'C++ PROGRAM DESIGN

An Introduction to Programming and Object-Oriented Design

COHOON & DAVIDSON
3rd Edition

fi
5
i
Vr
Al
L]
i
A
%
B
vl‘
A
I

C++ Program Design

An Introduction to Programming and

Object-Oriented Design

Third Edition

C++RF iRt
Bkt mE R R it Al
3K
James P. Cohoon
University of Virginia

Jack W. Davidson
University of Virginia

I N

McGraw-Hill Companies, Inc.

(R) EF 158?

C++ PROGRAM DESIGN: AN INTRODUCTION TO PROGRAMMING
AND OBJECT-ORIENTED DESIGN, THIRD EDITION
Cohoon, James P. /Davidson, Jack W.

Copyright © 2002, 1999, 1997 by The McGraw-Hill Companies, Inc.

Original English Language Edition Published by The McGraw-Hill Companies, Inc.
All Rights Reserved.

For sale in Mainland China only.

F R EAR th McGraw-Hill H R 2 5] #ZANE #2 0K 4% i AR 2E o (B 58) R38R BAT UK
WITFFHITEX M EEBX) MEHR. KIT.
REHREBEFR, THUTAAREFSZEBHEAHRS .

AP TR E McGraw-Hill B {hirE, TIREERESHE.
IERTHRAEZENESFELS: BF: 01-2001-4316

B 4 CHEFRU—F R R R ST RETATT F3 8D

1€ 3 : JamesP. Cohoon Jack W. Davidson

HARE: BHEREHRE GEREEXSEETRE, W% 100084)
http:// www.tup.tsinghua.edu.cn

BURIE . EHRFENRIT

BATE: FHEPHEBIEILREATH

: 787X960 1/16 EfgK: 61.5

: 2002 1 A 1R 20024 1 A% 1 KETRI

: ISBN 7-900637-50-8

: 0001~3000

: 76.00 7T (&I

2 F
- S

oM E A

SK, BIMNWKEE . REMEE - PHFLEE, HRE—TERLHERNA. i
145 % BERE EH ARSI 2B LIS S MEFME 2 ARITRES BEFPEEE
E EEPREEIHIZ (FEARHR RS AU E SESMNRTEIT O LM BEZ RN,
HAEBRNE, ML ARERENERSNINERESES - AETH, ERERHE
PR “ KZIEEHF RPN PH—FAE . LWFEERENLEREFR. BN, AR
HPIRALE T X TREH R MR . BRERRERTIR T LEE Rz, EEFEE
RAGETTOESTR - B 2I 78S TRE — YRS EEURIRBEM E I ESE S
AR RXTTENER. BROIMSEET —#EIMTEI 27T mRFR RS S5, TR
AR - BALRBEINE & B A AR S AR EfR et K FREM 3 ABRE RS ¥
R AR T HF A, BE S X B = R R -

AL A A E R R IR B ORER - BILRBARA], EXMENER - HIEH
BEBHIEREEIMEF I EVEE B DR TRIVEG CRETEVHEL S (HERR)) #ME
Hif EEARRITENTEE.

FERE R
(RETENEEAS (RER)) HEL
1999.6

Preface

INTRODUCTION

Computers are an inescapable fixture in our lives. They control complex sys-
tems such as financial networks, mass transit, telephone systems, and power
plants. Tens of millions of people use the Internet to access infoermation, shop,
recreate, communicate, and conduct business. Because the computer has
become such an intrinsic component of modern life, we believe that everyone
should have a basic working knowledge of how computers are programmed.

This textbook is about the fundamentals of programming and software
development using C++, a popular high-level programming language devel-
oped by Bjarne Stroustrup of AT&T Bell Laboratories. We chose C++ for
teaching programming because it supports the development of software using
the object-oriented approach. An advantage of object-oriented development is
that it lets us build complex software systems employing many of the tech-
niques that have been used for constructing complex physical systems, such as
cars, airplanes, or buildings. This book is targeted for a first programming
course, and it has been designed to be appropriate for people from all disci-
plines. We assume no prior programming skills and use mathematics and sci-
ence at a level appropriate to first-year college students.

Some of this book’s important features are

8 The C++ standard is given broad coverage. Our original naive intent was
to offer complete coverage of C++. However, such a presentation would be
overwhelming for the beginning student. For example, the language
definition describes more than 150 standard classes and libraries. Rather
than being encyclopedic, we provide in-depth coverage of all materials
that an introductory course would need, introduce much of the remaining
material, and give pointers to the rest. We also provide integrated coverage
of the important additions and modifications to the C++ language, such as
type bool, Standard Template Library, namespaces, and exceptions, The
breadth of our coverage provides flexibility for the instructor. For example,
an instructor may choose not to cover inheritance, but instead to cover

vi

templates. For the students, the coverage allows advanced learners to go
further in the language, and it makes the book valuable as a reference
source.

Classes are introduced early. Chapter 1 includes a gentle introduction to
the object-oriented paradigm. Material is presented there to whet students’
appetites. We believe that students must first be client users of objects
before they can appreciate the difficulties of designing flexible, usable
objects. All proficient designers started as users. The next several chapters
introduce and use some standard stream class objects, such as cout and
cin, string objects using the Standard Template Library, and a limited
number of objects derived from a graphical library developed for the
textbook. This experience helps reinforce the concepts of encapsulation,
software reuse, and the object-oriented programming paradigm. After this
solid introduction to the use of objects, we present approximately 50
classes and ADTs over the final eight chapters.

We present the use of a graphical Application Programmer Interface (API)
designed specifically for beginning programmers to develop interesting
programs. We provide a portable, object-oriented graphical library, named
EzWindows, for the easy display of simple geometric, bitmap, and text
objects. We supply implementations of the API for popular Windows and
UNIX compilers. Using the API provides several important experiences
for the student. First, students are client users of a software library. As
mentioned earlier, using well-designed objects helps novice programmers
begin to appreciate good object-oriented design. Their experience as users
forms the basis for becoming designers. Second, using the API introduces
students to the real-world practice of developing programs using an appli-
cation-specific library. Third, using EzZWindows to perform graphical input
and output exposes the student to event-based programming and the domi-
nant mode of input and output used in real applications, and it permits
development of exciting and visually interesting programs. This experi-
ence motivates the students, and it provides a visually concrete set of
objects that help students understand the object-oriented paradigm.
EzWindows is simple enough to allow even the first programming assign-
ments to be graphical. Examples using EzZWindows are sprinkled through-
out the text. However, the presentation is done in a fashion that
accommodates instructors who prefer to cover only ANSI materials. For
students and instructors who want more advanced graphic capabilities, see
Appendix E, which is a complete EzWindows reference. For sample
assignments and supplementary materials, visit our Web sites http://
www.mhhe.com/c++programdesign and http://www.cplusplus-
programdesign.com,

Software-engineering design concepts are introduced via problem studies
and software projects. Besides containing numerous small examples for
introducing C++ and object-oriented design concepts, each chapter
considers one or more problems in detail. As appropriate, there are object-
oriented analysis and design, algorithm development, and code to realize

vii

the design. In addition, two chapters are devoted to the principles of
software project development using our EzZWindows API (Chapters 10 and
15). These chapters are springboards for software reuse and for projects
suitable for individual and group work.

® Programming and style tips are presented in boxes that clearly separate
this material from the main text. In addition to explaining C++ and object-
oriented programming, we also give advice on how to be a better and more
knowledgeable programmer and designer. For example, there are
important tips on avoiding common programming errors, writing readable
code, and understanding the new directions the standard took, as well as
tips on performance and software engineering. Boxes also present one or
two pages per chapter of historical information on computing.

m [ntegrated use of the Standard Template Library. An important component
of the C++ language is its Standard Template Library, or as it is more
commonly known, the STL. This library provides a rich collection of
container classes for representing lists and strings and a set of generic
algorithms for important programming tasks such as sorting, searching,
and list traversal. Readers first encounter the STL in Chapter 3 when we
introduce the string class. In subsequent chapters, additional features are
introduced. In particular, Chapter 9 thoroughly explores list representation
using the STL’s vector container class, and Chapters 11 and 14 give insight
on how the STL container classes can be implemented and use their
generic algorithms to solve several common programming tasks.

THIRD EDITION HIGHLIGHTS

This third edition incorporates many of the suggestions we have received from
both instructors and students. Some of the notable improvements and additions
in this edition are:

m Self-check questions. At appropriate points in each chapter there are self-
check questions that students can use to check their mastery of the mate-
rial. The self-check questions are in addition to the exercises at the end of
the chapter. The solutions to the self-check questions are available at our
Web sites www.mhhe . com/c++programdesign and www.cp]l usplus-
programdesign.com. The self-check questions include both short
answer questions as well as programming exercises.

m Earlier coverage of classes. The material on classes is now covered a
chapter earlier (Chapter 7). This change reflects the growing consensus
that early coverage of classes is possible and the right approach for
teaching object-oriented programming using C++.

m Coverage of testing and debugging. An important skill for programmers is
how to test and debug the programs they write. Previous editions of the
text did not cover this important topic. Chapter 12 provides an introduction
to testing and debugging. The chapter discusses various testing techniques
such as unit testing, integration testing, and code inspections. The sections

viii

on debugging focus on teaching students how to use the scientific method
to find bugs. The chapter also discusses common bugs encountered by
beginning programmers and how to recognize them.

s /mproved explanations. The entire text has been reexamined and, based on
our own analysis and user feedback, additional examples have been
inserted, clarifying figures have been created, and, as appropriate,
explanations have been revised and expanded.

CONTEXT

In the early 1990s, with the support of the National Science Foundation, the
Department of Computer Science at the University of Virginia began develop-
ing a new computer science curriculum. We carefully examined our existing
curriculum and those of several other peer schools.
What we found were curricula that emphasized the following:
m Use of a programming language that is rarely used outside of
undergraduate courses.
m Construction of small programs, consisting of at most a few hundred lines.
m Development in isolation of text-based programs “from scratch” for each
assignment.
m Development in an environment lacking modern tools.
m An informal development with the belief that if a program “works,” it is
acceptable.
Comparing this situation with the real world, we saw considerable differ-
ences. Practicing computer professionals:
m Use programming languages designed for developing large applications
that are often thousands or even millions of source lines long.
m Are involved most often in modifying and maintaining such systems rather
than in developing them.
m Work in teams, not as single programmers.
m Do system development according to mandated specifications.
s Build systems that use graphical user interfaces to do input and output,
m Use existing libraries and tools to build systems.

To better prepare our students for real-world programming, we developed the
first edition of this book. This third edition reflects feedback we have received
from both instructors and students as well as our own experience using the
book in large introductory programming courses and in a second course on
programming and software engineering.

Programming

Most of the important concepts and problems in computer science cannot be
appreciated unless one has a good understanding of what a program is and how
to write one. Unfortunately, learning to program is difficult. Programming

ix

well, like writing well, takes years of practice. In fact, teaching programming
and teaching writing are, in some respects, very similar.

Students are taught writing by reading examples of good prose and by
writing, writing, writing. In the process, they learn the important skill of how to
organize ideas so they can be presented effectively. As students develop their
skills, they move from writing and editing a paragraph or several paragraphs to
creating larger pieces of prose, such as essays, short stories, and reports.

Our approach to teaching programming is similar to teaching writing but
with one very important addition. Throughout the text, we present and discuss
many examples of both good and bad programming. Programming exercises
give the student the opportunity to practice organizing and writing code. In
addition, we offer examples that facilitate learning the practical skill of modi-
fying existing code. This is done through the use of code that is specifically
designed to be modified by the student. We have found this mechanism to be
effective because it forces the student to read and understand the provided
code. In the text, a CD-ROM/World Wide Web icon signals that this code is
available on the CD-ROM included with the book and at our Web site.

Why C++?

As we began our new curriculum development, one of the first issues was
choosing which programming language to use. Like many departments, we had
been using Pascal. Although it was unanimously decided that Pascal should be
replaced, the choice of a replacement was the subject of much heated debate.
Some of the languages we considered were C, C++, Modula-3, Scheme, and
Smalltalk. A deciding factor was that we wanted to use a language that we our-
selves use professionally. This decision narrowed the choices to C or C++.
Although the decision was not unanimous, we chose C++ based on the belief
that the object-oriented paradigm would be the dominant programming para-
digm of the future.

In hindsight, we made the correct choice. C++ has continued to grow in
popularity, and many companies use it as their development language. Indeed,
many of our graduates report that when they interview for a job, a question
they are often asked is whether they know C++. We believe that we will see a
continuing shift to C++ as the introductory programming language of choice.
We have also been pleasantly surprised by the effect on our students. The stu-
dents in our upper-level courses who have completed our software develop-
ment sequence can tackle much larger and harder problems than the students
who had completed the comparable sequence in our old curriculum. In addi-
tion, we have seen substantial migration of other disciplines to C++. For exam-
ple, all students in the commerce school at our university now take C++, and
the engineering disciplines that had previously required Fortran now require
C++.

Some of you may be wondering about Java. Java is definitely an interest-
ing language. However, serious software development tools are not yet mature,
and the language and its libraries are still undergoing serious revisions. The
conventional wisdom of the professionals in our research areas is that Java

might be the language for developing graphical user interfaces (GUIs) but that
C++ remains the language for application development. If we are to meet our
goal of most ably preparing students for computing careers, then C++ is the
right educational vehicle.

Introduce objects early

Our experience of teaching C++ over the past 8 years shows that the object-ori-
ented paradigm can be successfully introduced to beginning programmers. In
our initial course offerings, we introduced objects near the end of the course
and did superficial coverage of objects, classes, overloading, and inheritance.
Essentially, we taught C using C++ syntax and input and output mechanisms.
This approach failed. It introduced a new concept too late in the course—stu-
dents were not able to integrate the material. We revised our course to intro-
duce objects earlier and found that this approach worked much better. Students
now have time to absorb this material because it is used and reinforced
throughout the course rather than just at the end. The objects-early approach is
reflected in this text. Students begin using standard objects in Chapter 2. Chap-
ters 3 through 7 introduce the students to the use of graphical objects from the
EzWindows APL After this solid introduction to using objects, Chapter 7 intro-
duces classes and the design of objects, and it logically follows the chapters
that introduce control structures, functions, and libraries (Chapters 4 through
0). We strongly believe that this is the proper sequencing of the material in an
introductory textbook. The students certainly like it! By their second and third
assignment they are producing useful software with graphic capabilities.

Software projects

As noted, what we had been teaching in the past was not at all close to what
was happening in the real world. To educate future computer scientists in the
skills that support the engineering and comprehension of large software sys-
tems, reengineering of existing systems, and application of innovative tech-
niques (such as software reuse), our department deemed it necessary to begin
introducing this material in the first course. Our software project chapters
(Chapters 10 and 15) are vehicles for this introduction. These chapters provide
several important experiences for the student. First, both projects use our
EzWindows API. Using the API to do event-based programming and graphical
input and output exposes students to the programming model typically used in
real-world applications, and it permits students to develop more exciting and
interesting programs. If desired, the software projects facilitate students’ work-
ing together in groups of up to four. Again, this practice mirrors the real world,
where it is rare for a lone programmer to develop an application. The software
projects also illustrate software maintenance. Many of the exercises at the end
of the software project chapters call for the student to make major modifica-
tions or nontrivial extensions to the project program.

CHAPTER SUMMARY

m Chapter |: Computing and the object-oriented design methodology—Dbasic
computing tcrminology, machine organization, software, software
development, software engineering, object-oriented design and
programming.

m Chapter 2: C++. the fundamentals—program organization, function
main(), include statement, comments, definitions, writing readable code,
interactive input and output, fundamental types, literals, constants,
declarations, expressions, conversions, precedence.

m Chapter 3: Modifying objects—assignment statement and conversions,
extractions, const objects, increment and decrement, insertion and
extractions, string class, Standard Template Library, graphical objects and
the EzWindows APL

m Chapter 4: Control constructs—logical values and operators, truth tables,
bool, relational operators, general precedence, short-circuit evaluation, if
statement, if-else statement, sorting, switch statement, enum, while
statement, for statement, invariants, do statement, text processing,
scientific visualization.

m Chapter 5: Function usage basics and libraries—functions, value
parameters, formal parameters, actual parameters, invocation, flow of
control, activation records, pseudorandom numbers, prototyping,
preprocessor, inclusion directives, header files, conditional compilation,
software reuse, using libraries, standard streams, manipulators, file
streams, file processing, iostream, iomanip, fstream, ctype, string, stdlib,
and assert libraries.

a Chapter 6: Programmer-defined functions—function definitions,
parameters, invocation, flow of control, return statement, scope, local
objects, global objects, reference parameters, constant parameters, default
parameters, parameter casting, function overloading, initialization, name
reuse, top-down design, recursion, in-memory streams, utility functions,
Standard Template Library, integrating a quadratic polynomial, financial
visualization.

m Chapter 7: The class construct and object-oriented design—programmer-
defined data types, class construct, information hiding, encapsulation,
object-oriented analysis and design, access specification, data members,
member functions, constructors, kaleidoscope program, object-oriented
factory automation simulator/trainer.

m Chapter 8: Implementing abstract data types—data abstraction, object-
oriented design, default and copy constructors, inspectors, mutators,
facilitators, auxiliary functions, memberwise assignment, const member
functions, arithmetic operator overloading, reference return, insertion and
extraction overloading, pseudorandom-number generation, ADTs for
rational and pseudorandom numbers, and the red-yellow-green game.

xii

Chapter 9: Lists—one-dimensional arrays, subscripting, parameter
passing, initialization, character strings, multidimensional lists, tables,
matrices, Standard Template Library, container classes, adapter classes,
vector class, vector member functions, sorting, InsertionSort, QuickSort,
binary search, two-dimensional search, list representation, initialization
lists, iterators, ADTs for maze-traversing robot problem.

Chapter 10: The EzWindows API: a detailed examination—Application
Programmer Interfaces, graphical user interface, event-based program-
ming, window coordinate systern, callbacks, mouse and timer events,
EzWindows API mechanics, ADTs for simple windows, bitmaps, text
labels, and a Simon Says game.

Chapter 11: Pointers and dynamic memory—Ilvalues, rvalues, pointer
types, addressing, indirection. pointers as parameters, pointers to pointers,
constant pointers, equivalence of array and pointer notation, character
string processing, command-line parameters, pointers to functions,
dynamic objects, free store, new and delete operators, dangling pointers,
memory leak, destructors, member assignment, this, ADT for a list of
integers.

Chapter 12: Testing and debugging—black-box testing, white-box testing,
inspections, unit testing, integration testing, system testing, statement
coverage, equivalence partitioning, regression testing, boundary
conditions, code reviews, test harness, path coverage.

Chapter 13: Inheritance—object-oriented design, reuse, base class,
derived class, single inheritance, is-a relationship, has-a relationship, uses-
a relationship, shape hierarchy, controlling inheritance, protected
members, multiple inheritance, ADTs for rectangles, circles, ellipses, and
triangles, an object-oriented kaleidoscope program.

Chapter 14: Templates and polymorphism—generic actions and types,
function template, class template, container class, sequential lists, linked
list, iterator class, friends, polymorphism, virtual function, pure virtual
function, abstract base class. virtually derived class, virtual multiple
inheritance, list ADTs, random-access list, sequential lists, list iterators,
singly linked lists, doubly linked lists.

Chapter 15: Software project—bug hunt!/—encapsulation, inheritance,
virtual functions, object-oriented design, Bug Hunt game, ADTs for
various kinds of bugs and a game controller.

Appendixes — ASCII character set, general precedence table, iostream,
stdlib, time, string and algorithm libraries, vector and other container
classes, string class, namespaces, using statements, exceptions, friends,
EzWindows API, project and make files.

xiii

USING THIS BOOK

This text has more material than can be covered in a single course. The extra
coverage was deliberate—it allows instructors to select their choice of topics
on programming and software development. The book was also designed for
flexibility in teaching. For example, if an instructor desires to move the intro-
duction of classes earlier in the course, he or she can cover iteration after
classes and our development of the rational number ADT. If an instructor
desires to introduce classes after arrays, then Sections 9.1 to 9.5 and Section
9.12 of Chapter 9 can precede Chapters 7 and 8. Also, the discussion of inherit-
ance in Chapter 13 can precede the coverage of pointers and dynamic objects
in Chapter 11. Instructors who do a breadth-first coverage of computer science
may choose to omit the software project chapters and substitute material from
sources that cover topics such as the social and ethical aspects of computing or
elementary formal logic. The testing material of Chapter 12 (Section 12.1) can
be covered anytime after the material on classes (Chapter 7) has been intro-
duced. The section on debugging (Section 12.2) relies on array examples, and
therefore should be covered after Chapters 9 and 11.

We use the following layout for our course.

Week Topic Readings
I Computing and object-oriented Chapter 1
design
2 Programming fundamentals Chapter 2
3 Object manipulation Chapter 3
4 Conditional statements Chapter 4 (Sections 4.1-4.6)
5 lteration statements Chapter 4 (Sections 4.7-4.12)
6 Functions and reuse Chapter 5, Chapter 6
7 Parameter passing Chapter 6
8 OO analysis and design Chapter 7
9-10 ADTs Chapter 8 (Sections 8.1-8.6)
11 Arrays Chapter 9 (Sections 9.1-9.4,
Section 9.12)
12 Vectors Chapter 9 (Sections 9.5-9.10)
13 Project—Simon Says, OOA/OOD Chapter 10
14 Inheritance Chapter 13

Depending on faculty interests, the material covered in week 13 can vary. In
the introductory course at our university, we spend one week every semester on
a problem in detail. Generally, this examination contributes to the final project.

SUPPLEMENTARY MATERIALS

In addition to the included CD-ROM, which contains source code and supple-
mentary files for many of our programs and listings, we have developed other

Xiv

materials. For example, there is a set of slide transparencies (approximately
300 slides). The course we teach also has a closed-laboratory component that
meets once a week for reinforcing current course topics. For these laboratories,
we have developed a student laboratory manual. These materials are available
from the publisher. For more detailed information, visit our Web site at
http://www.mhhe.com/c++programdesign. In particular, we maintain a
frequently asked question list (FAQ) and links to helpful C++ and educational
sites. Other educational supplements are also available at our class Web site
http://www.cs.virginia.edu/csl101.

SYMBOLS

The following icons are used in the margins throughout the text.

 ated with some code listings and programs. This icon indicates

ﬂ that the code is available both on the CD-ROM supplied with

the book and at our Web site http://www.mhhe.com/

c++programdesign. When the icon is associated with the

label Program, the program consists of a single file. If the icon

is associated with the label Listing, a library file or one file in a
multifile program is being made available.

‘—@ = The World Wide Web (WWW) and CD-ROM icon is associ-

The exclamation icon indicates a warning about programming.
Often these are tips on how to avoid common programming
errors.

answers to the exercises can be found at our Web site
www .mhhe . com/c++programdesign or www.cplusplus-
programdesign.com. The self-check exercises include both
short answer questions as well as programming exercises.

: The detour icon indicates a set of self-check exercises. The

: 7% The sunglass icon indicates that the associated material is
“ related to programming style. At the current time, a number of
conventions are being used. The manner that code is presented
in this text generally reflects the dominant convention. (Of

course, our variation is the best!)

The book icon indicates that the associated material is con-
cermned with the C++ programming language itself. The two
typical uses of this icon are for advanced C++ topics or for
describing a recent language extension that can have an
impact on software development.

XV

— The spotlight icon indicates programming tips or highlights
oy & material that presents a more detailed discussion or a sidebar

to the current topic.

The abacus icon indicates a discussion on the history of com-
puting. Many people often mistakenly think that computing is
simply writing programs. While designing and writing pro-
grams is certainly an important part of computing, it is by no
means the only thing encompassed by computing. Each chap-
ter contains at least one anecdote regarding triumphs and fail-
ures of the pioneers in computing.

THE AUTHORS

Jim Cohoon is a professor in the computer science department at the University
of Virginia and is a former member of the technical staff at AT&T Bell Labora-
tories. He joined the faculty after receiving his Ph.D. from the University of
Minnesota. He has been nominated twice by the department for the university’s
best-teaching award. In 1994, Professor Cohoon was awarded a Fulbright Fel-
lowship to Germany, where he lectured on C++ and software engineering. Pro-
fessor Cohoon’s research interests include algorithms, computer-aided design
of electronic systems, optimization strategies, and computer science education.
He is the author of more than 60 papers in these fields. He is a member of the
Association of Computing Machinery (ACM), the ACM Special Interest Group
on Design Automation (SIGDA), the ACM Special Interest Group on Com-
puter Science Education (SIGCSE), the Institute of Electrical and Electronics
Engineers (IEEE), and the IEEE Circuits and Systems Society. He is a member
of the ACM Publications and SIG Boards and is past chair of SIGDA. He can
be reached at cohoon@virginia.edu. His Web homepage is http://
www.cs.virginia.edu/~cohoon.

Jack Davidson is also a professor in the computer science department at
the University of Virginia. He joined the faculty after receiving his Ph.D. from
the University of Arizona. Professor Davidson has received NCR’s Faculty
Innovation Award for innovation in teaching. Professor Davidson’s research
interests include compilers, computer architecture, systems software, and com-
puter science education. He is the author of more than 80 papers in these fields.
He is a member of the ACM, the ACM Special Interest Group on Programming
Languages (SIGPLAN), the ACM Special Interest Group on Computer Archi-
tecture (SIGARCH), SIGCSE, the IEEE, and the IEEE Computer Society. He
served as an associate editor of Transactions on Programming Languages and
Systems, ACM’s flagship journal on programming languages and systems, from
1994 to 2000. He was chair of the 1998 Programming Language Design and
Implementation Conference (PLDI '98) and program co-chair of the 2000 SIG-
PLAN Workshop on Languages, Compilers, and Tools for Embedded Systems

xvi

(LCTES 2000). He can be reached at jwd@virginia.edu. His Web home-
pageis http://www.cs.virginia.edu/~jwd.

DELVING FURTHER

The following are primary references on the C++ language.

m International Standard for Information Systems—Programming Language
C++, ISO/MIEC FDIS 14882, Washington, DC: American National
Standards Institute, 1998.

m B. Stroustrup, The C++ Programming Language, 3rd ed., Reading, MA:
Addison-Wesley, 1998.

The following are good sources on libraries and more-advanced object-
oriented design, program development, and the Standard Template Library.

w J. Bergin, Data Abstraction: The Object-Oriented Approach Using C++,
New York: McGraw-Hill, 1994,

m M. D. Carroll and M. A. Ellis, Designing and Coding Reusable C++,
Reading, MA: Addison-Wesley, 1995.

m M. P. Cline and G. A. Lomow, C++ FAQs, Reading, MA: Addison-
Wesley, 1995.

m A. Koenig and B. Moo, Ruminations on C++, Reading, MA: Addison-
Wesley, 1997.

m S. B. Lippman and J. Lajoie, C++ Primer, 3rd ed., Reading, MA:
Addison-Wesley, 1998.

m S. Maguire, Writing Solid Code, Redmond, WA: Microsoft Press, 1993.
m S. Meyers, Effective C++, Reading, MA: Addison-Wesley, 1998.
m 3. Meyers, More Effective C++, Reading, MA: Addison-Wesley, 1996,

m D. R. Musser and A. Saini, STL Tutorial and Reference Guide, Reading,
MA: Addison-Wesley, 1995,

m P. J. Plauger, A. Stepanov, M. Lee, and D. R. Musser, The Standard
Template Library, Englewood Cliffs, NJ: Prentice-Hall, 1998.

& B. Stroustrup, The Design and Evolution of C++, Reading, MA: Addison-
Wesley, 1994,

The following are good sources for learning more about the history and
future of computing.

m S. Augarten, Bit by Bit: An lllustrated History of Computers, New York:
Ticknor & Fields, 1984.

m P. J. Denning and B. Metcalfe (eds.), Beyond Calculation: The Next Fifty
Years of Computing, New York: Copernicus Press, Springer-Verlag, 1997.

m J. A. N. Lee, Computer Pioneers, Piscattaway, NJ: IEEE Press, 1995.

w J. Palfreman and D. Swade, The Dream Machine: Exploring the Computer
Age, London: BBC Books, 1991.

xvii

a H. G. Stine, The Untold Story of the Computer Revolution, New York:
Arbor House, 1985.

a M. R. Williams, A History of Computing Technology, Englewood Cliffs,
NJ: Prentice-Hall, 1985.

ACKNOWLEDGMENTS

We thank the University of Virginia for providing an environment that made
this book possible. In particular, we thank Jack Stankovic for his tireless efforts
in leading the computer science department to national prominence. We also
thank Mark Bailey, Alan Batson, Joanne Cohoon, Clark Coleman, John Karro,
Sean McCulloch, James Ortega, Jane Prey, Paul Reynolds, and Alfred Weaver
for their comments. Thanks also goes to Bruce Childers who helped design and
implement the original EzZWindows API and Peter Valle who helped revise the
EzWindows API for this edition.

We are grateful to Rich Rashid and Amitabh Srivastava of Microsoft
Research for providing an environment that allowed the third edition to be
completed. Microsoft Research is a great place to think, write, and do research.
A very special thanks go to David Hanson, Todd Proebsting, and Chris Fraser
of the Programming Language Systems group at Microsoft Research for mak-
ing us feel welcome and at home. We will miss the interesting and stimulating
lunch-time conversations—especially the lunch trips to Hole-in-the-Wall Bar-
beque for Meatloaf Monday and to Acapalco Fresh for Burrito Thursday.

We thank all of the people at McGraw-Hill for their efforts in making this
edition a reality. In particular, we thank Tom Casson, for his support and
encouragement; Kay Brimeyer, for her behind-the-scenes product-manage-
ment skills; John Wannemacher, for his creative marketing ideas; David Hash,
for leading the cover-design team; June Waldman, for copyediting the second
edition; Jill Barrie for copyediting the third edition; and Janelle Pregler for her
careful proofreading of the third edition. Special thanks go again to Elizabeth
(Betsy) Jones, our executive editor, for support, direction, and focus throughout
this project, and Kelley Butcher, our senior developmental editor, for managing
and synthesizing the reviewing process.

We thank the following class testers, readers, and reviewers for their valu-
able comments and suggestions on the second edition of this text:

Kenneth Bayse, Clark University

Leslie Blackford, Wheaton College

Jacobo Carrasquel, Carnegie Mellon University

John Dailey Jr., University of Illinois

Suzanne Miller Dorney, Grand Valley State University
Gerald Dueck, Brandon University

H. E. Dunsmore, Purdue University

Elizabeth Lee Falta, Louisiana Tech University
William Filter, Sandia National Laboratories

Ann Ford, University of Michigan

