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Chapter 1

Buoyancy and stability

‘The weight of water displaced by a ship is
precisely the same as the weight of that ship.’
LEONARDO

1.1. Introduction and definition of fluid mechanics

The subject of fluid mechanics or thg mechanics of fluids is nowadays
generally understood to cover that branch of applied science concerned
with substances which cannot preserve a shape of their own. With this
definition, the term fluid applies equally well to liquids, vapours, and
gases, but excludes such semi-solids as fats and waxes, We shall concen-
‘trate on those aspects of the mechanical behaviour of fluids which are of
direct interest to engineers. Hence we shall be concerned only with those
fundamental principles which are essential to a rational understanding of
the behaviour of fluids in civil, mechanical, aeronautical, and marine
engineering installations. To do this it will be necessary to study those
characteristics of a fluid which are described and measured in terms of its
mechanical properties, such as density and viscosity. It will be necessary
also to know the laws which govern both its equilibrium and its motion,
so that we may understand how fluid forces arise. Finally, we shall study
how these forces may be usefully employed in the generation, trans-
mission and utilization of power.

1.2. Buoyancy and the principle of Archimedes

The carliest physical principle in fluid mechanics which history has pre-
served for us was establisped by Archimedes of Syracuse (287-212 B.C.).
His ability as a mathemstician may be judged from the fact that his
estimate of = was more accurate than the 22/7 which we so frequently use



2 Buoyancy and stability

as a convenient approximation. In addition, he was an'inventive engineer,
and designed prodigious war machines to defend SyracuSe from the
Roman fleet. His studies in hydrostatics, which had a strictly practical
application, led him to the principle which bears his name, i.e.

Every body experiences an upthrust equal to the weight of fluid it
displaces.

This principle of Archimedes implies that we may imagine replacing
the body by fluid of the same kind as that surrounding it, without dis-
turbing the latter. The upward force which the surrounding fluid exerts,
is referred to as the force of buoyancy, and it is this force which maintains
equilibrium against the weight of the imaginary volume of fluid replacing
the body. The latter is, however, concentrated at the centroid of the dis-
placed volume (Fig. 1.2(a)) so that, if equilibrium is to be preserved, the

Fig. 1.2(a). The principle ‘of Archimedes

upthrust must also pass through this point. The centroid of the displaced
volume is therefore referred to as the centre of buoyancy, being the point
through which the buoyancy force acts.

The centre of buoyancy (B) should not be confused with the centre of
gravity (G) of the body, see Fig. 1.2(a), which depends on the weight
distribugion in the latter.

For example, the centre of gravity of a submersible is determined by
the disposition of the weights of the various parts and gear within the
hull or casing, whereas the centre of buoyancy is determined solely by the
shape of the casing displacing the liquid. -

It should be noted that Archimedes’ Principle is equally valid for all
fluids—gaseous as well as liquid. Thus, when a body is weighed a
correction should strictly be made for the buoyancy due to the air.
Although this is generally. relatively small it is, of course, the reason
why, say, a gas-filled balloon rises. Equilibrium is finally established in
accordance with the buoyancy principle outlined above, i.e. the up-
thrust, which decreases with altitude due to the reduced density of the
air, eventually becomes equal to the weight of the balloon, its contents,

- and that of any mooring cable.



The stability of a submerged body 3

1.3. The stability of a submerged body

A submerged body can hover in equilibrium if its weight equals its
buoyancy. This condition, which is referred to as neutral buoyancy, can
be approached in a submarine, e.g. by flooding tanks with water, or
‘blowing’ them with air, until the weight is made equal to the upthrust.
As the weight may be imagined to be concentrated at G, and the buoyancy
force at B (see Fig. 1.2(a)), we need to establish whether the weight will
tend to hang from this virtual pivot B, or to rest upon it. Either is
nominally an equilibrium position, but only the former configuration
is stable. This is a.perfectly general conclusion and is demonstrated in
Figs. 1.3(a and b) by considering a drum with a weight fastened to its

R

Fig. 1.3(a). Stabls Fig. 1.3(b). Unshable
Stability of a submerged body

side as shown. The weight will naturally set itself at the lowest position,
1. it is in stable equilibrium when G lies below B.

The test for stability is to imagine the body to be disturbed from the
equilibrium position considered, G being moved to G’ in each case. In
case (a) the body will experience a couple (of magnitude W.BG' sin 6)
tending to return it to its original configuration on being released; it is
therefore said to be stable. In case (b) the body will tend to topple on
being released, so that the original configuration is said to be an unstable
one.

Thus, if a submerged body initially at rest be slightly displaced so that
the force of buoyancy and the force of gravity acting on the body are not
intheuneverdcalline,theﬁody is said to be in stable or unstable equi-
librium according as the resulting couple tends to bring the body back to
its origimal position or to give it further displacement.

1.4, Deusity and relative demsity

Just as Newton’s Principle of Gravitation is usually said to have been
inspired by the fall of an apple from a tree in an orchard, so Archimedes’
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Principle is alleged to have resulted from his absent-minded entry into a
bath which was full of water. Having realized that his body was displacing
a corresponding volume of water, he is said to have rushed out shouting
‘Eurcka!’ (‘I have found it!”’) What he had found was a way of checking
the weight per unitvolume (pg) of a crown which King Hiero had ordered
to be made of pure gold; he was thus able to confirm the King’s sus-
picions concerning the honesty of the craftsman who had made it.
One most convenient way of estimating the density of a liquid (say

the acid in a battery) relative to pure water is by using a hydrometer.
This consists essentially of a highly stable float with a graduated stem

10

L Stem area a

TN ))

ﬂ h

A
Distilled water E Tiquid of
of density = ‘
(Volume Pw = density p
submerged = Vo )| -

Weight W
Weight W

Fig. 1.4(a). Hydrometer

calibrated in terms of relative density as shown in Fig. 1.4a). By Archi-
medes’ Principle the hydrometer sets itself so that it displaces its own
weight—the depth of immersion of the stem being an inverse measure of
the relative density of the fluid. For accurate work a series of sensitive
hydrometers is necessary, each covering only a limited range of values.
For obvious reasons Customs and Excise Officers carry hydrometers
when visiting breweries and distilieries.

Referring to Fig. 1.4(a), the weight W of the hydrometer remains
constant. Thus, in distilled water the weight is pug Vo and the position
of the water level on the stem is marked 1-0 to indicate the relative
density. When floated in a liquid of density p the weight of the hydro-
meter is W = pg(Vo—ah). Hence, W = pugVo = pg(Vo— ah)

- L

~T
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Vo
and h = a(l—p)

from which formula the stem of the hydrometer may be graduated to
show specific gravity of the liquid in which the hydrometer is floated.

EXAMPLE 1.4 (i)

What percentage of the total volume of an iceberg of density 912 kg/m? will
e_xtend above the surface of sea water of density 1025 kg/m3.
Referring to Fig. 1.4(b):

BumpegVp
W=pig (Vo +1p)
Fig. 1.4(b). Iceberg

W=B8
Va . Ps
sl ==
Ve Pt
Ve 1025 | = 113
or vV, 912 912
H Vb+l—9L2+l __1025
ence, 78 TE M VT
_ Vol
- anove
Vsbove ”3
and Vo = 1038 or 11 per cent

EXAMPLE 1.4 (ii)

A ‘ball-cock’ type of fleat valve is required to close when two-thirds of the
volume of the spherical float is immersed in water having a density of 1 Mg/m3.
The valve has a diameter of 12-5 mm, and the fulcrum of the operating lever is
to be 100 mm from the valve and 0-45 m from the centre of the float. Estimate
the minimum diameter of the float if it is required to close the valve against a
pressure of 138 kKN/m? gauge. g = 9-807 m/s2.

Referring to Fig. 1.4(c), the force required to close the valve is

Fq= 1385§x’-’x1563mm=- 1694 N -
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Hence, the force of buoyancy required to be exerted by the float is

10
F5=4—5-xl694N—376N

12.6mm dia.

Fig. 1.4(c). Float valve

Also, if the volume of the sphere is denoted by ¥ and its weight and that of
the lever are neglected, then

= 4pgV = 376 N
Le.
V—zx 376 N _0'577m
2 03 g <9-807 ™ Ns2 103
s2|kgm

The volume V of a sphere is related to its radius r by ¥ = $xr3, hence

B J(3 0-577 m3 0-516
YW T 18T 10 ™
and the diameter of the float is 103-2 mm.

To allow for the weight of the lever and float, and to ensure that the vaive
is firmly seated, a larger diameter would be used in practice.

1.5. The metacentre and metacentric height of a floating body

Archimedes’ statement that a body experiences an upthrust equal to the
weight of fluid it displaces is just as valid for bodies floating on the surface
as for those which are submerged. It therefore embodies the principle of
flotation which states that when at rest a floating body displaces a'volume
-of fluid equal in weight to its own. The force of buoyancy acts, as stated in
Section 1.2, through the centroid of the displaced volume, but we must
note that if a floating body is heeled or pitched, its centre of buoyancy is
also moved. The reason for this movement may be seen by referring to
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Fig. 1.5(a) in which the heel of a ship is conveniently represented by
re-drawing the water surface as RS instead of as PQ. For the ship to
displace her own weight in the heeled condition, it follows that she must
pivot about O, so that the buoyancy lost, owing to the heeling having
rendered the weight of the wedge of fluid OPR inoperative, is balanced
by the buoyancy received as a result of the displacement of the corre-
spanding wedge of fluid OQS. If, however, the vessel has a ‘flare’, i.c.
sloping sides, this is not quite true, but the error is generally negligible
for small angles of heel,

0 Curve of metacentres
o
2 y*/
s"“’“‘d&e
., 1pe |
- G o Curve of buoyancy
L -\

: W\

Fig. 1.5(a). Curves of buoyancy and metacentre

When the vessel is upright the centre of buoyancy is at B, i.e. at the
centroid of the volume enclosed by the underwater shape of the vessel
and the water surface PQ. When, however, the vessel is heeled, the centre
of buoyancy moves to B’, the centroid of the volume enclosed by the
underwater shape and the water surface RS.

The upthrust acting through B’, and the weight acting through G
constitute a couple which exerts a moment equal to their magnitude, W,
times the perpendicular distance, GZ, between their lines of action. The
distance GZ is known as the righting lever, and is positive if the vessel is
stable, i.e. the couple tends to restore the ship to the upright position.

The locus of the successive positions of the centre of buoyancy B’ as
the angle of heel 8 is increased is known as the curve of buoyancy. Its
derivation for a particular ‘displacement’, i.e. weight of ship, constitutes
a lengthy exercise in determining centroids and need occupy the attention
of naval architects only. The shape of the curve depends exclusively on
the lines of the vessel for a particular displacement. Since the centre of
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buoyancy is the point at which the weight of the vessel is supported, we
may imagine that she rests upon that bit of tangent to the curve of
buoyancy parallel to the water surface as indicated in Fig. 1.5(a).

Similarly, above the water surface, the curve to which .the line of
action of the upthrust remains always tangential as the ship (or water
surface) is heeled, is known as the curve of metacentres for a particular
displacement. Mathematically it follows that the curve of metacentres is
the evolute of the curve of buoyancy. The cusp (M) in the former curve
shown in Fig. 1.5(a) is known as the initial metacentre, and the distance
GM is the initial metacentric height. It follows that the initial metacentre,
M, is the point where the line of action of the upthrust intersects the ori-
ginal vertical line through the centre of buoyancy, B, and the centre of
gravity, G, for an infinitesimal angle of heel.

In practice it is found that for small angles of heel the line of action of
the upthrust passes very nearly through the initial metacentre M. Hence,
so long as the angle of heel is less than say 15°, we may assume that the
upthrust always acts through the fixed point M, just as the weight always
acts vertically downwards through G. Under these condiflons the righting
moment or couple is W x GM x sin 6, in which expression the distance
GM may be considered to be a constant for the vessel. This initial value
is generally implied when referring to the transverse metacentric height of
the vessel, and is a measure of its static stiffness in roll. So long as G lies
below M the righting couple will be positive, and this implies stability.
In fact, a floating body is in stable, unstable, or neutral equilibrium accord-
ing as the metacentre lies above, below, or at the centre of gravity. Obviously
it is important that ships be designed such that M is normally above G
for all conditions of loading, and under all circumstances of rolling..

We may note that a negative GM in the upright position is not neces-
sarily catastrophic. Although a vessel in this condition cannot be
persuaded to remain upright, she may possibly find a new stable
equilibrium position by developing a ‘loll’ to one side or the other. A
vessel with a large metacentric height is said, by naval architects, tobe a
‘stiff” ship which is found to be correspondingly lively, i.e. the vessel
tends to roll with a predominantly greater amplitude and frequency in a
rough sea. Merchant ships, especially liners, are therefore designed to
have a relatively small metacentric height—say, between 0-3 and 0-6 m,
but in warships sea-kindliness is sacrificed so that they have a large
reserve of stability—GM varying between, say, 0-6 and 2 m according
to displacement. These are the metacentric heights for ‘rolling’ dis-
placements about a longitudinal axis. The metacentric heights for
‘pitching’ displacements about a transverse axis are, of course, much
larger.

ExAMPLE 1.5 (i)

(a) Outline briefly how a static stability curve may be obtained, over the whole

3]
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range of stability of a ship, for a particular displacement and centre of
gravity.

() Such a curve of righting levers for a vessel is given by the following ordinates
at 10 degree intervals from the upright position:
Righting lever in m: 0, 0-09, 0-50, 0:97, 1-23, 1-16, 0-79, 0-09,

(i) Estimate the influence on the range of stability caused by raising the
centre of gravity 0-6 m.

(ii) Discuss the behaviour of the ship with the raised centre of gravity and
state what steps should be taken to correct its condition.

0

Fig. 1.5(b). Effect of position of centre of gravity on righting lever

(a) The centroid B’ of the displaced volume must first be determined from
the lines of the vessel for a number of angles of heel up to the point of
vanishing stability. The water surface is chosen in each case so that the
displacement has the correct value.

The lever arm at which the upthrust through B’ acts about the centre of
gravity G, gives the righting lever GZ, as indicated in Fig. 1.5(b). A graph
showing the variation of the latter with heel is known as a static stability
curve; see Fig. 1.5(c).

(B) Righting Lever (GZ)

From Fig. 1.5(c) it is seen that the effect of raising the C.G. from G to G’
is to reduce the righting lever from GZ to G'Z’. The reduction in the righting
lever is thus: '

GZ~-G'Z = GG’'sin 6



