
other behawor of the 05 by wspectng its stabe—the values stiied 0 1ts data st uc-
tures, The goal of this eseleior 15 to study same aspects of the orgamzabian and
behawior of a L'nux syseeal by ohsenang valies 1n kernel data structuras.

Wnte a program tu repart the behavior of the Linuy kernel Your program shayld
hawe *lirer differant cptions: The default version should pnnt the Fallowing values on
EENFSTY
& CPU bype and madel,
 fernel version

& Amount of ame since the system was last brigked

A seconl vemmon of the mgram should prin- the same nformation as the first ver-
sigr plus

157243%3
1 b

& The amount of time the CPU has spent 1 wser mode, systerr mode, and the
ariourt af time the sysem was dle

The rumier af sk requesty made on the system

Thi rumaer of contest ywitches the kerne has perfaimed

The time at which the system was Last brobed

The rumper of processes that have laen created since the system was boated

Tlee \ast versizn of the program shauld print the s3me [nformancn as the secand ver-
w10, plus {be sure ta wok ot the relevant men pagqes far Jacac To Get mdie chntet
fur 1lie requested infarmatin)

® The amount of merary c crhgured fnte ths comuater

B L Ty T

% 2

TR

PREFACE

with UNIX systems vsing the companion book on Linux internals [Nutt, 20017,
Alternatively. there is a Windows companion manual for Windows NT (that also

applies to Windows 2000) [Nutt, 1999a].

The study of operating systems has traditionally been one of the most challenging
and exciting software disciplines in computer science. 1 hope this book makes complex
aspects of operating systems easy to understand and avoids making simple aspects bor-
ing. Good luck in your study of operating systems; I hope you enjoy it as much as 1 do!

Topic Order

The order of presentation is based on the response to the first edition of the book, my
expericnce tcaching O8, and the input from many other iastructors. This organization

Changes in the Second Edition

This edition is based on the constructive criticism I have
received from people who used and/or reviewed the first
edition. The goal in the previous edition was (o separate
the hands-on material from the principles; the comments I
recetved indicated that instructors preferred better integra-
tion of simple examples. I have dropped the In the Cockpit
examples that were used in the first edition, and greatly
reduced the nember of In the Hangar and Performance
Tuning examples, Most of the material that appeared in
the omitted exarnples has now been incorporated into the
main text. Since the frequent examples in the first edition
often made the mainline text difficult to foliow, the book
has been redesigned so that the remaining In the Hangar
exampies and Performance Tuning discussions are more
easily distinguished from the main text.

Chapters 2 and 6 were reorganized and revised. The
intent of Chapter 2 is for students to focus on using
processes and resources, especially for concurrent appli-
cations. Chapter 6 is the cornerstone of the process man-
agement design discussion. The rewritien chapters now
have better focus than they did in the first edition.

The most significant content change in the second
edition is the addition of the laboratory exercises, A
shortcoming of the first edition (and other conceptual OS
textbooks) is the lack of material to support experimental
lab exercises. This ofien forces students to purchase a
second book to use with the laboratory component of the
OS course. The second edition is a self-contained book
including material for lectures on OS concepts and for
recitations on OS practice.

thus reflects the combined knowledge and
practice of many different teachers and [
believe the result is logical, conducive to
learning, and generully accepted by most
OS instructors.

Each chapter begins with a transition
from the previous chapter and a preview
of what is covered in the current chapter.
You can look at this material as well as the
summary at the end of the chapter to get a
quick idea of what a chapter is about.

Chapters 1 through 4 consist of
important introductory material that pro-
vide a solid foundation for the study of
operating systems. Teachers may decide to
go over this material rather quickly, per-
haps assigning it as cutside reading mater-
ial, especially if this was covered in
prerequisite courses. However, under-
standing this material is critical before you
dive into the further study of the meat of
operating systems, starting in Chapter 3,

® Chapter 1 shows how operating sys-
tems fit into software technology. In
eartier drafts, a historical perspective
had been included; instructors tend fo
like a little history and context, but
many students think it is boring, so I
have dispensed with a separate discus-
sion of history.

® Chapter 2 is unique among operating
system books in that it considers how to
use an operating system, particularly
how to use mulitiple processes. This

PREFACE

chapter was added because my experience with computer science juniors and seniors
is that they may have written considerable single-threaded code but are far less likely
to have written or studied multithreaded software. This chapter offers an immediate
opportunity to learn this new material.

® Chapter 3 describes the fundamental organization of operating systems, including
implementation strategies.

® Chapter 4 finishes the preliminaries for studying operating systems—computer orga-
nization. For students who have already taken a computer organization class, the first
half of Chapter 4 will be review. The second half describes interrupts, emphasizing
the aspects that are critical to operating systcims.

Chapter 5 describes device management, specifically general techniques, buffer-
ing, and device drivers. 11 is tempting to become completely immersed in Linux device
drivers. However, in the main part of the chapter I have resisted this temptation to focus
instead on a macrolevel view of the purpose and general organization of interrupt-dri-
ven /O, Included are extensive discussions of device drivers, but these stop short of
providing an actual Linux driver. The chapter examines devices before considering
processes because devices provide an elementary case in which physical concurrency
exists in the computer and the software must be carefully designed to control that con-
currency. This provides a natura} introduction to process management.

Chapters 6 through 10 are devoted to process management. They start from the
basic tasks and organization of process and resource managers (Chapter 6) and move to
scheduling (Chapter 7), synchronization {(Chapters 8 and 9), and deadlock (Chapter 10).

Chapter 11 deals with traditional issues in memory management, while Chapter
12 covers the contemporary approach to memory managers using virtual memory.
Because of the popularity of paging, most of the discussion is directed at this technol-
ogy. However, with the current trends in memory technology, it would be a mistake to
ignore segmentation. Thus part of this discussion deals with segmentation.
Unfortunately, the best exarmple of a robust segmentation system is still the {now obso-
lete) Multics system,

Chapter 13 describes file management. Less space is devoted to file management
than is customary in operating systems books because it is not as difficult to understand
as process management and memory management. The laboratory exercise provides a
means for taking a closer look at the details of file management. This discussion is aug-
mented in Chapter 16, which deals with remote files,

Chapter 14 provides a general discussion of protection mechanisms and security
policies. It might be argued that this section belongs in the process management discus-
sion, although much of the technology is just as closely related to files, memory, and
other resources. It is much casier for someone to appreciate the need for protection and
security after they have seen the process, memory, and file managers.

Chapters 15 through 17 introduce QS technology to support distributed computing.
Distributed computing is a dominant aspect of modern operating systems and 1 feel

strongly that coverage of this important issue belongs in all introductory texts on oper-
ating systems,

PREFALCE

To the Instructor

Operating systems conlinues to be an essential computer science course, yet as [have
taught it over many years, | became increasingly dissatisficd with the OS texts that
were available. [sought a book that had more content on principles than the cxisting
ones. At the same time, 1 felt that if my students were not exposed to extensive lab
practices, the principles would be difficult to absorb. The first edition described OS
principles ai a level i felt was necessary. and now this edition adds material to explic-
itly support the practice component that is so important ¢ understanding operating
systems.

The main thread of this book concentrates on OS concepts, usually illustrated
with brief examples. The In the Hangar and Performance Tuning scctions are more
extcnsive examples or explanations of concepts. usvally providing a practical per-
spective on the conceptual material that they follow. Hf you want your students to get
an applied perspective of the OS, you should explicitly assign these supplementary
sections as reading, The new Laboratory Exercises are accompanied by the applied
material a stident needs to solve the probiem in a UNTX and/or Windows environ-
ment, The intent of including these exercises is 1o provide you with a single book that
can he used to teach conceptual material as well as basic lab materials.

Many books begin with materials on process management. In my classes, [have
found that it is necessary to provide background information of the type in Chapters 1
through 4. Specifically, my experience shows that it is really worth the time to lecture
on the material in Chapter 2, since very few students have used fork and exec (or their
analogs in non-UNIX systems) before they take an OS course. The Laboratory
Exercises in Chapter 2 atlows students 10 learn about basic concurrency concepts.

I start the detailed discussion of operating systems with device management. At
first, you may find this approach unusual, although it follows the (raditional evolution
of operating systems. A natural segue exists from the discussion of interrupts in Chapter
4 10 the discussion of device management in Chapter 5. This approach provides a sound
foundation for introducing independent threads of execution (in the hardware and the
software), concurrency, and synchronization. After you have finished the device mater-
ial, it is natural to general iZe these ideas into process and resource management, sched-
uling, synchronization, and deadlock.

Memory managesnent is also imporiant and another topic instructors usually want
to address as soon as possible. I choose to phase it in after process management and
then move to file management. Then I finish the essential material with a discussion of
protection and security, which is deferred until the student has had a chance to absorb
the notions of process and various Kinds of resources (generic resources, mermory. and
files).

Any contemporary OS must be built to operate in (or be evolved to) distributed
systems. All corrent research on operating systems is deeply influenced by distributed
operating systems, Chapters 135 through 17 introduce distributed operating systcms
after all the discussion of traditional topics has been covered. Because of the nature of
commercial systems and networks, an instructor would be remiss to compietely ignore

these topics in an OS cowse. In a one-semester course, [spend two to threc wecks on
this material.

PREFACE

Finally, in spite of al} logical intentions it is impossible to organize this material so
that it meets every instructor’s desires. The organization I use in my course is reflected
in the book. However, there is no particular harm caosed by shuffling the material to
suit individual desires.

Today, there is a wealth of information on operating systems available on the Internet
through [ip sites and on the World Wide Web. I would encourage you to point your stu-
dents toward them. Because such sites change so frequently, T mainiain a Web page at
http: / /fwww.cs . colorado. edu/-nutt /osamp. html where I keep a current set of links
to relevant operating systems information. If you have some material that should be
shared with cur readers, let me know (email me at osamp@cs . colorado.edu) and I will
add it to the page. I also welcome your questions, comments, suggestions, and advice (and
I will even try to aceept your eriticism in good humor :-)).

About the Laboratory Environment

There are only a handful of widely used commercial operating systerns. While studying
these sysiems is valuable, there are practical barriers to experimenting with any of them
in the classroom. First, commercial operating systems are by definition very complex
since they must offer full support to commercial applications. It is impractical to cxper-
iment with such complex software because it is sometimes ditficult to see how specific
issues are addressed within the software. Small changes to the code may have unpre-
dictable effects on the behavior of the overall operating system, Second, the OS sofi-
ware sometimes has distinct proprietary value to the company that implemented it, As a
consequence, the company may be reluctant to provide OS source code to anyone wish-
ing to study and learn how the implementation was done,

I havc cxperimented with two approaches to this problem in the classroom [Nul,
199%b]:

" Base the course on an external view of real operating systems; this is essentially the
approach in the ACM/IEEE 1991 curriculum recommendation,

= Base the course on an internal view of some “manageable” QS.

[have also discussed this problem with numerous OS instructors (including partici-
pants at a Birds of a Feather session at thc Operating Systems Design and
Implementation meeting in New Orleans in February 1999). There is general confusion
about choosing the right laberatory component for the undergraduate OS course.
However, at the OSDI session, those in attendance unanimously agreed that the external
view of an OS should be used in the first OS course.

This book provides materials 1o study the external view of Linux and Windows
2000. If you want to use Windows 2000 to teach the external view, the companion lab
manuai [Nutt, 1999a] provides more than enough exercises for a one-semester course.
All of the iab exercises have students write user space code that allows them 10 get spe-
cific insight into the way the kernel works. The dependence on “crashable” lab facilities
was My primary consideration in deciding not to include a device driver lab exercise.

While there is general consensus that teaching OS internals in the first course is too
difficult, there is nevertheless a strong desire to offer an OS intemals course as early as
possible in the curriculum. If you decide to teach an internals course—as the first or

PREFACE

second course—your choices are limited: Linux or FreeBSD if you want to study a real
OS. or one of the pedagogical systems otherwise. Another companion Jab manual [Nutt,
2001] provides more than enough kernel internals for a semester course.

Acknowledgments

Many people have hetped 1o edit and refine this book. First there are the students at the
University of Colorado: Juson Casmira, Don Lindsay, Ann Root, and Sam Siewert were
great teaching assistants who created laboratory exercises and solutions, and generally
heiped make the beok better. Scott Brandt provided comments and insight into how the
material should be presented. Adam Griff spent many hours helping me with my Linux
system. Scott Morris set up my Windows NT machine and offered insider tips about how
it worked.

Addison-Wesley arranged to have additional students from other institutions look
at the manuscript: Eric F Stuckey, Shawn Lauzon, Dan Dartman, and Nick Tkach at
Montana State University, and Jeffrey Ramin now at Berbee Information Networks
Corporgtion, There were many people who spent hours looking at drafis or otherwise
suggesting ways to organize and improve the material: Divy Agrawal (University of
California at Santa Barbara); Vladamir Akis (California State University at Los
Angeles); Kasi Anantha (San Diego State University); Charles J. Antonelli (University
of Michigan); Lewis Barnett (University of Richmond); Lubomir F. Bic (University of
California, lrvine): Paosheng Chang (Lucent Technologies); Randy Chow (University
of Florida); Wesley J. Chun; Carolyn J. Crouch (University of Minnesota, Duluth);
Peter G. Drexel (Plymouth State College); Joseph Faleui, Gary Harkin (Montana State
University); Dr. Sallie Henry (Virginia Tech), Mark A. Holliday (Western Carolina
University); Marty Humphrey (University of Virginia); Kevin Jeffay (University of
North Carolina at Chapel Hilly; Phil Kearns (The College of William and Mary); Qiang
Li (University of Santa Clara): Darrell Long (University of California at Santa Cruz):;
Junsheng Long, Michzel Lutz (Rochester Institute of Technology); Carol McNaimee
{Sacremento State University); Donald Miller (Arizona State University); Jim Mooney
(West Virginia University); Ethan V. Munson {University of Wisconsin — Milwavkee);
Deborah Nutt, Douglas Salane (John Jay College): Henning Schulzrinne (Columbia
University); C. S. (James) Wong (San Francisco State University); and Salih Yurttas
(Texas A&M University). The second edition was reviewed by Toby Berk (Florida
International University); David Binger (Centre College); Richard Guy (UCLA):
Zhiyuan Li (Purdue University); John Noll (University of Colorado, Denver); Keaneth
A. Reek (Rochester Instittes of Technology); Joseph J. Pfeiffer. Jr. {New Mexico State
University): and Irene Tseng (Gallaudet University). Thank you all for sharing your
experience, insight, and suggestions,

Finally, the editorial staff at Addison-Wesley and several freelance consultants
have been invaluable in helping me produce this book. 1n the first edition, Christine
Kulke, Angela Buenning, Rebecca Johnson, Dusty Bernard. Laura Michaels, Pat
Unubun. Dan Joraanstad, and Nate McFadden provided invaluable help and direction.
Carter Shanklin, acquistion editor for the first edition. had a vision for how the book

