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CHAPTER

ONE

SETS AND PROPOSITIONS

1.1 INTRODUCTION

A major theme of this book is to study discrete objects and relationships among
them. The term discrete objects is a rather general one. It includes a large
variety of items such as people, books, computers, transistors, computer
programs, and so on. In our daily lives as well as our techmcal work we
frequently deal with these items, making statements such as, "“The people in
this room are Computer Science majors in their second year of stady,” ““All the
books I bought are detective stories written by A. B. Charles,” and *“We want
to select and buy a computer among those that are suitable for both scientific
and business applications at a price not exceeding $200,000.”” We would like to
abstract some of the basic concepts dealing with the many different kinds of
discrete objects and establish certain common terminology for dealing with
them. ‘

A hint of the possibility of such an abstraction is quite evident when we
observe that these three statements all have “something” in common. To be
specific, in the first statement we are referring to people who possess the two
attributes of being a Computer Science major and of being a sophomore; in the
second statement we are referring to books that possess the two attributes of
being a detective story and of being written by A. B. Charles; and in the third
statement we are referring to computers that possess the three attributes of
being suitable for scientific applications, of being suitable for business applica-
tions, and of being priced at no more than $200,000. To put it in another way,
consider the group of all the Computer Science majors and the group of all the
sophomores in the university. In our first statement we are then referring to
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those students who belong to both of these groups. Also, consider the
collection of all detective stories and the collection of all books written by A. B.
Charles. In our second statement we are then referring to those books which
belong to both of these collections. Finally, in our third statement we are
referring to all computers which belong to the three categories of computers
that are suitable for business applications, that are suitable for scientific
applications, and that are priced at no more than $200,000.

Our example illustrates the many occasions on which we deal with several
classes of objects and wish to refer to those objects that belong to all the
classes. Similarly, one would immediately perceive occasions on which we
refer to objects that belong to one of several classes of objects, such as in the
statement, “I want to interview all the students who speak either German or
French,” where we refer to those who belong either to the group of German-
speaking students or to the group of French-speaking students.

We begin with the introduction of some basic terminology and concepts in
elementary set theory.

A set is a collection of distinct objects. Thus, the group of all sophomores
in the university is a set. So is the group of all Computer Science majors in the
university, and so is the group of all second-year Computer Science majors. We
use the notation {q, b, c} to denote the set which is the collection of the objects
a, b, and c. The objects in a set are also called the elements or the members of
the set. We usually also give names to sets. For example, we write S = {a, b, ¢}
to mean that the set named S is the collection of the objects a, b, and c.
Consequently, we can refer to the set S as well as to the set {a, b, c}. As
another example, we may have

Second-yecar-Computer-Scicnce-majors
= {Smith, Jones, Wong, Yamamoto, Vdgeli}

(The name of the set {Smith, Jones, Wong, Yamamoto, Végeli} is Second-year-
Computer-Science-majors, which is rather long. The reader probably would
want to suggest alternative names such as S or CS. However, there is nothing
wrong conceptually with having a “‘long’” name.) We use the notationa € S to
mean that a is an element in the set S, In that case, we also say that S contains
the element a. We use the notation d€ S to mean that d is not an element in the
set S. In that case, we also say that S does not contain the element d. Thus, in
the example above, Jones € Second-year-Computer-Science-majors, while
Kinkaid &€ Second-year-Computer-Science-majors.

Note that a set contains only distinct elements. Thus, {a,a,b,c} is a
redundant representation of the set {a, b, c}. Similarly, {The-Midnight-Visitor,
The-Midnight-Visitor, The-Missing-Witness, 114-Main-Street} is a redundant
representation of the detective stories written by A. B. Charles. One might ask
the question: What should we do if our collection of detective stories by A. B.
Charles in the library indeed contains two copies of the book The-Midnight-
Visitor? In that case, the set {The-Midnight-Visitor, The-Missing-Witness, 114-
Main-Street} is a set of distinct titles of detective stories by A. B. Charles in our
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library, while the set {The-Midnight-Visitor-1, The-Midnight-Visitor-2, The-
Missing-Witness, 114-Main-Street} is the set of detective stories by A. B.
Charles in our library where The-Midnight-Visitor-1 is copy 1 of the book The-
Midnight-Visitor, and The-Midnight-Visitor-2 is copy 2 of the book. Note that
The-Midnight-Visitor-1 and The-Midnight-Visitor-2 are two distinct elements
in the latter set.

Note also that the elements in a set are not ordered in any fashion. Thus,
{a, b, c} and {b, a, c} represent the same collection of elements. Later on, we
shall introduce the notion of ordered sets.

As was introduced above, one way to describe the membership of a set is to
list exhaustively all the elements in that set. In many cases, when the elements
in a set share some common properties, we can describe the membership of the
set by stating the properties that uniquely characterize the elements in the set.
For example, let S ={2,4, 6,8, 10}. We can also specify the elements of S by
saying that S is the set of all even positive integers that are not larger than 10.
Indeed, we can use the notation

S = {x|x is an even positive integer not larger than 10}
for the set {2, 4, 6, 8, 10}. In general, we use the notation
{x|x possesses certain properties}
for a set of objects that share some common properties. Thus,

S = {Smith, Jones, Wong, Yamamoto, Vogeli}
and
S = {x|x is a second year Computer Science major}

are two different ways to describe the same set of elements.

It should be pointed out that our definition of a set does not preclude the.
possibility of having a set containing no elements. The set that contains no
element is known as the empty set, and is denoted by @. (Following our
established notation of using a pair of braces to enclose all the elements in a set,
we could also denote the empty setby { }.) For example, let S denote the set of all
detective stories by A. B. Charles that were published in 1924. Clearly, S is the
empty set if A. B. Charles was born in 1925.

Let us note that we did not place any restriction on the elements in a set.
Thus, § = {Smith, The-Midnight-Visitor, CDC-6600} is a well-defined set. That
the elements, Smith (a person), The-Midnight-Visitor (the title of a book), and
CDC-6600 (a computer) do not seem to share anything in common does not
prohibit them from being elements of the same set. Indeed, we should point out
that it is perfectly all right to have sets as members of a set. Thus, for example,
the set {{a, b, c}, d} contains the two elements {a, b, c} and d, and the set
{{a, b, ¢}, a, b, ¢} contains the four elements {a, b, c}, a, b, and c. The set of
all committees in the U.S. Senate could be represented by {{a, b, ¢}, {a, d, e, f},
{b, e, g}} where each element of the set is a committee which in turn is a set with
the senators in the committee as elements. Similarly, {a, {a}, {{a}}} is a set with
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three distinct elements a, {a}, {{a}}. Also, the set {#} contains one element—the
empty set—and the set {f}, {#}} contains two elements—the empty set and a set
that contains the empty set as its only element.

Given two sets P and Q, we say that P is a subset of Q if every element of
P is also an element in Q. We shall use the notation P C Q to denote that P is a
subset of Q. For example, the set {a, b} is a subset of the set {y, x, b, ¢, a}, but it
is not a subset of the set {a, ¢, d, e}. The set of all second-year Computer
Science majors is a subset of the set of all sophomores. It is also a subset of the
set of all Computer Science majors. On the other hand, the set of all Computer
Science majors is not a subset of the set of all sophomores nor is the set of all
sophomores a subset of the set of all Computer Science majors. Let A =
{a, b, c} and B ={{a, b, c}, a, b, c}. We note that it is indeed possible to have
both A € B and A C B. As further examples, we ask the reader to check
the following statements:

For any set P, P is a subset of P.
The empty set is a subset of any set.
The set {#} is not a subset of the set {{fi}}. ‘

Two sets P and Q are said to be equal if they contain the same collection
of elements. For example, the two sets

P={x|x is an even positive integer not larger than 10}
Q={x|x =y +2z where y €{1,3,5}, z€{1,3,5}}

are equal. In a seemingly roundabout way, we can also say that two sets P and -
Q are equal if P is a subset of Q, and Q is a subset of P. We shall see later that
onsome occasions, this is a convenient way to define the equality of two sets.

Let P be a subset of Q. We say that P is a proper subset of Q if P is not
equal to Q, that is, there «s at least one element in Q that is not in P. For
example, the set {a, b} is a proper subset of the set {y, x, b, ¢, a}. We use the
notation P CQ to denote that P is a proper subset of Q.

1.2 COMBINATIONS OF SETS

We show now how sets can be combined in various ways to yield new sets. For
example, let P be the set of students taking the course Theory of Computation
and Q be the set of students taking the course Music Appreciation. If a certain
announcement was made in both the Theory of Computation and the Music
Appreciation classes, what is the set of students who know about the news
announced? Clearly, it is the set of students who are taking either Theory of
Computation or Music Appreciation, or both. If both these courses have their
final examinations scheduled in the same hours, what is the set of students who
will have conflicting final examinations? Clearly, it is the set of students who
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are taking both Theory of Computation and Music Appreciation. To formalize
these notions, we define the union and the intersection of sets. The union of
two sets P and Q, denoted P U Q, is the set whose elements are exactly the
elements in either P or Q (or both).t For example,

{a,b}U{c,d}={a,b,c,d}
{a,b}U{a, c}={a, b, c}
{a,b}uP={a,b}
{a.b}U{a.b}}={a, b.{a. b}

The intersection of two sets P and Q, denoted P N Q, is the set whose elements
are exactly those elements that are in both P and Q. For example,

{a,b}N{a, c}={a}
{a,b}ﬂ{c,d}:ﬂ:l:
{a,b}N@=¢

If the elements of P are characterized by a common property and the elements
in Q are characterized by another common property, then the union of P and Q
is the set of elements possessing at least one of these properties, and the
intersection of P and Q is the set of elements possessing both of these
properties. According to the definitions, P U Q and Q U P denote the same set,
asdo PNQ and QNP.

In general, the union of k sets Py, P,, ..., P, denoted P, U P,U --- U Py, is
the set containing exactly the elements in P,, the elements in P,, ..., and the
elements in P, Similarly, the intersection of k sets P,, P, ..., P, denoted
P.NP,N -+ NP, is the set containing exactly the elements that are in P, and
in P, ... and in P,.. For example, the set of all undergraduate students in a
university is the union of the sets of freshmen, sophomores, juniors, and
seniors, and the set of graduating seniors is the intersection of the set of seniors,
the set of students who have accumulated 144 or more credit hours, and the set of
students who have a C or better grade-point average.

Let P denote the set of students taking Theory of Computation, Q denote
the set of students taking Music Appreciation, and R denote the set of students
having type AB blood. Suppose an emergency announcement was made in the
classes of Theory of Computation and Music Appreciation calling for type AB
blood donors. We want to determine the members of the set of potential donors
who heard about the emergency call. Since S = P U Q is the set of students who
heard about the emergency call, R N S is the set of potential donors who heard
about the emergency call. Instead of using a new name S for the set P U Q, we
can simply write R N (P U Q), where the parentheses are used as delimiters to

T We do not wish to introduce the notion of algebraic operations until Chap. 8. Thus, at this
moment, P U Q is simply a name we have chosen for a set.
¥ Two sets are said to be disjoint if their intersection is the empty set.



6 ELLEMENTS OF DISCRETE MATHEMATICS

avoid confusion. Note that the set of potential donors who heard about the
emergency call is also the set of students with type AB blood in the Theory of
Computation class together with the set of students with type AB blood in the
Music Appreciation class. That is, the set (R N P)U (R N Q). This example
suggests very strongly that for any sets P, Q, R, the two sets R N (P U Q) and
(RN P)U(R NQ) are equal. Indeed, this is the case, as we now show.

We show first that RN(P U Q) is a subset of (RNP)U(RNQ) by
showing that every elementin R N(P U Q)isalsoin (RN PYU(RNQ). Let x
be an element in R N (P U Q). The element x must be in R and must be either
inPorQ.Ifxisin P,x isin RN P.If x is in Q, x isin R N Q. Consequently, x
is in (RNPYU(R NQ), and we conclude that R N(P U Q) is a subset of
(RN PYU(R N Q). Second, we show that (RN PYU(R N Q) is a subset of
R N(P UQ). Let x be an element in (R N P)U(R N Q). Thus, x must either
bein R N P or be in R N Q. That is, x must either be in both R and P or be in
both R and Q. In other words, x must be in R and must be either in P or in Q.
Consequently, x is in R N (P U Q), and we can conclude that (RN P)U
(PN Q) is a subset of R N (P U Q). It follows that the two sets R N(P U Q)

-and (R N PY)U(R N Q) are equal.

In a similar manner we can show that for any sets P, Q, R, the two sets”

RU(PNQ)and (RUPYN(R U Q) are equal. Furthermore, we have

Rﬂ(P|UP2U"' Upk)=(R ﬂP,)U(R an)U"' U(R ﬂPk)
RUMP NP,N---NPHI)=(RUP)N(RUP)N - (R UP)

We leave the details to the reader.t
The difference of two sets P and Q, denoted P — Q, is the set containing
exactly those elements in P that are not in Q. For example,

{a,b, c}—{a}={b, c}
{a,b,c}~{a,d}=1{b, c}
{a,b,c}—{d,e}={a, b, c}

If P is the set of people who have tickets to a ball game and Q is the set of
people who are ill on the day of the game, then P - Q is the set of people who
will go to the game. Note that Q might contain some or none of the elements of
the set P. However, these elements will not appear in P — Q in any case, just as
in the example, those people who are ill but do not have tickets to the ball game
will not go to the game anyway. Indeed, if the elements in Q are characterized
by some common property, then P — Q is the set of elements in P that do not
possess this property. If Q is a subset of P, the set P — Q is also called the
complement of Q with respect to P. For example, let P be the set of all students

+ Again, we do not wish to introduce the notions of algebraic operations, associativity, and
distributivity until Chap. 8. Note, however, these notions are not needed here because P N Q,
PUQ, P,UP.U -+ U P, are simply names for sets obtained according to our definitions.
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in the course Theory of Computation and Q be the set of those students who
have passed the course. Then P.— Q is the set of students who failed the
course. On many occasions, when the set P is clear from the context, we shall
abbreviate the complement of Q with respect to P as the complement of Q,
which will be denoted Q. For example, let P be the set of all students in the
course Theory of Computation. Let Q be the set of Computer Science majors
in the course, and R be the set of sophomores in the course. Then the
complement of Q refers to the set of students in the course who are not
Computer Science majors, and the complement of R refers to the set of those
students who are not sophomores, if it is understood that in our discussion we
always restrict ourselves to students in the course Theory of Computation.
Indeed, when our discussion is always restricted to the subsets of a set P, P is
referred to as the universe.

The symmetric difference of two sets P and Q, denoted P ® Q, is the set
containing exactly all the elements that are in P or in Q but not in both. In other
words, P ® Q is the set (P U Q)—(P N Q). For example,

{a,b}®D{a, c}=1{b, c}
{a,b}@B={a, b}
{a,b}D{a,b}=14

If we let P denote the set of cars that have defective steering mechanisms and
Q denote the set of cars that have defective transmission systems, then P @ Q
is the set of cars that have one but not both of these defects. Suppose that a
student will get an A in a course if she did well in both quizzes, will get a B if
she did well in one of the two quizzes, and will get a C if she did poorly in both
quizzes. Let P be the set of students who did well in the first quiz and Q be the
set of students who did well in the second quiz. Then P N Q is the set of
students who will get A’s, P @ Q is the set of students who will get B’s, and
S — (P U Q) is the set of students who will get C’s, where S is the set of all
students in the course. We define Pr@ P, @ --- @ P, to be the set of elements
that are in an odd number of the sets P,, P.. ..., P..

The power set of a set A, denoted P(A), is the set that contains exactly all
the subsets of A. Thus ?({a.b}) =10, {a}. {b}. {a. b}}, and P(#) ={@}. For
example, let A = {novel, published-in-1975, paperback} be the three attributes
concerning the books in the library in which we are interested. Then (A) is
the set of all possible combinations of these attributes the books might possess,
ranging from books that have none of these attributes [the empty set in P (A)]
to books that have all three of these attributes fthe set A in 2(A)].

Sets obtained from combinations of given sets can be represented pictori-
ally. If we let P and Q be the sets represented by the cross-hatched areas in
Fig. 1.14. then the cross-hatched areas in Fig. 1.1b represent the sets P U Q.
PNQ,P-Q.and P @ Q, respectively. These diagrams are known as Venn
diagrams.
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Z (&
’ (@)
PUQ FnQ @ Po0

(b)

Figure 1.1

1.3 FINITE AND INFINITE SETS

Intuitively, it is quite clear that by the size of a set we mean the number of
distinct elements in the set. Thus, there is little doubt when we say the size of
the set {a, b, c} is 3, the size of the set {a, @, d} is also 3, the size of the set
{{a, b}} is 1, and the size of the set @ is 0. Indeed, we could stop our discussion
on the size of sets at this point if we were only interested in the size of “finite”
sets. However, a much more intriguing topic is the size of “infinite” sets. At
this point, a perceptive. reader will probably ask the question, ‘“What is an
infinite set in the first place?”” An evasive answer such as, * An infinite set is not
a finite set,” is no answer at all, because if we start to think about it, we should
also ask the question, “What is a finite set anyway?”’

Let us begin by declaring that we have not yet committed ourselves to the
precise definitions of finite sets and infinite sets. As the basis of our discussion,
we want to construct an example of an infinite set. For a given set A, we define
the successor of A, denoted A*, to be the set A U{A}. Note that {4} is a set
that contains A as the only element. In other words, A~ is a set that consists of
all the elements of A together with an additional element which is the set A.
For example, if A ={a, b}, then A" ={a, b}U{{a, b}}={a, b, {a, b}}; and if
A ={{a}}, b}, then A" ={{a}, b, {{a}, b}}. Let us now construct a sequence of
sets starting with the empty set f. The successor of the empty set is {#}, whose
successor is {#, {#}}, and whose successor, in turn, is {@, {8}, {8, {8}}}. It is clear
that we can go on to construct more and more successors. Let us also assign
names to these sets. Let

0=¢
1=1{g}
2=1{p,{o}}

3=1{p,{0}, 9, {B}}}
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We have, clearly, 1 =0%,2=1%,3=2", and so on.T Let us now define a set N
such that

1. N contains the set 0.
2. If the set n is an element in N so is the set n”.
3. N contains no other sets.

Since for every set in N its successor is also in N, the reader probably would
agree that N is indeed an “infinite set.” However, let us proceed in a more
precise way.

We shall talk about the sizes of sets in a comparative manner. To this end,
let us introduce a definition: Given two sets P and Q, we say that there is a one-
to-ane correspondence between the elements in P and the elements in Q if it is
possible to pair off the elements in P and Q such that every element in P is
paired off with a distinct element in Q.F Thus, there is a one-to-one correspon-
dence between the elements in the set {a, b} and the elements in the set {c, d},
because we can pair a with ¢ and b with d, or we can pair a with d and b with
c. There is also a one-to-one correspondence between the elements in the set
{a, b, c} and the elements in the set {@, a, d}. On the other hand, there is no one-
to-one correspondence between the elements in the set {a, b, ¢} and {a, d}. The
intention of introducing the notion of one-to-one correspondence between the
elements of two sets is quite obvious, because we can now compare two sets
and say that they are of the same size or that they are of different sizes. The
basis of our comparison is indeed the sets we constructed above, namely, 0, 1,
2.3, ..., and N. We are now ready to introduce some formal definitions. A set
is said to be a finite set if there is a one-to-one correspondence between the
elements in the set and the elements in some set n, where n € N; n is said to be
the cardinality of the set. Thus, for example, the cardinalities of the sets
{a, b, ¢}, {a.8, d}, {8, {0}, {9, {#}}} are all equal to 3. Note that it is now precise
for us to say that a set is an infinite set if it is not a finite one. We can, however,
be more precise about the “size” of infinite sets: A set is said to be a countably

_infinite set (or the cardinality of the set is countably infinite§) if there is a one-
to-one correspondence between the elements in the set and the elements in N.
We observe first of all that the set of all natural numbers {0,1,2,3, ...} isa
countably infinite set. It follows that the set of all nonnegative even integers
{0,2,4,6,8, ...}is a countably infinite set because there is an obvious one-to-one
correspondence between all nonnegative even integers and all natural numbers,
namely, the even integer 2i corresponds to the natural number i for i =0, 1,

1 Using 0, 1, 2, 3, ... as names of sets is just as good as using A, B, C, D, ... As will be seen, it is
intentional that we choose 0, 1, 2, 3, ... as names.

t Such an intuitive definition will be made more formal later on.

§ In the literature, the cardinality of a countably infinite set is also referred to as ®X,. (X is the
first letter in the Hebrew alphabet.)

1 The notation is perhaps confusing. However, it is intentional, because the set N is indeed a
precise definition of the set of natural numbers.
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2, .... Similarly, the set of all nonnegative multiples of 7 {0, 7, 14, 21, .. .} is also
a countably infinite set. So is the set of all positive integers {1,2, 3, ...}. We note
that a set is a countably infinite set if starting from a certain element we can
sequentially list all the elements in the set one after another, because such
a listing will yield ‘a one-to-one correspondence between the elements in
the set and the natural numbers. For example, the set of all integers
{...,—-2,-1,0,1,2, .. }is a countably infinite set, since its elements can be listed
sequentiallyas{0, 1, —1,2,-2,3, -3, ...}. Thisexample suggests that the union of
two countably infinite sets is also a countably infinite set. Itindeed is the case. Asa
matter of fact, the union of a finite number of countably infinite sets is a countably
infinite set and, furthermore, so is the union of a countably infinite number of
countably infinite sets (see Prob. 1.19).

Finally, we show that there are infinite sets whose cardinalities are not
countably infinite. In particular, we shall show that the set of real numbers
between 0 and 1 is not a countably infinite set. Our proof procedure is to
assume that the set is a countably infinite set and then show the existence of a
contradiction. If the cardinality of the set of real numbers between 0 and 1 is
countably infinite, there is a one-to-one corresponderice between these real
numbers and the natural numbers. Consequently, we can exhaustively list them
one after another in decimal form as in the following:t

0.a,arza13a14 -
0.02102023054 * -

0.83183,8505, ***

where a; denotes the jth digit of the ith number in the list. Consider the number

0.b1b2b3b4 e
where
y o[ if ;=9
i.—{9_aii if a;=0,1,2,...,8

for all i. Clearly, the number 0.b,b,b;b, -+ - is a real number between 0 and 1
that does not have an infinite string of trailing 0’s (i.e., 0.34000 - - -). Moreover, it
is different from each of the numbers in the list above because it differs from
the first number in the first digit, the second number in the second digit, ..., the
ith number in the ith digit, ..., and so on. Consequently, we conclude that the
list above is not an exhaustive listing of the set of all real numbers between 0
and 1, contradicting the assumption that this set is a countably infinite set.

+ A number such as 0.34 can be written in two different forms, namely, 0.34000 ... or 0.339999 ...
We follow an arbitrarily chosen convention of writing it in the latter form.
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It is possible to continue in this direction to classify infinite sets so that
notions such as some infinite sets are ‘“more infinite”” than other infinite sets can
be made precise. This, however, will be beyond our scope of discussion.

1.4 MATHEMATICAL INDUCTION

Let us consider some illustrative examples:

Example 1.1 Suppose we have stamps of two different denominations, 3
cents and 5 cents. We want to show that it is possible to make up exactly
any postage of 8 cents or more using stamps of these two denominations.
Clearly, the approach of showing case by case how to make up postage of 8
cents, 9 cents, 10 cents, ..., using 3-cent and 5-cent stamps will not be a fruit-
ful one, because there is an infinite number of cases to be examined.t Let
us consider an alternative approach. We want to show that if it is possible
to make up exactly a postage of k cents using 3-cent and S-cent stamps, then
it is also possible to make up exactly a postage of k + 1 cents using 3-cent
and 5-cent stamps. We examine two cases: Suppose we make up a postage of
k cents using at least one 5-cent stamp. Replacing a 5-cent stamp by two
3-cent stamps will yield a way to make up a postage of k + 1 cents. On the
other hand, suppose we make up a postage of k cents using 3-cent stamps
only. Since k = 8, there must be at least three 3-cent stamps. Replacing
three 3-cent stamps by two 5-cent stamps will yield a way to make up a
postage of k + 1 cents. Since it is obvious how we can make up a postage of
8 cents, we conclude that we can make up a postage of 9 cents, which, in
turn, leads us to conclude that we can make up a postage of 10 cents,
which, in turn, leads us to conclude that we can make up a postage of 11
cents and so on. O

Example 1.2 Suppose we remove a square from a standard 8 X 8 chess-
board as shown in Fig. 1.2a. Given 21 L-shaped triominoes$ as shown in
Fig. 1.2b, we want to know whether it is possible to tile the 63 remaining
squares of the chessboard with the triominoes. (By tiling the remaining
squares of the chessboard, we mean covering each of them exactly once
without parts of the triominoes extending over the removed square or the
edges of the board.) The answer to our question is affirmative, as Fig. 1.3
shows. We can actually prove a more general result as we shall proceed to

do.

t See, however, Prob. 1.20.

$ The word triomino is derived from the word domino. Also, there are tefrominoes, pentominoes,
hexominoes, ... and, in general polyominoes. For many interesting results in connection with
polyominoes, see Golomb[4].
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(a) (b)
Figure 1.2

Figure 1.3

A chessboard with one of its squares removed will be referred to as a
defective chessboard. We want to show that any defective-2® X 2" chess-
board can be tiled with L-shaped triominoes.t It is trivially obvious that a

. defective 2 X 2 chessboard can be tiled with an L-shaped triomino. Let us
now assume that any defective 2* x2* chessboard can be tiled with
L-shaped triominoes and proceed to show that any defective 2**' x 2**'
chessboard can also be tiled with L-shaped triominoes. Consider a defec-
tive 2*'x2**' chessboard as shown in Fig. 1.4a. Let us divide the
chessboard into four quadrants, each of which is a 2* X 2* chessboard, as
shown in Fig. 1.4b. One of these 2* X 2* chessboards is a defective one.

1 One would immediately question whether 2* x 2* — 1 is always divisible by 3. The answer is
affirmative. (See Prob. 1.23))
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Furthermore, by placing an L.-shaped triomino at the center of the
2+t x 2°*' chessboard as shown in Fig. 1.4¢, we can imagine that the other
three quadrants are also defective 2“ X 2* chessboards. Since we assume
that any defective 2* x2* chessboard can be tiled with L-shaped
triominoes, we can tile each of the quadrants with L-shaped triominoes,
and conclude that any defective 2**' x 2**' chessboard can be tiled with
L-shaped triominoes. Thus, starting with the tiling of any defective 2 x2
chessboard, we have proved that we can tile any 2" x2" defective
chessboard,. |

These two examples illustrate a very powerful proof technique in
mathematics known as the principle of mathematical induction. For a given

NN
N

(a) (b)
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statement involving a natural number n, if we gan show that:

1. The statement is true for n = n,; and
2. The statement is true for n = k + 1, assuming that the statement is true for
n =k, (k= ny),

then we can conclude that the statement is true for all natural numbers n = n,,.
(1) is usually referred to as the basis of induction, and (2) is usually referred to
as the induction step. For example, in the postage-stamp problem, we want to
prove the statement, “It is possible to make up exactly any postage of n cents
using 3-cent stamps and 5-cent stamps for n =8.” In order to prove the
statement we show that:

1. Basis of induction. It is possible to make up exactly a postage of 8 cents.
2. Induction step. It is possible to make up exactly a postage of k +1 cents,
assuming it is possible to make up exactly a postage of k cents.

We note that the principle of mathematical induction is a direct conse-
quence of the definition of natural numbers. Consider a set S such that

1. The natural number n, is in S.
2. If the natural number k is in S, then the natural number k + 1 is alsoin S.

According to the definition of the set of natural numbers, we can conclude that

S contains all the natural numbers larger than or equal to k. However, this is

exactly the statement of the principle of mathematical induction when we

consider S to be the set of natural numbers for which a given statement is true.
We consider now more examples:

Example 1.3 Show that

2 n{n+1D2n+1)

1’+22+---+n 3 =

by mathematical induction.

1. Basis of induction. For n = 1, we have

peld+ DR+
B 6

2. Induction step. Assume that

_kk+DEZk+ 1)

12 2 2
+224 - +k <



