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PROBLEMS







DERIVATION OF EQUATIONS AND
FORMULATION OF PROBLEMS

Chapter 1 is devoted to problem material on the derivation of the
equations of mathematical physics and the formulation of appropriate initial
and boundary conditions. It also serves as a convenient place to list the
basic equations appearing later in the book. Throughout, we assume that the
reader is familiar with the physical laws underlying the mathematical
formulation of the problems which arise in various branches of physics.

The chapter consists of three sections devoted in turn to problems of
mechanics, heat conduction and the theory of electric and magnetic phe-
nomena. Each section starts with the basic equations governing the corre-
sponding set of problems, with appropriate references to sources where the
derivations can be found. Special attention is devoted to the formulation of
problems of electrodynamics, since this subject is inadequately covered in
the available literature.!

1. Mechanics

This section contains problems on the derivation of equations of motion
and formulation of initial and boundary conditions for vibrating strings,
membranes, rods and plates, as well as some examples pertaining to the,
statics of deformabie media. It will be assumed that the re?der has already

! Those particularly interested in mathematical aspects of the formulation of physical
problems can find relevant material in C5, G, L1, P2, S1 and S13. (The reference scheme
is explained in the Translator’s Preface.)
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encountered the basic equations in a first course on mathematical physics.?
Thus we shall merely list the equations concisely, at the same time explalmng
the notation to be used in the book.

1. The equation of a vibrating string is
u_ LT g /_
ax* oot

where u(x, t) is the displacement of the point of the string with abscissa
x atthetimez, g(x, 1) is the external load per unit length, T'is the tension,
and p is the linear density.

2. The equation for longitudinal oscillations of a rod of conctant cross
section is

where u(x, 1} is the displacement of the cross section of the rod with
abscissa x at the time #, E is Young’s modulus, and p is the density.

3. The equation for transverse oscillations of a rod (beam) is

QE_{__I_&__({(X") aﬂ__ E_‘_’_

axt atot  EJ N oS’
where u(x, t) is the displacement of the points along the midline of the
rod, g(x, t) is the external load per unit length, £is Young’s modulus,

J is the moment of inertia of a transverse cross section, p is the density,
and § is the cross-sectional area.

4. The equation of a vibrating membrane is

Q’g+6’ 1% quyt) v=ﬁ

oxt oyt oo T '’ o
where u(x, y, t) is the displacement of the point (x, y) of the membrane
at the time ¢, g(x, y, t) is the external load per unit area, T is the tension

per unit length of the boundary of the membrane, and p is the surface
density.

5. The equation for transverse oscillations of a thin elastic plate is

1% q(x,p,0 D
A® — == bt = -,
“theaw~ »p N ok

* See S€ (Vol. 11), S14, Tl and T2. Concerning the derivation of the equat:ons of
vibrating plates, see T4.
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where u(x, t) is the displacement of the point (x, y) of the midplane of
the plate at the time ¢, q(x, y, t) is the density of the external load, D
is the flexural rigidity, 4 is the thickness, p is the density, and

¢
BTN
ox®  dy
is the two-dimensional Laplacian operator.
The above equations lead to corresponding equations for static
deflections, if we regard the external load ¢ and the unknown displace-

ment u as independent of the time ¢. For example, the equilibrium
equation for the membrane is

6. :
Pu  Pu_ _q(xy)
oxt 9y T '’
the static deflection of the plate satisfies the equation
1.
Azu — Q(xa y )
- D’
and so on.

Among the other equations governing the statics of elastic bodies
which will figure in this book, we cite the familiar equation
8. o
u , du
o T T
ox*  dy
for twisting of a prismatic rod, where u(x, y) is the torsion function.

We now give some problems on the formulation of initial and boundary
conditions for these equations, and also some problems on the derivation of
other differential equations.

1. Describe the initial and boundary conditions for a vibrating string with
fixed ends (0 < x < /), which is stretched at the point x = ¢ and time t = 0
to a height h, and then released without initial velocity.

.Ans,
h—x, 0< x<o,
: Ou
”lz=o:f(x): Wl E‘ t=0=0;
_(;i)’ e x<l,
I—¢

U|pmo = Ulpe;, = 0.
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2. A concentrated load of mass m, is fastened at the point x = c of a
string 0 < x < / of length /. Find the equations describing vibrations of the
. string with arbitrary initial conditions, assuming that the ends of the string
are fastened.

Ans.
u, 0<x<e 9t 190%;
u=| SH-55E=0 (=12,
Uy, < X< l’ ox v at
with initial conditions
du
ul o =fx), —=| =2z,
=0 = f (%) ot leco &(x)
and boundary conditions
alJ2 aul) my azu
Uil gmg = Ualpey = 0, Up|zee = Us|paes (——~—. = .
ll 0 2' ! ll 2| ¢ ax ax r=c T 612 z=¢

3. Formulate initial and boundary conditions for the problem of longi-
tudinal oscillations of a rod in the following special cases:

a) Arod of length /is clamped at the end x = 0 and stretched by a force F
applied to the other end; at the time ¢ = 0 the force is suddenly discontinued;

b) A tensile force F(r) is applied at the time 7 = O to the end x = / of a
cantilever in equilibrium;

c) A cantilever clamped at the point x = 0, with a load of mass M, at the
free end x = /, undergoes longitudinal oscillations subject to arbitrary initial
conditions.

Ans.
a) ul,_q = %, %—l: e ul,0 =0, g—xlf S 0;
b) ul,_g =0, % S 0, ulyg =0, % S %(;—)
¢) ulyg = f(x), %ut o g(x), ul,p=0, % o %;%2‘:12 ot

4. Derive the differential equation for longitudinal oscillations of a thin
rod of variable cross section S = S(x). As an example, derive the equation
for oscillations of a conical rod.

1 2 au] 1 JE
L Zls%| - =0, v= [T,
S(x) ax[ () Ox v o ’ e

Y

ANS.
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5. Derive the equation for torsional oscillations of a shaft of circular ]
cross section.

Ans. a_,@ 1 a_’f_) ~
ax®* oo’
where 6(x, t) is the angular displacement of the cross section x relative to the
equilibrium position, v = J G_/p; p is the density, and G is the shear modulus.
Hint. The torque at the cross section x is given by the expression

a0
M=G]—,
ox

where J is the polar moment of inertia of a cross section of the shaft.

6. Formulate initial and boundary conditions for the prgblem of torsional
oscillations of a shaft of circular cross section and length /, where the end
x = 0 isclamped and a disk-shaped mass with moment of inertia J, is attached
to the other end. At the time ¢ = 0, the disk is rotated through a given angle
« and then released without initial velocity.

Ans.
" Oo=aZ, 2| =
=0 l ’ at t=0
29 Jo 00
0.o=0 = 2| =—2
I:‘o ax z=1 GJ at"’ z=l

. 7. A cantilever of length / is clamped at one end x = 0 and loaded by a

force F at the other end. At the time ¢ = 0, the action of the force is suddenly
discontinued. Formulate initial and boundary conditions for the corre-
sponding oscillations.

Ans. Initial conditions

F du
0= —— (3Ix* — x%), —| =
ul' 0 6EJ( * *) Ot li=o
and boundary conditions
ou d%u ?*u
Ulpug = — = U, m— = —— = 0.
Iz 0 ax z=0 axz z=1 axs x=1

8. Describe initial and boundary conditions for the problem of free
oscillations of a disk-shaped plate with clamped edge, whose initial deforma-
tion is due to a concentrated force F applied at the center of the disk.

Ans.

Frt r F .4 ou
g =——In- —rd, = =
o TS CHLE A NN
u|,_a= 0, 9u =0
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Hint. To determine the static deflection due to the concentrated force,
consider the force as the limiting case of a load of density F/me? uniformly
distributed over a small disk of radius e.

9. Show that the problem of the deflection of a plate with a simply
supported polygonal boundary reduces to the solution of Poisson’s equation

Aw =f(x, y),
with boundary condition w|r = 0 (fis a known function).
Hint. Note that in the present case, the boundary conditions on the
supported edge can be written in the form u|p, = 0, Aup. = 0.

10. Show that the velocity potential for the three-dimensional flow of an
ideal incompressible finid containing no sources is described by Laplace’s
equation

Au = 0.
Hint. Use the condition
j vendS=0
s

(v is the vector describing the velocity of fluid particles at a given point, S is
an arbitrary closed surface inside the flow, and n is the exterior normal to the
surface S) and the condition ’

v= —grad u
for potential flow.
11. Formulate mathematically the p}oblem of the flow of an ideal fluid

past an object bounded by a surface S, where fluid emanates from a point
source of étrength m located at a point M, in the region exterior to 5.

Ans. The problem reduces to finding a solution of the equation
- Au=0

which is regular (i.e., has no singularities) in the region exterior to S, except at
the point M. In a neighborhood of M,,

wo—m
drp MM,

where M is a point near M, and p is the density of the fluid (|]MM,| denotes
the distance between M and M,). The desired function ¥ must satisfy the
boundary condition

+ a regular function

du

‘ =0
, Onls
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and the condition -
u=0R?), " R—-w
at infinity.

2. Heat Conduction

As proved in courses on mathematical physics (see S1, T1), the flow of heat
in a body of thermal conductivity k, specific heat ¢ and density p is governed
by Fourier’s equation

- where T(M, 1) is the temperature at the point M, and Q is the density of heat
sources within the body.® The boundary conditions to be satisfied on the
surface of the body (or its parts) depend on the particular problem under
consideration. Most often it is assumed that the surface of the body has a
given temperature T'|g = f(P, t), where P is a point of the surface S, or that
the body radiates heat into the surrounding medium according to Newton’s
law, which states that the amount of heat radiated by a unit area of the
surface per unit time is proportional to the difference between the temperature
of the surface and that of the surrounding medium. In the latter case, the
boundary condition takes the form

(a—T + hT)’ = hTmeaq,
on s .
where 3/dn indicates differentlation with respect to the exterior normal to S,
Tmea is the temperature of the surrounding medium, and h is the heat
exchange coefficient or emissivity. Without loss of generality, we can assume
that Tmeda = 0; this assumption is made in all the problems involving heat
conduction except Prob. 155.¢

We now give a few problems on the formulation of initial and boundary
conditions for the equation of heat conduction (and for the related diffusion
equation).

12. Let the temperature offa conductor in the form of an infinite cylinder
of radius @ be initially the same as that of the surrounding medium. Suppose
that starting from the time ¢ = 0, the conductor is heated by a constant

* The density of heat cuttent (i.e., the heat flux) is described by the vector
q= ~kgrad T

¢ Examples of other boundary conditions encountered in the applications are given in
Probs. 365, 367 and 370.
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electric current releasing an amount of heat ¢ per unit volume of the con-
ductor. Give a mathematical formulation of the corresponding problem of
heat condugtion, assuming that the heat exchange at the surface of the con-
ductor obeys Newton’s law.*

Ans. The temperature T(r, ¢) satisfies the equation

12(,0m) T g K

ror\ or otk cp
with initial condition
T}T:O =0
and boundary condition
oT
-+ hT) = 0.
<ar r=q

13. A homogeneous sphere of radius a is heated for a long time by heat
sources uniformly distributed throughout its volume with density Q. Write
the equations which describe the cooling of the sphere after the sources are
turned off, assuming that the heat exchange between the surface of the sphere
and the surrounding medium, during both the heating and cooling, obeys
Newton’s law.

Ans.
LO(aT) 3T (&)
r'ar i ar' —31’ 3r+h r=n— ’
~__Q_ 2 _ 2 _Q_ﬂ
Tlf_o-—6k (a r)+3kh.

14. Two slabs of thicknesses a; and a,, made from different materials and
heated to temperatures 72 and T, are put into contact with each other at the
time £ = 0. Write the equations governing the resulting process of tempera-
ture equalization, assuming that the free surfaces are thermally insulated from
the surrounding medium.

Ans.

o', c¢p, 0Ty T, cyp, 0T
A _ARTl ex< , —D == a, < X < + a,),
o k, Py ( x < ay) o ks o1 (a, ay 2)
with initial conditions

Tl‘:-o = Ty, Tz‘e-o = Th,

51t is recommended that the problem be solved directly from underlying physical
principles, without regarding Fourier's equation as known.
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and boundary conditions

T, ‘ oT, aT, oT,
=2 =0, Tomey = Tolomap k7= =kag— —: =0.
ax P ] 0 lla a“ ’lm‘ ! ax Teay ,’ ax x=ay 3x @—ay-+ag

15. A nonuniformly heated body in the form of a circular ring of radius ¢
with a small cross section cools by giving off heat from its lateral surface.
Write the equations describing the corresponding process of temperature
equalization, assuming that the temperature drop inside the ring can be
neglected and that the surface cooling obeys Newton’s law.

Ans.

. 2
LT _OT hpy | _M
a*d¢* ot S cp
where p is the perimeter, S the cross-sectional area and 4 the heat exchange
coefficient. The temperature, which must be a periodic function of the angular
coordinate ¢, satisfies the initial condition

T“r-o = f((P)’

’

where fis a given function.

16. Show that the concentration C(x, y, z, t) of a substance diffusing in a
gas or liquid obeys the differential equation

“pa D’

where Q is the source density of the diffusing substance and D is the diffusion
coefficient.

Hint. Starting from Nernst’s law q = —grad C (where the vector q is the
density of flow of the diffusing substance), write a conservation equation for
an arbitrary volume element.

3. Electricity and Magnetism

An important class of problems of mathematical physics involves integra-
tion of the differential equations arising in various branches of electromagnetic
theory. Assuming that the reader has previously encountered this sutject
(see GS, J6, PI), we shall regard the following basic equations as known:

1. The equations of electrostatics

bu=-%8 E- _pradu,

€
where u is the potential of the electrostatic field E, ¢ = p(M) is the
volume density of charge at the point M, ¢ is the dielectric constant of
the medium, and A is the Laplacian operator.
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2. The equations

pu=-2, j=—cgrdy, o
c
for the distribution of d-c current density inside 2 homogeneous
conductor, where u is the potential of the current field, j is the current
density vector, Q = Q(M) is the volume density of current sources (in
particular, Q may vanish), and o is the conductivity.

3. The equations
drt i, H= ! curl A

i
for the magnetic field due to d-c currents, where A is the vector poten-
tial of the magnetic field H, the vector j'* is the density of the (external)
currents producing the magnetic field, @ is the magnetic permeability
of the medium, ¢ is the velocity of light in vacuum, and A is the
Laplacian operator.®

AA = —

4, Maxwell’s equations

cur1H=5%§+4"°E+4—"j<‘>,
(4

curl E = —Eﬂ—{,
c ot
d1vE-—4np
£
divH=0

for the electromagnetic field in a homogeneous isotropic medium,
where E and H are the electric and magnetic field vectors, €, 1 and o
are the dielectric constant, the magnetic permeability and the conduc-
tivity of the medium, c is the velocity of light, and ¢ and j'* are the
charge and current densities producing the field.’ .

 The components of the vector AA in a Cartesian coordinate system are AA,, A4,
and AA,. To calculate the components of the vector AA in other coordinate systems, one
should use the relation
AA = grad div A — curl curl A.

Expressions for the components of AA in cylindrical and spherical coordinates are given
on p.389-390.

7 It should be noted that if j*¢' is given, then p cannot be chosen arbitrarily, but must
satisfy the differential equation

dp Amo
— — = —d {e)
i + [ iv §

implied by the first and third Maxwell equatlons.



