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Chapter 1

The Solution of Ordinary Differential Equations

1.1 INTRODUCTION

The first order linear differential equation

&\ plaw = g,

where f and g are given functions of 3, always possesses a formal
solution in terms of quadrétures. . Multiplication by the integrating

factor exp [ff{z)dz] reduces the equation to
= [0 exp (Ufda)] = g(2) exp (Sfd2),
and integration yields the genmeral solution

w = exp(~ ffda) [ g(a) exp(/fdz)dz + A exp(- [fdz).
The success of the method depends on whether the two integrals
involved can be expressed in terms of the standard elementary or
transcendental functions. *
But no similar solution in terms of quadratures based on the

coefficients is possible for the second order linear homogeneous

equation
@— + f(z)gw—z- + g(z)w = 0,
dz?
and for the second order inhomogeneous linear equation
4-21-‘25 + f(z)gw; + glzw = h(z),
dz

the coefficients being functions of the independent variable z.
Throughout the text, we shall consistently use a prime to denote

differentiation with respect to 2z (or any other independent variable

used in the immediate context). ‘

For a homogeneous equation with constant coefficients
W' o+ aw' + bw = 0,

explicit solutions may easily be written down. . 1f o and B denote

the distinct roots of the auxiliary quadratic
..\\-J!



32 4ar + b =0,
then

w = Ae + Be" ",
while if the roots are identical, +§ -
w = (4 + B2)e"%.

The solution is valid even when a and 8 are complex. When a and b
are real, these roots will form a conjugate pair u + Zv, from which
it follows that

w = (0 cos vz + D sin vaz)

, +70 .,
gsince e— = cos & + 7 sin 8.

In particular, if
W+ ntw = 0 (n? real and positive)
the solution is
w = A cos nz + B sin nz (n # 0)

representing an oscillatory solution, or in complex exponentlal form,
REN :
) nz -inz
w=Ce" + De

Again, if

W - mly =0 (m? real and positive)

we have mz —mz
w=A4 coshmz + Bsinhmz =Ce ™ + De R

a ncn-oseillatory solution. The complete difference in the nature of
these two types of solutions, one oscillatory and one non-cacillatery,
will pervade the theory of the propagation of waves in homogeneous
media of differing properties. '

The inhomogeneous equation with constant coefficients
W' + aw' + bw = h(z)

may be solved (i) by the D operator method when (2} is a polynomial,
an exponential function, a sine or cosine, or sums or products of
such functions, and (ii) by the method of variation of parameters

when k(z) is a general function. We assume that the reader i3



familiar with the D operator method, but the method of variation of .
parameters will be dealt with in Section 1.6.

Equations with variable coefficients will form a large pbrtion of
the work of this book. Under certain circumstances, solutions exist
expressible in terms of the standard functions, though this fact may
not be obvio&s upon a first inspection of the equation, since changes
of the independent and dependent variables may be necessary to trans-
form the equation into standard form with recognisable solutions.
More generally, fermal texts on the analytical theory of differertial

equations provide what are known as existence theorems that show when

equations possess solutions (even though not expressible in explicit
analytical form). But the knowledge that solutions exist permits the
investigator to seek approximate solutions or nuﬁerical solutions.
There would be no point in seeking an approximate solution of an equa-
tion if an existence theorem is not satisfied. Throughout the text,
which will largely be occupied with (i) approximate solutions and their
physical meaning, and (ii) general properties of exact solutions which
cannot necessarily be obtained explicitly, the existence theorems will
be satisfied. Although these theorems czmnot be dealt with in the text,
readers should be familiar with such analytical approaches, since thay
form an essential basis of the applied mathematician's toolkit, and
experience must decide when such tools are essential in any particular
inestigation.
1.2 FCRMATION OF DIFFERENTIAL EQUATIONS FROM GIVEN SOLUTIONS
A linear homogeneous differential equation of the second order has

two independent solutions. Conveisely, if two independent fuactions
are given, a second order equation may be formed possessing these two
functions as two independent solutions.

I If the two given functions are u(2z) and v(z), the proposed general

solution w will be
w = Au(z) + Bv(z),
A and B being arbitrary constants. We form w' and w':

3



w' = Au'(z) + Bv'(z),
Wt = Au(z) + an(z)’

and eliminate 4 and 5 by the determinantal equation

w u . v
w!t u' ! =0,
717" ull v"

Clearly the coefficient of w" must not vanish if a second order
equation is to be produced. This means that uv' - u'v, known as the
Wronskian of the two given functions, must not vanish, this being the
condition for u and v to be independent functions.

2 -pl
Example If the two given independent functions are e® and 2 s
we have 2 52
w = Aé® + Be ® s
2 2
z -
w' = 24ze® - 2bze > s

2 2
w" = (2 + uz2)4e® + (-2 + uz2)Be © .

Eliminating 4 and B, we have

L

w 1 1
w! 2z -2z = 0,
w" 2+ 4z?2 -2 + yz?
reducing to '
w"‘;"-*ﬂzlﬂ:O.

Conversely, this equation may be solved by transforming the
independent variable to t = z2. )

When the coefficients of w' and/or w have a singularity at a
point 3 = a, the solution usually has a singularity at z = a. In the
present equation, the coefficient of w' has a singularity at z = 0,
but this is an apparent singularity since the given form of w has no

singularity at z = 0. N

Example If g(a) is a thrice-differentiable function of z, find the

differential equation satisfied by the two independent functions
T Ty .
g' 3,5K9 ond g' 2e 59 Galid at points where g' does not vanish.



In this case, differentiation is easier if we first multiply
1

the general solution by g'2, giving
hl

g'zw = Aeikg + Be
1 o . "
g'% + 3g! %g"w = 1kAg' ezkg - tkBg'e zkg'

kg
3>

Before differentiating a second time, divide by the coefficient g'

that appears on the right—hand side:
g'_%w' v g0 3 2gm = ket - sxpe™tHI.
Differentiation now produces five terms on the left-hand side,

two of which cancel:

3/29"wl + %gl-

tkg _

gl"lfwn - %gl_3/29nwl + %gv‘ 3/2gu|w - sgv's/zgnlw
= ~k%Ag'e kZBg'e—lkg.

In this case, there is no need to form a determinant in order

to eliminate 4 and B, since the right-hand side of this equation

1
is merely —kzg'alzm. Multiplying by ¢'?, and rearranging, we obtain
e n2
w..+k2[gr2+_]-_{i_2'—ﬁ—)]w=0. 1)
k2 g 12

This equation is stated to be in normal form, since the term in w'
is absent.

For example, if g(g) = z*, the equation

" o+ kz(lﬁzs - 15 ) =0
yk2z2
- Sl lt _ Lyl
has the general solution w = Az 3/2e1kz + Bz 3/2.2 tka . .

1.3 CHANGE OF THE DEPENDENT VARIABLE
There is given the inhomogeneous equation
wr o+ 2 o+ gzl = A(z).

If ¢(z) is a given function, we introduce the new dependent

variable u, defined by v = gdu. The first and second derivatives,
@tz @ty b guty

and
U)" = ¢Hu f 29"“’ + ¢uH,

5



are substituted into the equation, yielding

g"u + 26'u + gu” + f(B'u + guU') + gou = h,
or

un _21,- £ Al ﬂﬁ—‘. :?.l..

wor (e el rgu=3.
1f ¢ is suitably chosen, this may reduce to a standard equation

with recognisable solutions.

Example Solve the equation
220" + (uz + 322" + (2 + 6z + 222w = 2¢ OF,
using the suggested transformation w = 2u {(where n is to be found)
to reduce the equation to one with constant coefficients.
We substitute into the equation the derivatives

=1 -lu

n n n 443 n-
w'=3u +n3 u, w'=zu'"+ Mmz ' ¢ n(n-1)z 2u,

obtaining upon simplification,

, 2 - -
um + (34 gg_;_ga u o+ (2 Jnrh P ol 2}u = 25" 2e 33.
2 2 82
The coefflicients reduce to constants when
7 +4=0, 33M+6=0, n?+3ms+2=0,

possessing a commen root n = -2, Clearly the numbers in the
coefficients of the original equation had to be of a special form
in order to achieve this resuit. The equation now becomes

-3z
u" o+ 3u' o+ 2u = 2e

- : bt o 2%
The complementary function is A¢ ~ + Be 7.

The particular integral found by the D operator methed is
-4z -3z

2e ' _ 2¢ -3z
u = - T e .
D2 + 30 +2 32 -3.34+2
Hence
-2 ~2z -32
v = he ° + Be + e . @
22

The transformation ¥ = ¢. reduces the equation

W+ fw v gw =0



to normal form when ¢ is chosen to ensure that the coefficient of
u' vanishes. Hence f + 2¢'/¢ = O, so the required transformation
is

w = exp (-1/fda) u,

a result that should be committed to memory. Differentiating
#'/4 = -1f, we obtain

1" 12 1"
¢d ‘iz—“if' and %—‘Hz‘if'

The normal form of the equation then becomes
W+ (g -2 -if'm=o0. {2)
Example Reduce to normal form the equgtion
w" - 4w’ + (422 - z - 2w = O.
The required transformation is v = ¢u, where
é = exp [~} S(-uz)dz] = ezz.
' Equation (2) then becomes

w o+ [4z2 - 2 - 2 - L(us)2 - J(-w)]u = 0O,

" peducing to u" = zu, a transcendental differemtial equation often
referred to as the Stokes eguation. Its properties will be studied
in Chapter 7. .

Example Reduce to normal form Bessel's equation of order wv:
1

- -2
w4+ s w o+ (1 - vi2 ‘W = 0.
The required transformation is
- ' -
w = exp (~3 fz "dzlu = exp (-3 log 2)u = 2 “u,
where ¥ satisfies the equation
W' 4 (L - vinT? - 1y
or’
1"+ [l - (\.‘:'

In particular, when v = 7, the —guation &' ¢+ ¥ = 0 has solutions

7



ez?z, showing that Bessel functions of order % can be expressed

linearly in terms of the simpler functions 2-%ei?z, or z—% cos 2

and z-% sin z.

For general values of v, when lzl is large the equation for
u reduces approximately to u" + u = 0, showing that approximate
solutions of Bessel's equation of order v for large |z| are z-%eiiz

But the reader should be warned that such solutions are valid only

A second kind of transformation of the dependent variable,

in restricted domains in the complex z-plane; Chapter 7

examines this subject in more detail.

non-linear in character, may be made yielding a non-linear differen-
tial equation. Let w = F(u), where F denotes a suitable function
of u. Then the chain rule gives

ds _dF du d%w _ d3F GQEJZ . dF  d%u
dz

Z§=E’E'3§’ ;_duz aJ.dzZ.

The enyation w" + fw' + gw = O becomes

dr drF dZ ) -
” u" + f v u' + > u'< + gfF =0,

du

a non-linear equation of the second order in the dependent variable u.

Examéle . Reduce an equation in normal form to a Riccati equation.

In the given equation w" + gw = 0, substitute

W' = exp (fudz).

Then
w' = uexp (Sudz), w" = (u' + u?) exp (Sudz),

yielding
u' +ul +g=0. _ (3)

The second order linear equation is thus reduced to a first order
equation, but at the expense of being rendered non-linear. Riccati

equations of this type will form part of certain approximation

procedures discussed in Chapter 7.



1.4 CHANGE OF THE INDEPENDENT VARIABLE
In the given equation
w" + fwt +gw =k,

where z is the independent variable, we introduce the given
substitution t = t(3) and its inverse z = z(t). The derivatives

with respect to z become:

dv _dw dt dzw_dzw(dt)z dw  d%

dz’
yielding '

dty2 d%w 2 oAty A .
(g‘z‘) d—tz + (i; + f(z)gg] 37 t 9t = h(z),

where dt/da, d’t/ds?, f(z), g(2), h(2) must be expressed in terms
of the new variable t. In suitable cases, the resulting equation
may be more susceptible to solution than the former equation in

the independent variable z.

Example Find the general solution of the differential equation

- d% 3, dw - 3
‘+z——2+2(l-z)ag-6w-exp(335) z;!O‘

dz

3

by using the substitution t = 32,

The required derivatives of the dependent variable are

d _dw -3 dw _dW -1 dw , -3/2
a; *de }z N da? = 782 . %z - 2? . &3 ’

reducing the given equation directly to

v _dv _ . 3t
de? dt =€

The complementary function is v = AeSt + Be—Qt.

The particular integral must be obtained by the rule that
extracts eat from the operand by replacing the operator D = d/dt by
D+ 3:



1 Ot 2 ot 1

W E ————— =
p2-p-5 (D+3X2-(D+3)-6
L3t 1 _te3t
DI =TE e
D% + SD

since the only relevant term in the denominator of the cperator
is 5D, meaning integrate once with respect to ¢. Hence the
genéral solution is

w= (4 + %t) LN Be_n

= (4 + %—z%) exp (32*)- + B exp (-23%). ]

Example Excluding the origin, change the dependent variable w
to zu and the independent variable z to 1/t in the given equation
2542

da?

zw =1,

and hence obtein its general solutionm.

(1) The dependent variable:  The derivatives of w with respect to

2z become
dw du d 2
= T EL Ot U —%zz-—du+2gzi,
az 2 dzz d22 Z
yielding upon substitution,
2
zsdu t 23%- g2 = 1.
dz?
(%) Tne independerit variable: It ¢t = 1/3, we have
du _ _odu d%u —ud%u —3du
o e

s =3 + 23
az da? dr2 de»

yielding upon substitution and simplification,

2
-d——J'i—u=z"2=t2.
dt?

. . t -t
The complewentary function is u = de” + Be .

"he particular integral is given by

10



2
ot s - (L +D%2 +D% 4+ ..)t2 = - ¢2 - 5,

02_1 .
Hence the general solution is given by
/ - -
u = Ael‘z + Be 1a -4 2 2,
and
-1/ -
+ Be 1,3) -z L. 2z. )

1.5 GENERAL SOLUTION DERIVED FROM A KNOWLEDGE ODF ONE SOLUTION

PR T z(Ael/z‘

We shall suppose that one solution of the differential equation
w" + fw +gw=0
is known, where f and g are functions of z. Such a solution may
be spctted by inspection, or some special property of the variable
coefficients f and g may suggest a simple solution. Again, a
simple solution may be thrown up by the method consider in Sectiom 1.8,
whereby power series solutions of the equation are obtained.

Let p(3) be the known solution, satisfying
p" + fp' +gp = 0.
If possibie, let a second independent solution be given by the

product w = pu, where u is to be found. Differentiating twice and

substituting, we obtain
pu" + 2ptu' + p'"u + flpu' + p'u) + gpu = 0.

The three terms (p" + fp' + gp)u vanish, since p satisfies the given

equation. The remaining three terms may be separated as follows:

' _ _2p' + fp
ut 7 p

since the underived variable u has disappeared from the equation.

Logarithmic integration yields 4
log u' = ~ 2 log p -~ ffdz,

where no constant of integration need be added to the indefinite

integral. Hence

u' = p~2 exp (- [fdz) |

11



= pu = p(a) E&j-—itdﬂ ds. ) )
, p .

The general solution of the equation is therefore
= 4p(a) +Bp(s) [ Sfd3) 4,
p2
Exgmgle The given differential equation
. .

23(1 - 2" + (1 - 3" + W =

has one simple solution p = zi(l - 3). .Find the other solution.
It may easily be checked that xi(l ~ 3) satisfies the. equation.
Then u is given by
_ =1
u =./¥2§Li__i£§__££l ds
2(1 - z)?
where the fimetion f in solution (4) has been obtained by dividing
by the coefficient of w", the coefficient of w" being assumed equal

to unity in the general theory. Since

exp (-3/271d3) = exp (-} log 2) = z-i,
we have
u =d/"___,Ji£_____
33/2(1 - 2)?
=f—2-4t——-— (place 3 = t2)
t2(1 - t2)
El 3
= 2, 3 + i +7 i Tt T f ) de
2 (1-t2 (1+1)2?
. L2, _F __i_ 3 _3
= TtT-7 1+ ° log (1 +¢t) log (1 = ¢)
2 _
= St -2 + %-log i j z .
t(1 - t2)
Hence
,
w = 2%(1 - 2)u

12



- _ 3% _ 1 4 z%
=32-2+ 7° (1 - 2) log —7-

l1-2
The form of the this answer must of course be modified along various

domains of the real z-axis. ‘
1.6 VARIATION OF PARAMETERS

This is a general method in terms of quadratures for solving

the inhomogeneous equation
W'+ fu' +gw s h, } (5)

where f, g and % are functions of 3, when the general solution of
the homogeneous equation (with 4 replaced by zero) is known. The
method is applicable to linear equations of order n.

Let p(2) and q(z) be two independent solutions of the equation
w" + fw' +gw = 0.

We seek suitable functions a(z) and b(8), so that the linear
combination

w = a(2)p(z) + b(z)q(2)

is a solution of equation (5) satisfying the initial conditions

w(3,) = w'(z5) = 0.  Such functions a(z) and b(z) are not, of

course, unique, though the resulting expression for w will be

unique. We choose a(2) and b(z) to be the most useful and symmetrical
in form. In fact, since the two functions will satisfy only one
equation (5) upon substitution, we are at liberty to choose a

second equation to be satisfied by a(z) and b(z) more or less
arbitrarily.

Differentiation of w yields
w' =ap' + bg' +a'p + b'q..

At this stage, we deliberately choose a'p + b'q to vanish. No
further choice may be made for a second order equation. Further

differentiation yields

w" = apu + bqn + alpl + b’q'.
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