Wk
188 5 B

(FE X KK) C++ BESIEjl

DATA STRUCTURES WITH C++

455 solved problems step-by-step
L~

Ideal for independent study!

Conforms to the new ANSI/ISO Standard for C++

Download solutions to all ex-
amples and problems from
author’s web page

(%) John R. Hubbard %

E%w Pl T ol R4
| China Machine Press

DATA STRUCTURES WITH c++

(2€) John R. Hubbard &

hhhhhhhhhhhh

Ramon A. Mata-Toledo et al. : Introduction to Computer Science (ISBN) 0-07-134554-X).

Copyright © 2000 by The McGraw-Hill Companies, Inc. All rights reserved.

Jointly published by China Machine Press/McGraw-Hill. This edition may be sold in the
People’s Republic of China only. This book cannot be re-exported and is not for sale outside the

People’s Republic of China.

-

A A5 R EN AR B 36 I McGraw-Hill 2 7] AR LA Lk R E P B RS N s

BRETT, REHIEVA, FEUMEMGRE R, LS FASEEEs.
F BEEWAMcGraw-Hill 2> GHEOCH 9455, TAREEAGHE
MR, RARLH

ABEREICS: BZE: 01-2002-3652
BHAERGE (CIP) i

BBESER CIE S A Co+iB SRR/ () W AfF (Hubbard, J. R) . —db5t
VL Tk ks, 2002.8

(2ELHF TR

48 . Data Structures With C++

ISBN 7-111-10579-6

Uofe I IO SiRslhy - 218 - 30 @ CiE - RUFiih - 218 - /X
IV.TP311.12:44

rh E A B -SIECIPRHRZ T (2002) F0518555

FUM Ttk B AR RE (AEsoirdtiaix e s 12 K22 HRBCRRS 100037)
TeiTdam: ¢ &

b5 s BRI T TENR - B N A SR AT R AT
2002428 F 55 ThREE 1IR ENRI

787mm x 1092mm 1/16 - 26.25 F1gk:

Enge: 00013 0004}

EM: 40.007:

WA, afa@n. BT, 8T, mARRTHESR

Preface

Like all Schaum’s Qutline Series books, this is intended to be used primarily for self study,
preferably in conjunction with a regular course in data structures using the C++ programming
language.

The book includes over 200 examples and problems. The author firmly believes that the
principles of data structures can be learned from a well-constructed collection of examples with
complete explanations. This book is designed to provide that support.

Source code for all the examples and problems in this book may be downloaded from the
author’s Web sites: http://www.richmond.edu/~hubbard, http://www.jhubbard.net,
or http://www.projectEuclid.net. These sites also contain any corrections and addenda
for the book.

I wish to thank all my friends, colleagues, students, and the McGraw-Hill staff who have
helped me with the critical review of this manuscript. Special thanks to my wife, Anita Hubbard
for her advice, encouragement, and supply of creative problems for this book. Many of the
original ideas used here are hers.

JOHN R. HUBBARD
Richmond, Virginia

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Contents

Review of C++ . ..vuvvrvnennennnnne reteseescenennenanens ceereans PR |
1.1 THE STANDARD C++ PROGRAMMING LANGUAGE 1
1.2 CONDITIONALS . .o e e e e e 3
1.3 OPERATORS .. i i e i e e i it ettt eaens 5
1.4 ITERATION ... e e e e e i 6
1.5 FUNCTIONS e e e e e e et e i e 8
1.6 STRINGS .. e e e e e e et e e 10
17 FILES e e e et e, 12
Pointers and AITaysccouiiiiieiivesneorancrassossanssnsssnsss ..25
2.1 POINTERS . . e e e e 25
2.2 DERIVED TYPES . i e e ettt st 26
2.3 REFERENCES . .. e ettt isanasneaens 27
2.4 PASSING BY REFERENCE P 27
25 NULLPOINTER EXCEPTIONS ... i it e e it iiiiiaan e iaaaes 29
2.6 THE new AND delete OPERATORS iiiiiiiiann, 29
2.7 ARRAY S o e e e e e 31
2.8 DYNAMIC ARRAY S . e e i et it e s e e 32
29 PASSINGANARRAYTOAFUNCTION i es 32
2.10 MULTIDIMENSIONAL ARRAYS ... i e ees 33
Classes ccovvvverennonans crresienns tesesaseecrereserrsacsscansaes .. .47
31 A Podnt CLASS .o e e e 47
3.2 INSTANCES, IMPLICIT ARGUMENTS, AND THE this POINTER 49
3.3 COMPILING CLASSES AND THEIR CLIENTPROGRAMS 50
3.4 FRIEND FUNCTIONS .. i e it it iae e i sianas 53
35 A Line CLASS .ottt e e 54
36 ACLASSFORRANDOMNUMBERS it ... 56
37 STATIC MEMBERS ... ittt it iisrria e sansssinensaanncns 57
3.8 COMPOSITION ..ottt et e et e et e i iannae s 59
3.9 INHERITANCE ... ittt et i i tinasaenssssasanans 61
Recursioncoveees APy |
4.1 THEFACTORIAL FUNCTION i iiiraiieiatannannnanensaosens 76
42 TRACINGARECURSIVECALL e e
43 THEFIBONACCISEQUENCE ...t iiiiaaaisnaunees 71
44 BINOMIAL COEFFICIENTSttt ieiiiae i aanacnonnananes 78
45 THEEUCLIDEAN ALGORITHM et aianns 79
46 INDUCTIVEPROOFOFCORRECTNESSccoiiiertiirietiinennnnnense 80
47 COMPLEXITY ANALYSIS OF RECURSIVE ALGORITHMS 81
4.8 DYNAMIC PROGRAMMING0 it essaaanons 82
49 THETOWERSOFHANOIttt iiieasaeieansnancanns 82
4.10 MUTUAL RECURSION it it i i inetcnasaasaasanes 84

Chapter 5§

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

CONTENTS

Stacks G e eseaiteteeernnteatettansttetnnesernoarees ..92
5.1 THE stack INTERFACE i i, 92
5.2 USING stack OBJECTS e 92
53 APPLICATIONSOFSTACKS e 93
54 REMOVINGRECURSIONo e 96
5.5 CONTIGUOUS IMPLEMENTATIONo iiiiinn. 97
5.6 LINKED IMPLEMENTATION e 100

QUEUES .. .cviiriiiniasssrassrssasssssssassassassssssssssassnssasses 110

6.1 THE queue INTERFACE iiiiiiiiiiiiiaiiiinnnns 110
62 USING queue OBJECTSottt iiiiaaaaneees 110
6.3 APPLICATIONSOFQUEUESttt anas 112
6.4 CONTIGUOUS IMPLEMENTATION e 115
6.5 LINKED IMPLEMENTATIONttt iiiiiainneaceaccsaianns 118
Lists eeeseeerecaasenens ceerccanemraas cesreees vetren ceesaas127
71 THE 1ldst INTERFACE i i 127
72 USING 148t OBIECTS ...ttt 128
73 ITERATORS . . ot o ittt et e e e et e 129
T4 APPLICATIONS ..ttt ittt et et en s 130
7.5 CIRCULAR LISTS ..ttt et ettt ae o tas e annees 134
7.6 ORDERED LISTS ... ittt it ta st 136
77 ANUNBOUNDED Integer CLASSccieieiiirniienn 137
7.8 IMPLEMENTIONOFTHELiAiB8t CLASS i, 142
TablesS ..oooevivvercsasascaraaane tereesenennns ceeeeneenases ceveess. 158
81 THESTANDARD pair TYPEcviiiiiiiienininnnieneinnns 155
82 APPLICATIONS USING THE map CLASSTEMPLATE.................. 157
83 HASHTABLES iittreetttnnnnnnn et nnes 161
84 HASHFUNCTIONS ...ttt ittt 165
85 SEPARATECHAINING ...ttt 167
Trees «..cceeeeccnsccsassnces W eeeeesasatscesesteerssasesseasnans ..174
91 TREE TERMINOLOGY iitiniitiiiiiiiieaiian e e enrns 174
92 DECISION TREES AND TRANSITION DIAGRAMScoevnens 176
93 TREE TRAVERSALALGORITHMSt 178
94 A Tree CLASSINTERFACEcciiiiieiiinininnnnennens 180
9.5 IMPLEMENTATIONOF THE Tree CLASSccccvveiinnnnns 182
Binary Trees cestecnesecons feeeeressenensencaassnsssasaeness200
10.1 DEFINITIONS .. .ottt ie e amae et e et 200
10.2 COUNTING BINARY TREES it 201
10.3 FULLBINARY TREESottt 202
10.4 IDENTITY, EQUALITY, AND ISOMORPHISMc0ovnvnieennnns 203
10.5 COMPLETE BINARY TREESccuiiriuimrimniaeienannanencnes 204
10.6 TREETRAVERSALS ... 0.0ttt 206
107 EXPRESSION TREEScivutiiteaneneenemmnennnsseoasaannnsees 208
10.8 FORESTS .. .itieeateaiecanatan it s 210
109 ABinaryTree CLASSINTERFACE...........ccocoiminrirernneennens 210
10.10 IMPLEMENTATION OF THE BinaryTree CLASS0o 213

v

Chapter 11

Chapter 12

Chapter 13

Appendix A
Appendix B

CONTENTS

Y (1 T T # 7- |

11.1 BINARY SEARCHTREES i i 224
11.2 IMPLEMENTATION OF BINARY SEARCHTREES 225
11.3 PERFORMANCE CHARACTERISTICS OF BINARY SEARCH TREES 228
11,4 AVL TREES et et et ann 228
Heaps and Priority Queues U X 1]
120 HEAPS i it et e e s 235
122 THE NATURAL MAPPING i it iianees 235
12.3 INSERTIONINTO AHEAP i i i i ee e 236
124 REMOVALFROM AHEAP ittt 237
125 PRIORITY QUEUES et saa i ans 238
12.6 USING priority queue OBJECTS ciiiiiians. 238
12.7 USING A HEAP TO IMPLEMENT A PriorityQueue CLASS TEMPLATE 239
12.8 APPLICATIONS OFPRIORITY QUEUES o 241
Sortingccoavvenenn Crretesianans teessresecacesenananssas cer..248
13.1 PRELIMINARIES ... it ittt cr s saseaasacns 248
13.2 THE BUBBLE SORT . ..ottt iiat it iaaiiatannanoeaionenaisassenanns 248
133 THE SELECTION SOR T ... ottt e e it e it ie et eans 250
134 THEINSERTION SORT ... ottt it i i s e s inaes 251
135 THEMERGE SORT .. it ittt it ittt it ee e it araaassaans 252
13.6 THEQUICK SORTt 255
137 HEAPS ..ot i i e et na et saaanan s 256
138 THEHEAP SORT ... it it s iasanaaaanasoraaes 257
139 THE SHELL SORT ...\ttt it it iintnieeeasanesananaaeeeens 261
13.10 THE SPEED LIMIT FOR EXCHANGE SORTSc.ciiiiianns 262
References e eeeesasasaseencnsseccnersrraasrrerseses 208
Essential Mathematics teeeesenceessassnsansans ceeneeeess 278
B.1 THEFLOORAND CEILINGFUNCTIONSt 215
B2 LOGARITHMS ... ittt etaast st sssaiiaaassecnannes 275
B.3 THE FIRST PRINCIPLE OF MATHEMATICAL INDUCT ION 276
B.4 THE SECOND PRINCIPLE OF MATHEMATICAL INDUCTION 2717
B5 GEOMETRICSERIESt iiiiiiiiiiiaeaeesitesisanersaraesas 278
B.6 SUMMATIONFORMULASttt eiecaeees 278
B.7 ASYMPTOTIC COMPLEXITY CLASSESo 279
B.8 HARMONICNUMBERS it 279
B9 STIRLING'SFORMULAiiuitirriiiiiiirtnnaeseassaarrsoraces: 281
B.10 FIBONACCINUMBERS et en e 281
B.11 THEGOLDENMEAN e 282
B.12 THEEUCLIDEAN ALGORITHM iiiiiiiiiniiniienenens 283

VI

CONTENTS

Appendix C Standard Container Classescvivevirrovoricesssssacenccnesss 285

C.1 THEvector CLASSTEMPLATEc.. s, 285
C2 THEAQeque CLASSTEMPLATEttt i, 290
C3 THEstackCLASSTEMPLATE, 290
C4 THEQueue CLASSTEMPLATEttt 291
C.5 THEpriority queueCLASSTEMPLATE 291
C.6 THE1list CLASSTEMPLATE it iiiia e 292
C7 THEmap CLASS TEMPLATE i iiiiiiiiiiiiniiiiniaseenas 294
C8 THES8et CLASSTEMPLATEttt e, 296
Appendix D Generic Algorithmscvvevrivieieeieriiiieriaiennnreienecenes..299
Appendix E Example Classes PP .2,
E.l ABinaryTreeCLASSottt 328
E2 ABinarySearchTree CLASSiiiiiiiinireeiiinrenninns 335
E3 ACArd CLASS ... i e it e 336
E4 AConcordance CLASScoiiiiiiiint i ininnrnrearrnneaonnnas 339
ES5 ADBE@CLASS ..o oottt i e e e e s 340
E6 ADBCK CLASS ..ttt ittt ittt ittt 347
E7 AHABACLASS ...ttt it ittt cat it asiiataae s 348
E.8 A HashFUNCTION STRUCTURETEMPLATEc...ccnnn 349
E9 AHashTable CLASSTEMPLATEc.c.oiiiiiiiiiinienennnnnn. 349
E10 ALLIR@ CLASS .o ittt ittt ittt et e it e 351
Ell ALISE CLASSTEMPLATE0ttt e ienes 353
E.12 AMatrix CLASSTEMPLATE i 358
E.13 ANOrderedList CLASS ittt iaines 360
E.1l4 APOrSon CLASS i it e 361
E.15 APOLNt CLASS ..o i i i it enns 363
E.16 APolynomial CLASSot 367
E.17 APriorityQueue CLASSTEMPLATE ociieniinnennnn. 372
E18 APUurs@ CLASS ... i i i et 374
E19 AQUEBUG CLASS ...ttt 376
E20 ARARAOM CLASS ... oo ittt i 377
E21 ARAaRAOMLANG CLASSot 378
E.22 ARandomPoint CLASS O P S 3718
E23 ARAELO CLASS o ovtiiii et e et 379
E24 ARAtIonal CLASS ... it e 381
E25 A SelfOorganizingList CLASSiiciniiiiiiinenns 384
E26 AStackCLASSTEMPLATEt iiiieiiiieninnnenenes 384
E27 AME@O CLASS .ottt et 386
Index 399

Vil

Chapter 1

Review of C++

This chapter reviews the essential features of C++. For more detail see the books
[Stroustrup2] and [Hubbard1] listed in Appendix A.

1.1 THE STANDARD C++ PROGRAMMING LANGUAGE

The C++ programming language was invented by Bjarne Stroustrup in 1980 while he was
building a distributed computing system. He based it upon the C programming language which
had been invented in 1972 by Dennis Ritchie at Bell Labs. The name C was used because the
language was a successor to a language named B, a typeless programming language invented by
Ken Thompson as a successor to a language named BCPL (Basic Combined Programming
Language) which was invented by Martin Richards in 1967. The name C++ was used to suggest
an incremented C. Stroustrup incremented C by adding classes. Indeed, he first named the
language “C with Classes.” The classes feature, which facilitates object-oriented programming,
came from the Simula programming language, developed in the early 1960s.

In 1998, the C++ programming language was standardized by the International Standards
Organization (ISO) and by the American National Standards Institute (ANSI). This new standard
includes the Standard Template Library (STL) developed originally by Alexander Stepanov in
1979. The term “Standard C++" refers to this standardized version of the language.

EXAMPLE 1.1 The Standard C++ “Hello World” Program

#include <iostream> // defines the std::cout and std::endl objects

int main()

{ // prints "Hello, World!"

std::cout << "Hello, World!" << std::endl;
}
Hello, World! L
The preprocessor directive on the first line tells the C++ compiler to include the definitions from the

standard header file iostrean that is part of the Standard C++ Library. It defines the cout object and
the endl object in the std namespace. The scope resolution operator : : is used to indicate the location
of those definitions.

EXAMPLE 1.2 Using the Standard std Namespace

#include <iostream> // defines the std::cout and std::endl objects
using namespace std; // renders the std:: prefix unnecessary
int main()
{ // prints "Hello, World!"
cout << "Hello, World!" << endl;
}
Hello, World!

2 REVIEW OF C++

[CHAP. 1

The using declaration on the second line adds the name sta to the local scope, obviating the std: :

scope resolution prefix on the cout and endl objects.

All the remaining programs in this book are assumed to begin with the following two lines:

#include <iostream>
using namespace std;

If you are using a pre-Standard compiler, use this single line instead:

#include <iostream.h>
EXAMPLE 1.3 The Quadratic Formula

#include <cmath>
int main(}

{ // implements the quadratic formula

double a, b, c;

// defines the sgrt() function

cout << "Enter the coefficients of a quadratic equation:\n";

cout << "\ta: "; cin >> a;

cout << "\tb: "; cin >> b;

cout << "\tc: "; «cin >> c;

cout << "The equation is: " << a <<
<< "*x + " << c << " = 0\n";

double d = b*b - 4*a*c;
double sgrtd = sqrt(d);
double x1 = (-b + sgrtd)/(2*a);
double x2 = (-b - sqrtd)/(2*a);
cout << "The solutions are:\n";
cout << "\txl = " << x1 << endl;
cout << "\tx2 = " << X2 << endl;

cout << "Check:\ta*x1*x1l + b*xl + ¢
\ta*x2*x2 + b*x2 + ¢

cout << "\n

}

"*X*x + " << b

// discriminant

" << a*xl*xl + b*x1l + C;
a*x2*x2 + b*x2 + c:

= " <<

On the first run we input 2, 1, and -3 to solve the quadratic equation 22 +x-3=0:
Enter the coefficients of a quadratic equation:

ar &
b: &
o =3

The aqu&tim {g: 2%x¥x + 1*%x + -3 = 0

Tha solutions are:
: xl =1
%2 = ~1.5
a*xl*xl + b*xl + ¢ =
A*x2*%2 + b*x2 + ¢ =

Check: 0
0

The program computes the correct solutions, I and -1.5, and then checks them by substituting them back

into the quadratic expression to get 0.

On the second run we input 2, 1, and 3 to solve the quadratic equation 262 +x+3=0:

The program outputs the symbol nan for the solutions x,

and x, and for the resulting check calculation.

That symbol stands for “not a number.” It resulted from the fact that the discriminant d = b? - 4ac < 0.
Consequently, the call sqrt(d) to the square root function failed, returning the value nan. That is a
valid value for £loat and double variables. But it is idempotent: when combined arithmetically with

any other value, the resulting value is also nan.

CHAP. 1]

REVIEW OF C++ 3

Enter the coefficients of a quadratic equation:

a:
b
£

P
1
3

The mgtim is: 2%x*x + 1*x + 3 = 0
The solutions are;:

%1 = nan

< X2 = pan
Cheek: a*x1i*xl + B*»1 + ¢ = nan
a*x2*x2 + b*x2 + ¢ = nan

1.2 CONDITIONALS

We can improve the program in Example 1.3 by using an if statement to handle the negative
discriminant case separately.

EXAMPLE 1.4 A More Robust Implementation of the Quadratic Formula

#include <cmath> // defines the function sqgrt() function

int main()

{ // implements the quadratic formula
double a, b, c;

cout << "Enter the coefficients of a quadratic equation:" << endl;
cout << "\ta: "; cin >> a;
cout << "\tb: "; cin >> b;
cout << "\tc: "; cin >> c;
cout << "The equation is: " << a << "*X*xX + " << b
<< "*x + " << c << " = 0\n";
double d = b*b - 4*a*c; // discriminant
if (d < 0)
{ cout << "The discriminant, d = " << d

<< " < 0, so there are no real solutions.\n";

return 0;

}

double sqrtd = sqrt(d);
double x1 = (-b + sqgrtd)/(2*a);
double x2 = (-b - sgrtd)/(2*a);

cout <<
cout <<
cout <<
cout <<
cout <<
cout <<

}

"THe solutions are:\n";

"\txl = " << x1 << endl;

"\tx2 = " << x2 << endl;

"Check:";

"\ta*xl*xl + b*x1l + ¢ = " << a*x1l*x1 + b*x1 + c;
s\pn\ta*x2*x2 + b*x2 + c = " << a*x2*x2 + b*x2 + c;

On the same input, 2, 1, and 3, to attempt to solve the quadratic equation 2x2 + x + 3 = 0, this version
gives more informative output. When the discriminant d < 0, the program prints a diagnostic message and
then exits by the return 0 statement.

4 REVIEW OF C++ [CHAP. 1

Enter the coefficients of a quadratic equati'cm:

Ty @
b: 1
o 3
The equation is: 1*x*x + 2*x + 3 = 0
The discriminant, 4 = -8 « {, so there are no-real solutions.

The if statement is a conditional, its action depends upon the value of a condition, which is
a boolean expression. C++ also has a switch statement. Its action depends upon the value of an
integer expression.

EXAMPLE 1.5 A Simple Calculator Simulation

int main()
{ // performs arithmetic on integers
int m, n;
cout << "Enter two integers: "; c¢in >> m >> n;
char op;
cout << "Enter an operator (+,-,%*,/,%): ": cin >> op;

cout << "\t" << m << Op << n << " = ";
switch (op)

{ case '+': cout << m + n; break;
case '-': cout << m - n; break;
case '*': cout << m * n; break;
case '/': cout << m / n; break;
case '%’: cout << m % n;

}
}
The op variable holds one character. Since char is an integral type, it can be used to control the

switch statement.
Enter two integers: 30 7
Enter an operator {(+,-.*,/.%): %
3087 = 2
In this run, the value of op is the character ‘% ‘, so the statements that follow case '/’: execute.
Note the need for break statements within the cases of the swi tch statement. Without them, control

would “fall through,” executing all the cases after the one selected.

In addition to the if and the switch statements, C++ also has the conditional expression
operator for conditional execution. Its syntax is
(condition ? valuel : value2)
Its value is valuel if condition is true, and valuez if condition is false.

EXAMPLE 1.6 The Conditional Expression Operator

int main()

{ // prints the maximum of two given integers
int m, n;
cout << "Enter two integers: "; cin >> m >> n;
cout << "Their maximum is " << (m>n ? m : n);

CHAP. 1] REVIEW OF C++ 5

Enter two integers: 44 33
Their maximum is 44

1.3 OPERATORS

An operator is a function that takes one or more expressions as input and returns an expres-
sion that uses a special infix symbol instead of the usual functional notation. For example, the
operator “+” is written “22 + 44” instead of “+(22, 44)”. The values that the operator operates on
are called its operands. The operands of “22 + 44” are 22 and 44.

The five arithmetic operators are: +, -, *, /, %. These are all binary operators, which means
that they have two operands. The + and - operators also have unary versions, meaning only one
operand.

The arithmetic operators can be combined with the standard assignment operator (=) to

produce five more assignment operators: +=, -=, *=, /=, %=. For example,
X *= Yy
means multiply x by y.
The six relational operators are: <, >, <=, <=, ==, !=. These have the same meanings as the
corresponding mathematical operators <, >, <, 2, =, and #.

Don'’t confuse the equality operator == with the assignment operator =. In mathematics, both
operators are represented by the equals sign =. In C++, these two operators have very different
effects. The equality operator == tests for equality of expressions; it changes no values and
returns either true or false. The assignment operator = assigns the vlue of the expression on its
right to the object on its left and returns that value. Using the assignment operator in a condition
is one of the most common errors made by C++ programmers:

if (n = 0) ++k; // ERROR: assignment operator used by mistake
The expression (n = 0) evaluates to0, which is then interpreted to mean false. The author of
that code probably meant to write

if (n == 0) ++k; // correct usage

The three logical operators are: s&, | |, !. These are also called boolean operators because
both their operands and their resulting values are boolean expressions (expressions of type
bool).

The && and | | operators allow for “short circuiting,” which means that their second operand is
not evaluated unless necessary. For example,

if (x == 0 || y/x > 1) ++k; // OK: will not crash if x is 0
Evaluating the expression y/x > 1 would generate a run-time error (program “crash”) if the
value of x were 0. But if it is, the first operand will evaluate to true, causing the second operand
to be ignored. Similarly,

if (x != 0 && y/x > 1) ++k; // OK: will not crash if x is O
is also safe because here the second operand will be ignored if the first evaluates to false.

Every operator expression has a value and a type. For example, the value of the expression

n = 44
is 44 and has type int. That allows operators to be chained, like this:

k =m+=n = 44;
This means: (1) assign 44 to n; (2) add that value (44) to m; assign that value to k. Chaining
assignment operators works from right to left. On the other hand, chaining arithmetic operators
and chaining input/output operators work from left to right:

6 REVIEW OF C++ [CHAP. 1

z = 88 - x + y; // the "-" is evaluated before the "+"

cout << X << ", " <<y << ", " << z << "\n";

Operators follow standard precedence rules that determine the order of evaluation when
several operators are used in the same expression. For example, * has higher precedence than +,
so in the expression x + y * z, the expressiony * z will be evaluated first. And < has higher
precedence than | |, so in the expression (x<4 || y<8), the expressions x<4 and y<8 will be

evaluated first. The following table groups all the C++ operators according to their precedence
levels, from highest (: :) to lowest (,).

Precedence of Operators

., =>, [1, (), ++ (post-increment), --(post-decrement), typeid,
dynamic_cast, static_cast, reinterpret_cast, const_cast
~, ', 4+, - {unary), ++ (pre-increment), --(pre-decrement), new,
delete, & (reference), * (dereference), sizeof

* _>*

’

* (multiply), /., %

+, - {(binary)
<<, >> '
<, >, <=, >=

& (bitwise AND)
~ (bitwise XOR)
| (bitwise OR)

&&

These precedence rules can be overridden by using parentheses. For example, in the expres-
sion x * (y + z),the expressiony + z will be evaluated first.

1.4 ITERATION

To iterate means to repeat one or more statements until a certain condition is true. This
process is called iteration. C++ has four mechanisms for producing iteration: the goto state-
ment, the do statement, the while statement, and the for statement. '

EXAMPLE 1.7 Using a goto Loop to Sum Reciprocals

This program computes and prints the sum 1+ 1/2 4+ 1/3 + - - - + 1/100.

CHAP. 1] REVIEW OF C++ 7

int main()
{ const int N=100;
double sum=0.0;
int x=1;
repeat: sum += 1.0/x++;
if (x<=N) goto repeat;
cout << "The sum of the first " << N << " reciprocals is " << sum;
}
The sum of the first 100 reciprocals is 5.18738
The expression repeat: on the fifth line is called a label. It locates a line in the program to whlch

execution control can be diverted, as it is on the next line, by means of a goto statement. The effect here
is that the statement

sum += 1.0/x++;
is executed repeatedly as long as the condition (x<=N) is true. Thus, the values 1.0/1, 1.0/2, 1.0/3, - - -
are added to sum until the value of x exceeds 100.

Note the use of the const keyword on the second line. This specifies that the integer N is a constant
and prevents its value from being changed. (C++ programmers usually capitalize all the letters of a
constant identifier.)

EXAMPLE 1.8 Using a do. . .while Loop to Sum Reciprocals

int mainf()
{ const int N=100;

double sum=0.0;

int x=1;

do sum += 1.0/x++;

while (x <= N);

cout << "The sum of the first " << N << " reciprocals is " << sum;
;‘he sum of the first 100 reciprocals is 5.18738 Lo s

This program is the same as the program in Example 1.7 except that the keywords do and while are
used in place of the repeat label and the goto keyword. The effect is the same.

EXAMPLE 1.9 Using a while Loop to Sum Reciprocals

int main()
{ const int N=100;
double sum=0.0;
int x=1;
while (x <= N)
sum += 1.0/x++;
cout << "The sum of the first " << N << " reciprocals is " << sum;

}
The sum of the first 100 reciprocals is 518738

This program is the same as the program in Example 1.8 except that the keyword do is not used and the
while condition is placed ahead of the statement to be repeated. The effect is the same.

8 REVIEW OF C++ [CHAP. 1

EXAMPLE 1.10 Using a for Loop to Sum Reciprocals

int main()
{ const int N=100;
double sum=0.0;
for (int x=1; x <= N; x++)
sum += 1.0/x;
cout << "The sum of the first * << N << " reciprocals is " << sum;
}
The sum of the first 100 reciprocals is 5.18738
This program is the same as the program in Example 1.9 except that the keyword while is replaced

with the keyword for and the three expressions int x=1, x <= N, and x++ are placed together in a
control descriptor delimited by parentheses. The effect is the same.

Like any other statement or block of statements, a loop may be inserted in another loop. The
result is called nested loops.

EXAMPLE 1.11 Using Nested £ox Loops to Print a Triangle of Stars

int main()
{ const int N=10;
for (int i=0; i<N; i++)
{ for (int 3=0; J<2*N; F++)
if (J<N-i || J>N+i) cout << " =;
else cout << "*n,;
cout << "\n";

-
* ok &
L & & & |
* ok ok ok ok ke k
Aok ok ok ok ok
IR R TR RS RS
Ahkdhhkhkhhhdh &k
gk e e ok e e e ke R kR R
I 2 A S B SR RS R SRR &S

22222 RS AR S R EE RS

The outer for loop prints one line on each iteration. The inner for loop prints one character, either a
blank or a star, on each iteration.

1.5 FUNCTIONS

A function is a subprogram that can be called (invoked) from another function and can return
a value to it. Every C++ program is required to begin with the main() function. Relegating
separate tasks to separate functions is a fundamental programming technique that leads to
simpler and more efficient programs.

CHAP. 1] REVIEW OF C++ 9

EXAMPLE 1.12 Using a Separate Function

void printRow{const int, const int); // prototype

int main()
{ const int N=10;
for (int i=0; i<N; i++)
printRow(i, N);

}

void printRow(const int row, const int N) // implementation

{ for (int §=0; 3j<2*N; j++)

if (j<N-row || j>N+row) cout << " ";
else cout << "*";
cout << "\n";

}

This program has the same results as that in Example 1.11. It has relegated the task of printing one
row to the separate printRow() function. Thisis a void function because it does not return anything
to main (). It has two int parameters: row and N. They are passed values from the arguments i and N.

The function is declared by the one-line prototype above main (), and it is defined by its complete
implementation below main (). Note that the prototype omits the parameter names (optional) and ends
with a semicolon (required).

Notice that both parameters are declared to be const. It is good programming practice to declare as
const any object that is intended not to be changed.

EXAMPLE 1.13 A power{) Function

double power (const double, const int);

int main()
{ cout << "power(2,0) " << power(2,0) << "\n";
cout << "power(2,1) = " << power(2,1l) << "\n";
cout << "power (2,2) " << power(2,2) << "\n";
cout << "power (2,3) " << power(2,3) << "\n";
cout << "power(2,-3) = "' << power (2,-3) << "\n";
cout << "power(2.01,3) = " << power (2.01,3) << "\n";
}

double power (const double x, int n)
{ double y=1.0;
for (int i=0; i<n; i++) // if n>0, y = x*x*...*x (n times)
y *= x;
for (int i=0; i>n; i--) // if n<0, y
y /= X;
return y;

]

1/x*x*...*x (n times)

}

power{2,0)
powexr (2,1}
power (2,2}
power (2,3} . _
power(2,-3) = 0.125 - . 1. e W -
power(2.01,3} = 8.,1206 . -« . oo L

ol 0o R

00w R b

