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Part 1

Lesson 1 Periodic Sigilals\_

1 1 Tlme-Domam Descnptlons ’

e

The fact that the great majority of funct:ons whu:h may usefully
be .eonsidered as signals are functions of time lends justification to
the treatment of signal theory in terms of time and of frequency: A
periodic signal will therefore be considered to be one which repeats
itself exactly every T seconds, where T is called. the: period of, the
signal waveform; . .the theoretical treatment of. periodic waveforms
assumes that this. exact repetition is extended ‘throughout-all time,
both past .and future. In practice, of course, signals do not:repeat
themselves indefinitely. Nevertheless, ‘a waveform 'such-..as the
output voltage of a mains rectifier prior to smoothing does repeat
itself very many times, and its analysis as a strictly periodic signal
yields -valuable results'. In other cases, .such-.as the
electrocardiogram, the waveform is quasi-periodic and may usefully
be.treated as truly periodic for some purpose. It is worth noting that
a truly repetitive signal is of very little interest in a communication
channel, since no further information is conveyed after the.first xycle
of the waveform has been received. One of the main reasons for
discussing periodic signals is that a clear understanding of their
analysis is a great help when dealing with periodic and random ones.

A complete time-domain description of such a signal involves
specifying its value precisely at every instant of time. In some cases
this may be done very simply using mathematical notation.
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Fortunately, it is in many cases useful to describe only certain
aspects of a signal waveform, or to represent it by a mathematical
formula which is only approximate. The following aspects might be
relevant in particular cases:

(1) the average value of the signal,

(2) the peak value reached by the signal,

(3) the proportion of the total time spent between value a and b,

(4) the period of the signal.

If it is desired to approximate the waveform by a mathematical
expression, such techniques as a polynomial expansion, a Taylor
series, or a Fourier series may be used. A polynomial of order n
having the form

f(t) =as+at+at’+a;e2++q2" (1-1)
may be used to fit the actual curve at (n+ 1) arbitrary points. The
accuracy of fit will generally improve as the number of polynomial
terms increases. It should also be noted that the error between the
true signal waveform and the polynomial will normally become very
large away from the region of the fitted points, and that the
polynomial itself cannot be periodic. Whereas a polynomial
approximation fits the actual waveform at a number of arbitrary
points, the alternative Taylor series approximation provides a good
fit to a smooth continuous waveform in the vicinity of one selected
point. The coefficients of the Taylor series are chosen to make the
series and its derivatives agree with the actual waveform at this
point. The number of terms in the series determines to what order
of derivative this agreement will extend, and hence the accuracy
with which series and actual waveform agree in the region of the
point chosen. The general form of the Taylor series for
approximating a function in the region of the point is given by

f(t) _ f(a) + (t _ a) x d){j(ta) + (t E!a)z y

2 -
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Generally speaking, the fit to the actual waveform is good in the
region of the point chosen, but rapidly deteriorates to eithelj side.
The polynomial and Taylor series descriptions of a signal waveform
are therefore only to be recommended when orne is concerned to
achieve accuracy over a limited region of the waveform. The
accuracy usually decreases rapidly away from this region, although it
may be improved by including additional terms (so long as ¢ lies
within the region of convergence of the series 2. The
approximations provided by such methods are never periodic in form
and cannot therefore be considered ideal for the dmcnptxon of
repetitive signals. -

By contrast the Fourier series approximation is well suited to
the representation of a signal waveform over an extended interval.
When the signal is periodic, the accuracy of the Fourier series
description is maintained for all time, since the signal is 'represehted
as the sum of a number of sinusoidal functioris, which are themselves
periodic. Before examining in detail the Fourier series method of
representing a signal, the background to what is known as the

‘frequency-domain’ approach will be introduced.

1.2 Frequency-Domain descriptions

dzd}(—lz“ by =a)"  d'f(a) (1-2)

The basic conception of frequency-domain analysis is that a
waveform of any complexity may be considered as the sum of a
number of sinusoidal waveforms of suitable amphtude, perlodlc1ty,
and relatnve phase’. A ‘continuous sinusoidal function (sin wt) is
thought of as a °single frequency ’° wave of frequency
radians/second, and the frequency-domain description of a signal
involves its breakdown into a number of such basic functions. This is
the method of Fourier analysis. '
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There are a number of reasons why signal representation in
terms of a set of component sinusoidal waves occupies such a central
role in signal analysis. The suitability of a set of periodic Functions
for approximating a signal waveform over an extended interval has
already been mentioned, and it will be shown later that the use of
such techniques causes the error between the actual signal and its
approximation to be minimized in a certain important sense. A
further reason why sinusoidal functions are so important in signal
analysis is that they occur widely in the physical world and are very
susceptible to mathematical treatment; a large and extremely
important class of electrical and mechanical systems, known as
‘linear systems’, responds sinusoidally when driven by a sinusoidal
disturbing function of any frequency. All these manifestations of
sinusoidal function in the physical world suggest that signal analysis
in sinusoidal terms will simplify the problem of relating a signal to
underlying physical causes, or to the physical properties of a system
or device through which it has passed. Finally, sinusoidal functions
form a set of what are called ‘orthogonal function’, the rather
special properties and advantage of which will now be discussed.

1.3 Orthogonal Functions

1.3.1 Vectors and signals

A discussion of orthogonal functions and of their value for the
description of signals may be conveniently introduced by considering
the analogy between signals and vectors. A vector is specified both
by its magnitude and direction, familiar examples being force and
velocity. Suppose we have two vectors V| and V,; geometrically,
we define the component of vector V, along vector V, by
constructing the perpendicular from the end of V, onto V,. We
then have

4 -



V,=C,V, +V, (1—;3)
where vector V, is the error in the approximation. Clearly, this
error vector is of minimum length when it is drawn perpendicular to
the direction of V,. Thus we say that the component of vector Vi
along vector V, is given by C;, V,, where Cy, is chosen such as to
make the error vector as small as possible. A familiar case of an
orthogonal vector system is the use of three mutually perpendicular
axes in co-ordinate geometry.

There basic ideas about the comparison of vectors may be
extended to signals. Suppose we wish to approximate a signal f, (¢)
by another signal or function f; (¢t ) over a certain interval
t,<t<t,; in other words

fi(2)=Cy, fo(2) Jort; <t<t,

We wish to choose Cy, to achieve the best approxnmanon lf we
define the error function ’

f;(t)=fl(t)_clzf2(t) (1-4)
it might appear at first sight that we should choose C,, so as to
minimize the average value of f, (z) over the chosen interval. The
disadvantage of such an error criterion is that large positive and
negative errors oceurring at different instants would tend to cancel
each other out. This difficulty is avoided if we choose to minimize
the average squared-error, rather than the error itself (this is
equivalent to minimizing the square root of the mean-squared error,
or ‘r.m.s’ error). Denoting the average of f2(¢) by e, we have

1 1y ,
e = —_———(tz — tl)J‘tlff(t)dt
- [t A - canoPa -3

Differentiating with respect to C,, and putting the resﬁlting
expression equal to zero gives the value of C,, for which is a
* 5
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minimum . Thus

a_g— (—tz_%_t_njﬂz[f‘(’) - Cufr(2)'de

Expanding the bracket and changing the order of integration and

differentiating gives

Co = [* 1) Ay (1-6)

=0

1.3.2 Signal description by sets of orthogonal functions

Suppose that we have approximated a signal f, () over a
certain interval by the function f,(¢) so that the mean square error
is minimized, but that we now wish to improve the approximation.
It will be demonstrated that a very attractive approach is to express
the signal in terms of a set of functions f,( ), f3(¢), f.(¢),etc.,
which are mutually orthogonal. Suppose the initial approximation is

fi(2) = Cp, f,(2) (1-7)
and»that the error is further reduced by putting
f1(2) = Cpfa(t) + Cafi(2) (1-8)

where f,(¢) and f5(¢) are orthogonal over the interval of interest.
Now that we have incorporated the additional term C,; f;(2), it is
interesting to find what the new va]ué of C,, must be in order that
the mean square error is again minimized. We now have

f(2) = f1(2) = Cpfa(t) - Cyf3(2) (1-9)

and the mean square error in the interval ¢, << ¢, is therefore
e = ] LA - Cofa) - Cafu(OTde (1-10)
(£2 - £,) f

Differentiating partially with respect to C), to find the value of C,,
for which the mean square error is again minimized, and changing
the order of differentiation and integration, we have again®

. 6 .



Co = [’ fra -1

In other words, the decision to improve the approximation by
incorporating an additional term in does not require us to modify the
coefficient, provided that f; ( t) is orthogonal to f,(t) in the
chosen time interval®. By precnsely similar arguments we could show
that the value of ¢;3 would be unchanged if the sxgml were to be
approximated by f5(z) alone. ,

This important result may be extended to cover the
representation of a signal in terms ‘of a whole set of orthegonal
functions. The value of any coefficient does not depend upon how
many functions from the complete set.are used in the. approximation,
and is thus unaltered when further terms are mcluded7 Theuseof a
set of orthogonal funct;ons for signal description is analogous to the
use of three mutually perpendlcular (that is, orthogonal) ax& for
the dmptxon of a vector in three-dimensional space, and gww rise
to the notion of a *signal space’®. Accurate signal repreeentatnon
will often requ:re the use of many more than three’ orthogonal
functions, so that we must think of a signal within some interval
t,<t<¢t, as being represented by a point in a multidimensional
space. o P
To summarize, there are a number of sets of orthogonal
functions available such as the so-called Legendre polynormals and
Walsh functions for the approximate description of signal waveform,
of which the sinusoidal set is the most widely used® .- Sets invblvini
polynomials in t are not by their very nature periodic, but may
sensibly be used to describe one cycle (or less) of a ﬁeﬁodic
waveform; outside the chosen interval, errors between the true
signal and its approximation will normally increase rapidly. A
description of one cycle of a periodic signal in terms of sinusoidal
functions will, however, be equally valid for all time because of the

T



periodic nature of every member of the orthogonal.
1.4 The Fourier Series

The basis of the Fourier series is that a complex periodic
waveform may be analysed into a number of harmonically related
sinusoidal waves which constitute an orthogonal set. If we have a
periodic signal f(¢) with a period equal to T, then f(z) may be
represented by the series

f(t) = Ag + EA cosnw, t + EB sinnw, ¢ (1-12)

where @, =2x/T. Thus f(e)is oomxdered to be made up by the
addition of a steady level ( A,) to a number of sinusoidal and
cosinusoidal waves of different frequencies. The lowest of these
frequencies is w, (radians per second) and is” called' the
‘fundamental’ ; waves of this frequency have a period equél to that
of the signal. Frequency 2w, is called the *second harmonic’, 3w, is
the “third harmonic’ , and so on. Certain restrictions, known as the
Dirichlet conditions, must be placed upon f(¢) for the above series

to be valid. The integralj ’ f(t)

dt over a complete period must be

finite, and may not have more than a finite number of discontinuities
in any finite interval. Fortunately, these conditions do not exclude
any signal waveform of practical interest.

1.4.1 Evaluation of the coefficients

We now turn to the question of evaluating the coefficients A, ,
A, and B,. Using the minimum square error criterion described in
foregoing text, and writing for the sake of convenience, we have



