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Preface

The material in this book is presented in a logical sequence rather than a
historical sequence. Thus, we feel obligated to sketch briefly the history of
the special theory of relativity. The brilliant experiments of Michelson and
Morley in 1887 demonstrated the astonishing fact that the speed of light is
independent of the state of relative linear motion of the source of light and
the observer of the light. This fact necessitates the modification of the usual
Galilean transformation (between two relatively moving observers), which
tacitly assumes that time and space are absolute.

Fitzgerald in 1889 and Lorentz in 1892 altered the Galilean transforma-
tion by introducing a length contraction in the direction of relative motion.
This contraction explained the Michelson—Morley experiment, but it was
viewed by both Fitzgerald and Lorentz as a mathematical trick only and not
indicative of the nature of reality. In 1898 Larmor introduced a similar time
dilation in an attempt to find the transformations which leave Maxwell’s
equations invariant. Lorentz also introduced the time dilation independently
sometime before 1904. Poincaré in 1905 also discovered the Lorentz transfor-
mation and asserted that it was the fundamental invariance group of nature.
Einstein in 1905 discovered the Lorentz transformation from physical con-
siderations. Einstein, alone among these mathematical physicists, recognized
the philosophical implications of the Lorentz transformation in that it re-
jected the commonly held notion that space and time were both absolute. He
postulated the equivalence of all inertial frames of reference (moving with
constant velocities relative to each other) with regard to the formulation of
natural laws. Furthermore, he recognized and postulated that the speed of
light is the maximum speed of propagation of any physical action. Therefore,
the speed of light must be invariant for all inertial observers. Thus the
Michelson-Moreley experiment was reconciled with theory. Minkowski, a
mathematician, combined both physical postulates of Einstein into one
mathematical axiom. This axiom is that “all natural laws must be expressible
as tensor field equations on a (flat) absolute space-time manifold.” Thus, in
that there is no preferred inertial frame for the formulation of natural laws, a
universal democracy is postulated to exist among all inertial observers. This

vii



viii  Preface

axiom is called the Principle of Special Relativity. Many experiments in-
volving atoms and subatomic particles have verified the essential validity of
this principle.

In the first chapter we introduce axiomatically the four-dimensional
Minkowski vector space. This vector space is endowed with a nondegenerate
inner product which is not positive definite. Therefore, the concepts of the
norm (or length) of a four-vector and of the angle between two four-vectors
have to be abandoned. A Lorentz mapping is introduced as an inner product
preserving linear mapping of Minkowski vector space into itself.

In Chapter 2 we introduce the flat Minkowski space-time manifold with a
proper axiomatic structure. It is proved that the transformation from one
Minkowski chart to another must be given by a Poincaré transformation (or
an inhomogeneous Lorentz transformation). The conceptual difference be-
tween a Lorentz transformation of coordinate charts and a Lorentz mapping
of the tangent (Minkowski) vector space is clearly displayed. Minkowski
tensor fields on the flat space-time are also defined.

In the third chapter, by applications of a particular Lorentz transforma-
tion (the “boost”), length contraction, time retardation, and the composition
of velocities are explained. The group structure of the set of all Lorentz
transformations is demonstrated, and real representations of the Lorentz
group are presented. The proper orthochronous subgroup is defined and
discussed also.

The fourth chapter defines the spinor space (a two-dimensional com-
plex vector space) and the properties of spinors. Bispinor space (a four-
dimensional complex vector space) is also introduced. It is shown that a
unimodular mapping of spinor space can induce a proper, orthochronous
Lorentz mapping on Minkowski vector space. Furthermore, a unimodular
mapping of bispinor space is shown to induce a general Lorentz mapping of
Minkowski vector space.

In Chapter S prerelativistic mechanics is briefly reviewed. In the setting of
prerelativistic mechanics in space and time, E; x R, the momentum conju-
gate to the time variable turns out to be the negative of energy! After this, the
relativistic mechanics is investigated. The Lagrangian is assumed to be a
positive homogeneous function of degree one in the velocity variables (which
makes the generalized Hamiltonian identically zero!). Examples from electro-
magnetic theory and the linearized gravitational theory of Einstein are
worked out.

In Chapter 6 the relativistic (classical) field theory is developed. Noether’s
theorem (essential for the differential conservation laws) is rigorously proved.
As examples of special fields, the Klein-Gordon scalar field, the electromag-
netic tensor field, nonabelian gauge fields, and the Dirac bispinor field are
presented. However, at the present level of treatment, gauge fields are not
derived as connections in a fibre bundle over the base (Minkowski) manifold.
In each chapter, examples and exercises of various degrees of difficulty are
provided.
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Chapter 7 deals with a research topic, namely, classical fields in the eight-
dimensional extended (or covariant) phase space. Historically, Born and
Yukawa advocated the extended phase space on the basis of the principle of
reciprocity (covariance under the canonical transformation p = —gq, § = p).
In recent years, Caianello and others have considered the principle of maxi-
mal proper acceleration arising out of the extended phase space geometry. We
ourselves have done some research on classical fields in the eight-dimensional
phase space. We can obtain, in a certain sense, a unified meson field and a
unification of fermionic fields. These fields, however, contain infinitely many
modes or particles.

We have changed the usual notation for the Lorentz metric n,; in favor of
d; (since n,,, is used for the pseudotensor) and y = (1 — v?)™** in favor of
B = (1 — v?)~"2 (since y is used to denote a curve).

This book has grown out of lectures delivered at Jadavpur University
(Calcutta), University College of Dublin, Carnegie—-Mellon University, and
mostly at Simon Fraser University (Canada). The material is intended mainly
for students at the fourth and the fifth year university level. We have taken
special care to steer a middle course between abstruse mathematics and theo-
retical physics, so that this book can be used for courses in special relativity
in both mathematics and physics departments. Furthermore, the material
presented here is a suitable prerequisite for further study in either general
relativity or relativistic particle theory.

In conclusion, I would like to acknowledge gratefully several people for
various reasons. I was fortunate to learn the subject of special relativity from
the late Professor S. N. Bose F.R.S. (of Bose-Einstein statistics) in Calcutta
University. I also had the privilege for three years of being a research asso-
ciate of the late Professor J. L. Synge F.R.S. at the Dublin Institute for
Advanced Studies. Their influence, direct or indirect, is evident in the presen-
tation of the material (although the errors in the book are solely due to me!).
In preparation of the manuscript, I have been helped very much by Dr. Ted
Biech, who typed the manuscript and suggested various improvements. Mrs.
J. Fabricius typed the difficult Chapter 7. Mrs. E. Carefoot drew the diagrams.
Dr. Shounak Das has suggested some literary improvements. I also owe
thanks to many of my students for stimulating discussions during lectures.

I thank Dr. S. Kloster for the careful proof reading.

Finally, I thank my wife Mrs. Purabi Das for constant encouragement.
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1

Four-Dimensional Vector Spaces and
Linear Mappings

1.1. Minkowski Vector Space V,

The three-dimensional vectors in Newtonian physics are generalized into
four-dimensional vectors in the theory of relativity. This four-dimensional
vector space is called the Minkowski vector space and is denoted by V,. This
vector space is over the real field R. The mathematical axioms for addition
and scalar multiplication of Minkowski vectors are as follows:

Al
A2.
A3
A4
AS.

M1
M2.
M3.
M4.
MS5.

a+beV,foralla,beV,.

a+b=b+aforalla,beV,.
a+b+c=a+((b+c)foralla,bceV,.

Thereis 0 € V, such thata + 0 =aforallaeV,.

For allae V, thereis —ae V,sothat(—-a)+a=0. (L)
aaeV,forallac R, forallaeV,.

a(fa) = (xf)aforalla, fe R, forallaeV,.
la=aforallaeV,.

a(a+by=aa+ablforallae R foralla,beV,.

(x+ Bla=aa + Paforalla, feR, forallaeV,.

We shall also assume the existence of an inner product for V, satisfying the
following axioms:

I1.
12.
13.

14.

abeRforalla,beV,.
ab=b-aforalia,beV,.

(Aa + ub)-c=Aa-c} + u(b-cyforall L, ue R,
foralla,b,ceV,.

(1.1.2)

a-x=0forall xe V,ifand only ifa = 0.



2 1. Four-Dimensional Vector Spaces

The axiom 14 is called the axiom of nondegeneracy. It is a weaker axiom than
I5. a-a>0forallaeV,,anda-a=0ifand onlyifa=0. (1.1.3)

For a positive definite inner product axiom 15 replaces I4. In addition to these
axioms we impose the axiom of dimensionality on Minkowski vector space:

DL dimV, =4.

Let {e,,e;,e;,e,} be a basis set for V,. The metric tensor components rela-
tive to this basis are defined by

g;j=e ¢ fori je(l,2,34} (1.1.4)

From axiom I2 it follows that g; = g, for all i, je{1,2,3, 4}. The four-
dimensional unit matrix is denoted by I=[§;]. The eigenvalues of the
matrix [g,;] are the roots of the characteristic equation

det[g,; — 46,1 =0. (1.1.5)

Since the matrix g;; is symmetric, the roots of (1.1.5) are all real. By the axiom
of nondegeneracy 14 it follows that all the eigenvalues of g; are nonzero.
The signs of the eigenvalues of g;; are determined by the axiom of Lorentz
signature:

Sl. 4,>0,4;>0,4;>0,4,<0.
The vector space obeying the sixteen axioms A1-AS, M1-MS5, I1-14, D1,
and S1 is called Minkowski vector space and is denoted by V.

In V,, the two vectors a, b are defined to be Minkowski orthogonal (or
M-orthogonal) provided

a‘b=0. (1.1.6)

Theorem (1.1.1): There exists an M-orthonormal basis {e,,e;,e3,e,} for V,
such that

g; =6 €= dij, (1.1.7)
where
1t 00 O
010 0
D=ldl=1y 0 1 of
00 0 -1

The proof is rather involved and is omitted. The metric d;; in (1.1.7) is called
the Lorentz metric. The signature of d; is defined to be the trace of [d;;]. We
shall use a choice of [d;;] so that the signature is equal to 2. Note that some
authors use the signature —2.

Now we shall explain the Einstein summation convention. In a mathemati-
cal expression, wherever two repeated Roman indices are present, the sum



1.1. Minkowski Vector Space V, 3
over the repeated index is implied. For example, we write
ukp, = Z uty, = Z u'v, = u'v,,

i
gyu'v’ = gklu o' = gyu*v',

Il
™Mae ||
M
S

zv-.

0
Me

FM;

The summation indices are called dummy mdxces, since they can be replaced
by other indices over the same range. In the summation convention, never use
dummy indices that repeat more than twice. This is necessary in order to
avoid wrong answers; for example,

utvuty, = Z utv ukv, # Z Z utvu'v; = uFvu'y, = (ukv,)
& s
Let {e,,e,,e5,€,} be an M-orthonormal basis (or zetrad) for V,. For any
vector u € V,, there exists a linear combination

4
u= >y u'e,=u'e. (1.1.8)
=1

The unique numbers or scalars u’ are called the Minkowski components of the
vector u relative to the basis {e,,e,,e;,¢,]}.

Theorem (1.1.2): In terms of the Minkowski components, the inner product
between vectors u, v is given by

u-v =du'v’. (1.1.9)

Proof: Choose an M-orthonormal basis {e,,e,,e,,e,} such that

u=u'e, v=re,.
By the axioms in (1.1.2) and (1.1.8) we have

u-v = (u'e)) (vVe;) = du'vl, [

Note that from (1.1.9)
uu=dg'n) = @) + W) + @) — ) (1.1.10)

The above expression is not positive definite. Thus the concept of the length
(or norm) of a vector in V, is abandoned. Furthermore, if we define cos(u, v) =
(uv)/\/(u-u)(v-v), then we are led to contradictions. For example, if we
choose v, = e, + [(n — 1)/n]e, for ne Z* and let u = e,, then cos(e,,v,) =
n//(2n — 1). Therefore, 1 < cos(u,v,) and lim,_, cos(a,v,) = oo, which is
absurd. That is why the concept of an angle between two vectors u, ve V,
is abandoned as well. However, for a spatial vector subspace V; = {ve V,:
v* = 0}, the usual concept of the length and angle can be restored.

Since the expression (1.1.10) for u- u is indefinite, we can define three kinds
of vectors in V,:



4 1. Four-Dimensional Vector Spaces

(i) a vector u € V, that satisfies u-u > 0 is called a spacelike vector;
(i1) a vector u € V, for which u-u < 0 is called a timelike vector;
(ii1) a vector u € V, for which u-u = 0 is called a null vector.

Example: Let {e,,e,,e;,e,} be an M-orthonormal basis for V,. By (1.1.9),
e, -e; =d,, = 1. Thus e, is a spacelike vector. Similarly e,, e; are spacelike
vectors. Bute,-e, = dy, = — 1,50 ¢, is a timelike vector. Setu = e, + e, and
observe that u-u = 0, so we see that u is a null vector. [J

The separation number is a generalization of the concept of length and is
denoted by o(u). It is defined by

o) = /|u-u| > 0. (1.1.11)

Thus for either timelike or spacelike vectors u € V, we have g(u) > 0. But for
a null vector n we have a(n) = 0. For an example choose u = (e, — 2e,)/2.

Then o(u) = /|- 3/4] = /3/2.

A vector e in V, is called a unit vector if 6(e) = 1. Subsequently we shall use
only M-orthonormal bases for V¥, unless mentioned otherwise. A spatial vec-
tor subspace relative to an M-orthonormal basis is defined as

Vy,={ve Vv =0} (1.1.12)

Small Greek indices will take values in the set {1,2,3}, and small Roman
indices will take values in the set {1,2,3,4}. The appropriate summation
convention will apply to each type of index.

Theorem (1.1.3) (Schwarz Inequality): For any two vectors u, v in V5 the follow-

ing inequality holds:

[uto?) < /uuvPo?. (1.1.13)
Equality holds if and only if u® = iv* for some A € R.
Proof: Suppose that u* = 0. Then (1.1.13) holds trivially. Now suppose
u*u® > 0. Then for any /i € R we have

(Au® + v*)ou* + v*) = 12uu® + v%0® + 24uv* > 0.
Setting the value 4 = —(u°0%)/(u’u"), we obtain
[—@**)? + (wu) (0P o?))/(u"u") 2 0.

From above (1.1.13) follows. The case of equality mentioned in the theorem

is left as an exercise. W

The M-orthogonality between two vectors in V, is not always intuitively
natural. We shall derive a few theorems on that topic now.

Theorem (1.1.4): No two timelike vectors in V, can be M-orthogonal.



