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ELEMENTARY PATH PROBLEMS

1. Introduction

Dynamic programming 15 an optimization procedure that is
particularly applicable to problems requiring a sequence of interrelated
decisions. Each detision transforms the current situation into a new
situation. A sequence of decisions, which in turn vields a sequence of
situations, is sought that maximizes (or minimizes) some measure of value.
The value of a sequence of decisions 1= generally equal to the sum of the
values of the individual decisions acd situations in the sequence.

Through the study of a wide variety of examples we hope the reader
will develop the largely intuitive shill for recognizing problems fitting the
above very peneral description. We begin with a problem seeking the best
path from one physical location t¢ anoiher. Then we elaborate the problem
to show how a “situation™ may ¢ncompass more than just information
about location and must be defined (n a way that is appropriate to each
particular problem.

2. A Simple Path Problem

Suppose for the moment that you live in a city whose streets are laid
out as shown in Figure L.I. that all streets are one-way, and that the
numbers shown on the map represent the effort (usually time but some-
times cost or distance) required to traverse cach individual block. You live
at A and wish to get 1o B with minimum total effort. (In Chapter 4, you
will learn how to find minimume-effort paths through more realistic cities.)

You could, of course, solve this problem by enumerating all possible
paths from A to B: adding up the efforts, block by ‘block, of each; and
then choosing the smallest such sum. There are 20 distinct paths from 4 to
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Figure 1.1

B and five additions yield the sum of the six numbers along a particular
path, so 100 additions would yield the 20 path sums to be compared. Since
one comparison yields the smaller of two numbers, one additional
comparison (of that number with a third) yields the smallest of three, etc,,
19 comparisons complete this enumerative solution of the problem. As you
might suspect, one can solve this problem more efficiently than by
brute-force enumeration. This more efficient method is called dynamic
programming.

3. The Dynamic-Programming Solution

To develop the dynamic-programming approach, one reasons as
follows. I do not know whether to go diagonally upward or diagonally
downward from A, but if 1 somehow knew just two additional
numbers—namely, the total effort required to get from C to B by the best
(i.c., minimum-effort) path and the total effort required to get from D to B
by the best path—I could make the best choice at A. Denoting the
minimum effort from C to B by S¢ and the minimum cffort from D to B
by Sp, I would add to S. the effort required in going from 4 to C,
obtaining the effort required on the best path starting diagonally upward
from A. I would then add the effort on AD to S, to obtain the effort on
the best path starting diagonally downward from 4, and I would compare
these two sums to find the overall minimum effort and the best first
decision.

Of course, all this is predicated on knowing the two numbers S¢ and
S, which, unfortunately, are not yet known. However, one of the two key
ideas of dynamic programming has already made its innocuous
appearance. This is the observation that only the efforts along the best
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paths from C and from D to B are relevant to the above computation, and
the efforts along the nine inferior paths from each of C and D to B need
never be computed. This observation is often called the principle of
optimality and is stated as follows:

The best path from 4 to B has the property that, whatever the initial
decision at A, the remaining path to B, starting from the next point after
A, must be the best path from that point to B.

Having defined S. and S, as above, we can cite the principle of
optimality as the justification for the formula
I+ S,
0+S,(
where S, is the minimum effort to get from A4 to B and the symbol min[}]
means “the smaller of the quantities x and y.” In the future we shall
always cite the principle rather than repeat the above verbal reasoning.

Now for the second key idea. While the two numbers S and S, are
unknown to us initially, we could compute S if we knew the two numbers
Sg and S, (the minimum efforts from E and F to B, respectively) by
invoking the principle of optimality to write

S, =min

5+SE
SC 4+SFJ‘
Likewise,
[7+8:]
Sp = min 3+SGJ'

S5 Sp and S are at first not known, but they could be computed if S,,,
Sp S, and Sy were available. These numbers, in turn, depend on §;, S,,,
and Sy, which themselves depend on S, and S,. Hence we could use
formulas of the above type to compute all the S’s if we knew S, and S,,
the minimum efforts from O and P, respectively, to B. But these numbers
are trivially known to be 2 and 1, respectively, since O and P are so close
to B that only one path 'exists from each point. Working our way
backward from O and P to 4, we now carry out the desired computations:

. |[2+S
Sy=3+8,=1, Su-mln[8+S:]'4: Sy=4+S,=5;
3+, 2+ 58,
=m 4 - - = - =
Sy=3+S, =10, s, mm4+SM 8, §,=min 2+, 6,

Sx-2+s‘~-7;

(equations continue)
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Cf2+8,] 1+ S
Sg = min 1+sH =9 §,.=min 2+S’]=8,
L I 7
[ 5+ S, ]
S, = min =11
¢ 4+ Sk |
[5+ S| +
Sc-minL‘H_s‘g =12, Sp,=min ;+§' 14;
F | G
1+ S ]
‘mi =13,
S, = min 0+, 1

Our second key idea has been to compute lengths of the needed
minimum-effort paths by considering starting points further and further
away from B, finally working our way back to A. Then the numbers
required by idea one, the principle of optimality, are known when they are
needed.

In order to establish that the best path has total effort 13 (i.e., that
S, = 13), we performed one addition at each of the six points M, L, O, K,
N, and P where only one decision was possible and we performed two
additions and a comparison at each of the remaining nine points where
two initial decisions were possible. This sums to 24 additions and ninc
comparisons, compared with 100 additions and 19 comparisons for the
brute-force enumeration described carler.

Of course we are at least as interested in actually finding the best path
as we are in knowing its total effort. The path would be easy to obtain hail
we noted which of the two possible first decisions yielded the minimum 1
our previous calculations at each poinl on the figure. If we let x represent
any particular starting point, and denote by P, the node after node x on
the optimal path from x to B. then the P table could have been compuited
as we computed the S table above. For example, Py, = O since 2 + S, was
smaller than 8 + S,, P,= M since 4 + §,, was smalier than 3+ §,, ctc.
The P table, which can be deduced with no further computations as the §
table is developed, is given in Table 1.1. To use this table to find the best
path from 4 to B we note that P, = C, so we move from 4 to C Now,
since P. = F, we continue on to f: Pp=J means we move next to J,

Table 1.1 The optimal next point for each initial point
Py,= B/ Pp=B8,
P, =0, Py=0, Py=P,
Py=L, P=M P, =M, Py=N:
Pg=1, Pp=J, Pe=Jor K,
Pe=F.  Pp=G;
P,=C.
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P, = M sends us on to M where P\, = O tells us O is next and B is last.
The best path is therefore A~-C-F-J-M-0-B. As a check on the accuracy
of our calculations we add the six efforts along this path obtaining
1+4+2+2+2+2=13 which equals S,, as it must if we have made no
numerical errors.

It may surprise the reader to hear that there are no further key ideas
in dynamic programming. Naturally, there are special tricks for special
problems, and various uses (both analytical and computational) of the
foregoing two ideas, but the remainder of the book and of the subject is
concerned only with how and when to use these ideas and not with new
principles or profound insights. What is common to all dynamic-
programming procedures is exactly what we have applied to our example:
first, the recognition that a given “whole problem” can be solved if the
values of the best solutions of certain subproblems can be determined (the
principle of optimality); and secondly, the realization that if one starts at
or near the end of the “whole problem,” the subproblems are so simple as
toc have trivial solutions,

4, Terminology

To clarify our explanations of various elaborations and extensions of

the above ideas, let us define some terms and develop some notations. We

~shall call the rule that assigns values to various subproblems the optimal
value function. The function § is the optimal value (here minimum-effort)

function in our example. The subscript of S—e.g., the A4 in the symbol

S,—is the argument of the function §, and each argument refers to a

particular subproblem. By our definition of §, the subscript 4 indicates

that the best path from A to B is desired, while C means that the best path

from C to B is sought. The rule that associates the best first decision with

each subproblem—the function P in our example—is called the optimal

policy function. The principle of optimality yields a formula or set of
formulas relating various values of S. This formula is called a recurrence

relation. Finally, the value of the optimal value function S for certain

arguments is assumed obvious from the statement of the problem and from

the definition of § with no computation required. These obvious values are

called the boundary conditions on S.

In this jargon, to solve a problem by means of dynamic programming
we choose the arguments of the optimal value function and define that
function in such a way as to allow the use of the principle of optimality to
write a recurrence relation. Starting with the boundary conditions, we then
use the recurrence relation to determine concurrently the optimal value
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and policy functions. When the optimal value and decision are known for
the value of the argument that represents the original whole problem, the
solution is completed and the best path can be traced out using the optimal
policy function alone.

We now develop a particular notation for the simple path problem at
hand which will allow for a more systematic representation of the
procedure than did our earlier formulas. We say nothing new. We shall
only say it in a different way. Let us place our city map (Figure 1.1) on a
coordinate system as shown in Figure 1.2. Now the point A has
coordinates (0, 0), B has coordinates (6, 0), 7 has (3, 1), etc.

We do not show the one-way arrows on the lines, but we assume
throughout the remainder of this chapter that admissible paths are always
continuous and always move toward the right.

The optimal value function S is now a function of the pair of numbers
(x, y) denoting a starting point, rather than a function of a literal argument
such as 4 or C. For those pairs (x, y) denoting a street intersection on our
map (henceforth called a vertex of our network) we define the optimal
value function S(x, y) by

S(x, y) =the value of the minimum-effort path connecting
the vertex (x, y) with the terminal vertex (6, 0). (1.1

The diagonal straight line connecting one vertex of our network and a
neighboring one represents a block of our city and will now be called an
arc of our network. We let the symbol a,(x, y) denote the effort associated
with the arc connecting the vertex (x, y) with the vertex (x + 1, y + 1); the
subscript u signifies the arc goes diagonally wp from (x, y). We let ay(x, y)
denote the effort of the arc going diagonally down from (x, y) to (x + 1,

Figwre 1.2
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= 1), and we say that a,(x, y) or a,(x, y) = oo (a very large number) if
there is no such arc in our network (e.g., a,(4, 2) = ).
In terms of these symbols, the principle of optimality gives the
recurrence relation
ax,y)+S(x+1,y+1)

Ay )+ S(x+1Ly-1) (1-2)

S(x, y) = min

and the obvious boundary condition is
- S8(6,0)=0, (1.3)
since the effort in going from (6, 0) to (6, 0) is zero for we are already there.
Alternatively, we could write the equally obvious boundary conditions
S5, 1)=2, 8(5, —1) =1 as we did earlier, but these are implied by (1.2),
(13), and our convention that ay5,1)=c and a5, —1)= .
Furthermore, (1.3) is simpler to write. Either boundary condition is correct.
In the exercises assigned during this and subsequent chapters, when
we use a phrase such as, “Give the dynamic-programming formulauon of
this problem,” we shall mean:

(1) Define the appropriate optimal value function, including both a
specific definition of its arguments and the meaning of the value of the
function (e.g., (1.1)).

(2) Write the appropriate recurrence relation (e.g., (1.2)).

(3) Note the appropriate boundary conditions (e.g., (1.3)).

y
1
= i
3/
]
!
- i
6/ \! !
i
2 2 2 :
1
- I
1 3 3 5 :

A -+ + ' x

0 5 2 5/
- |
4 4 H
]
i (
2 6 1
]
: |
3
i
i }
Figure 1.3 8
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As we emphasized in the Preface, the art of dynamic-programming
formulation can be mastered only through practice, and it 1s absolutely
essential that the reader attempt almost all of the assigned problems.
Furthermore, the student should understand the correct solution given 1n
the back of this book before continuing.

Problem 1.1. On the network shown in Figure 1.3. we sech that path
connecting A with any point on line B which minimizes the sum of the four arc
numbers encountered along the path, (There are 16 admissible paths.) Give the
dynamic-programming formulation of this problem.

Probiem 1.2. Solve the above problem using dynamic programming. with the
additiona) specification that there is a rebate associated with each terminal point:
ending at the point (4, 4) has a cost of —2 (i.e.. 2 is subtracted from the path cost).
(4, 2) has cost —1, (4,0) has cost —3, (4. — 2) has cost —4. and (4. - 4) has
cost —3.

5. Computationsl Efficiency

Before proceeding, let us pause to examine the efficiency of the
dynamic-programming approach to the minimum-effort path problcms we
have considered. Let us first ask approximately how many additions and
comparisons are required to solve a problem on a network of the type first
considered, an example of which is shown in Figure 1.4 (without specifying
the arc costs and without arrows indicating that, as before. all arcs are
directed diagonally to the right). First we note that in the problem
represented in Figure 1.1 each admissible path contained six arcs. whereas
in the one given in Figure 1.4 each path has 10. We call the former o
six-stage problem, the one in Figure 1.4 a 10-stage problem, and we shall
now analyze an N-stage problem for N an even integer. There are N
vertices (those on the lines CB and DB, excluding B.in Figure 1.4) at

Cc

I Fipure 1 4
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which one addition and no comparisons are required in the dynamic-
programming solution. There are (¥/2)' remaining vertices (those in the
driamond AEFG) at which two additions and a comparison are required.
Hence a total of N?/2 + N additions and N?/4 comparisons are needed
fo1 the dynamic-programming solution. (Note that for N =6, the first
problem in the text. these formulas yield 24 additions and nine
comp arisons, which checks with the count that we performed earlier.)

When we ask, in future problems, how many additions and how many
comparisons are required for the dynamic-programming solution, we
expect the reader to do roughly what we did zbove—imagine that the
cilculations are really being pesformed. count the points (or situations)
that must be considered, count the additions and comparisons required at
cach such point (taking account of perhaps varying calculations at
diftering points), and total the computations.

To get un idea of how much more ¢fficient dynamic programmmg is
than what we called earlier brute-force enumeration, let us consider
cnumeration for an N-stage problem. There are (, /2) admissible paths.
(The symbol (}) should be read, “The number of different ways of
choosing a set of Y items out of a total of X distinguishable items” and
£)=X1/[Y(X=TY)] where z!=1-2-3- .. z) To derive this formula
for the number of paths we note that cach path can be represented by a
sequence of N symbols, half of which are U's and half of which are D’s,
where a U in the Kth position in the sequence means the Kth step is
diagonally up and a D means the Kth step is diagonally down. Then (N”}z)
is the number of different ways of choosing the N/2 steps that are U, with,
of course, the remainder being D’s. Note that the formula gives the correct
number, 20, for our onginal six-stage ¢xample. Each path requires N — 1
addinons, and all but the first one evaluated require a comparison in order
to find the best path. This totals to (N — 1)(,7,) additions and (,%,) — |
comparisons, For N = 6 we have already seen that dynamic programming
required roughly one-fourth the computation of brute-force enumeration.
However, for N =20 we find that the dynamic-programming solution
involves 220 additons and 100 comparisons, while enumeration requires
more than three million additions and some 184.000 comparisons. We shall
find i geacral that the larger the problem. the more impressive the
computational advantage of dynamic programming,

Problem 1.3, How many addittions i how many comparisons are required
i ihe dvneoauc-programming solution and i brute-force enumeration for an
Aastage problem mvulving. a network of the type shown in Figure 1.3? Evaluate
voul formulas for ¥ = 20,

Let us note here a further advaniaee of dvnamic programming. Once
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a problem has been solved by the computational scheme that we have been
using, which works backward from the terminal point or points, one also
has solved a variety of other problems. One knows, in our examples, the
best paths from each vertex to the end. In our initial example of this
chapter, referral to the policy Table 1.1 of Section 3 tells us that the best
path from D to B goes first to vertex G, then to J or K, and, if J is chosen,
the remaining vertices are M, O, and B.

6. Forward Dynamic Programming

We now explicate a variation on the above dynamic-programming
procedure which is equally efficient but which yields solutions to slightly
different but related problems. In a sense we reverse all of our original
thinking. First we note that we could easily determine the effort of the best
path from 4 to B in Figure 1.1 if we knew the effort of both the best path
from 4 to O and the best path from A4 to P. Furthermore, we would know
these two numbers if we knew the efforts of the best paths to each of L,
M, and N from A, etc. This leads us to define a new optimal value
function S by

S(x, y) =the value of the minimum-effort path connecting
the initial vertex (0, 0) with the vertex (x, y). (14

Note that this is a quite different function from the S defined and

computed previously; however, the reader should not be disturbed by our
use of the same symbol § as long as each use is clearly defined. There are
- far more functions in the world than letters, and surely the reader has let

f(x) = x for one problem and f(x) = x? for the next.

The appropriate recurrence relation for our new optimal value

function is ‘

a(x—-Ly-D+S(x-1y-1) L5

ax—Ly+)+S(x=1L,y+1)| (1)
Here we are using a reversed version of the principle of optimality, which
can be stated as follows:

S(x, y) = min

The best path from A to any particular vertex B has the property that
whatever the vertex before B, call it C, the path must be the best path from
Atw C.

The boundary condition is
‘ 5(0,0) =0 (1.6)

since the cost of the best path from A to itself is zero.
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Problem 1.4. Solve the problem in Figure 1.1 by using (1.4)-(1.6). How
many additions and how many comparisons does the solution entail? How does
this compare to the numbers for the original dynamic-programming solution in the
text?

We shall call the procedure using the new reversed viewpoint the
“forward dynamic-programming procedure since the computation is
performed by moving forward from 4 to B rather than moving backward
from B to 4 as in the original (backward) procedure. ‘

The two procedures differ in the auxiliary information they produce.
The forward procedure used in Problem 1.4 yields the optimal path from A4
to every vertex, but tells nothing about the optimal paths from most
vertices to B. The latter information is furnished by the backward
procedure. '

Problem 1.5. Do Problem 1.1 by the forward procedure. Compute and
compare the number of additions and comparisons for the backward and the
forward solutions.

Problem 1.6, Find the minimum-cost path starting from line 4 and going o
line B in the network shown in Figure 1.5. The numbers shown along lines 4 and
B are additional costs associated with various initial and terminal points.

Figure 1.5



