

Data Analysis for
Data Base Desngn

D. R. Howe

Principal Lecturer in Data Processing
Leicester Polytechnic

®

Edward Arr

© D RHowe 1983

First published 1983 by
Edward Amold (Publishers) Ltd,
41 Bedford Square, London WC1B 3DQ

British Library Cataloguing in Publication Data

Howe, D.R.
Data analysis for data base design.

1. Data Base Management
1. Title

001.64°42 QA76. 9.D3
ISBN 0-7131-3481-X

All nghts reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of Edward Arnold (Publishers) Ltd.

Printed in Great Britain by
Thomson Litho Ltd, East Kilbride, ScO&Jagid,.

Contents

Preface

Readership — Scope — Structure and content — Questions and assignments ~
Terminology — Acknowledgements — Acknowledgements to Codasyl -
Acknowledgement to Burroughs Corporation -

Part A: Introduction

Introduction
Data base ~ Torg Ltd — Analysis — Answer pointers

Part 1: Data Bases and Data Base Management Systems

1 Data Base Systems
The data base approach — Program/data independence — Other data base
management system facilities — What constitutes a data base management

system? - Disadvantages — Data base vs data base management system — Scope

of a data base — Assignment — Answer pointers

2 Data Base Management System Architecture

Introduction — A three-leve! architecture — The conceptual schema - The
external schema - The internal schema - Mapping - DBMS components —
Advantages of three-level architecture — Data administration — Model vs
schema - Terminology — Assignments — Answer pointers

Part 2: Relational Modelling

3 Tables
Iniroduction — Tables - Null values — Normalisation — Answer pointers

4 Redundant vs Duplicated Data
Introduction — Redundant vs duplicated data — Elimination of redundancy -
Deceptive appearances — Enterprise rules — Answer pointers

5 Repeating Groups |
Introduction — Repeating groups — Elimination of repeating groups
(ncrmalisation) — Assignments — Separate attribute types — Answer pointers

i1

13

15

24

35

37

41

49

x Contents

6 Determinants and Identifiers

Introduction — Determinants — Superfluous attributes - Determinancy
diagrams - Composite determinants — Transitive determinants —
Terminology — Assignment — Identifiers — Determinancy diagrams and
redundancy — Transformation into well-normalised tables - Notation —
Assignment — Answer pointers

7 Fully-Normalised Tables

Introduction — Hidden transitive dependency — Multi-valued
determinancy — Advantages of full normalisation — The five normal forms —
Assignments — Answer pointers

Part 3: Entity-Relationship Modelling

8 Introduction to Entity-Relationship Modelling
Bottom-up data modelling - Entity-relationship modelling - Type vs
occurrence — Identifiers — Entity-relationship diagrams — Answer pointers

9 Properties of Relationships
The degree of a relationship — Determinancy constraints — Membership class -
Answer pointers

10 Decomposition of Many:Many Relationships
Decomposition — Answer pointers

11 Connection Traps
Introduction — Misinterpretation — Fan traps — Chasm traps — Further fan traps -
Decomposition of complex relationships — Summary — Answer pointers

12 Skeleton Entity-Relationship Models

Introduction — Representation of 1:1 relationships — Representation of 1:many
relationships — Representation of many:many relationships — Pre-posted
identifiers — Skeleton tables — Relationship identifiers - Relationship vs row
identifiers — Review — Recursive relationships — Answer pointers

13 Attribute Assignment

Assignment rules - 1:1 relationships — 1:many relationships — Many:many
relationships — Extending the skeleton model - Superfluous entity tables — Sub-
entity types - Answer pointers

14 First-Level Design |
Introduction - First-level design procedure — First-level design example —
Answer pointers

15 Second-Level Design
Introduction — Flexing by table elimination - Flexing by splitting — Derivable
attributes - Assignment - Second-level design example — Answer pointers

59

82

91

98

106

113

126

144

156

168

Contents xi

Part 4: Implementation

16 Mapping into an Indexed Implementation

Introduction — Burroughs DMS 11 — Introduction to DASDL - Introduction to
the COBOL host language interface - Mapping an E-R model into an indexed
implementation — Assignment ~ Answer pointers '

17 Further DMS II Schema Facilities
Introduction — Conceptual schema facilities - External schema facilities —
Internal schema facilities — Assignments — Answer pointers

18 Further DMS II Host Language Interface Facilities
Introduction — Currency — Multiple set paths - Multiple record areas — Host
language functions — Assignments — Answer pointers

19 Mapping into a Codasyl Conceptual Schema

Introduction — Record types — Codasyl sets — The conceptual schema data
description language — Set selection — Singular sets - Mapping an E-R model
into a Codasyl conceptual schema — Assignments — Answer pointers

20 Further Codasyl Schema Facilities
Introduction — Conceptual schema facilities — External schema facilities —
Internal schema facilities — Assignments — Answer pointers

21 Further Codasyl COBOL DML Facilities
Introduction — Run units — Subschema invocation — Currency — Data base keys ~
Further DML functions — Concurrent update — Assignments — Answer pointers

22 Relational Algebra

Table-at-a-time processing — Relational algebra operations - Sample queries —
Further join operations — Union, intersection and difference — Division —
Extended Cartesian product — Update — Commentary — Assignment —
Answer pointers

Bibliography

Index

183

185

204

224

234

256

269

279

294

301

Part A
Introduction

Part A sets the scene by using the experiences of an imaginary manufacturing
company to explore the advantages and disadvantages associated with the

sharing of data between applications.

A

Introduction

A.1 Database

A data base is a collection of non-redundant data shareable between different
application systems. | -

What does this definition mean? What is non-redundant data? Why share data? What
problems arise in sharing data and how can they be overcome? We will begin to explore
these questions by considering the problems encountered by a mythical manufacturing
company, Torg Ltd, in the development of their computer systems.

A.2 Torgltd

The management of Torg Ltd, knowing that many pitfalls await the unwary in the
development of computerised systems, had started cautiously by impleme nting a simple
system for printing an up-to-date product catalogue every month. This Catalogue
system maintained a master Catalogue file (Fig. A.1) comprising the data items
product-number, product-description, and price. At each month-end the Marketing
department updated the file to reflect price thanges, the addition of new products to the
catalogue and the deletion of obsolete products. The update run printed a new
catalogue listing which was then reprographed for circulation to customers.
Encouraged by the success of the Catalogue system, Torg decided to try something a
little more ambitious, namely a Stock control system for the Stores department. The
data required for this system would be product-number, product-description, quantity-
in-stock, and re-order-level. The quantity-in-stock of each product would be updated
weekly with stock movement data, and an exception report would be printed showing
those products for which the quantity-in-stock had fallen below the re-order-level.
Geoff Watson, the data processing manager, agreed with his chief (and only) systems
analyst Tom Cross that since much of the data required by the Stock system was already
held on the Catalogue system (viz. product-number, product-description), it would be
sensible to use the same master file for both systems. The Catalogue file was therefore
extended to include quantity-in-stock and re-order-level data items and was renamed
the Product file (Fig. A.2). Programs were written for the Stock system to handle stock
movements and changes to re-order-levels. The update program in the Catalogue
system had to be amended to cope with the additional data items in the Product file, but
this was considered to be a trivial change. As illustrated in the diagram, the Stores
department was responsible for the weekly updating of quantities-in-stock and for the
revision of re-order-levels when necessary. The Marketing department continued to be

4 Data Analysis for Data Base Design

Marketing Computer

|

Catalogue { Record format
file (product-no, product-description, price)

Price and
Product

changes

Catalogue
[/ OUTPUT /
‘\\
TORGLTD CATALOGUE
Product no Price (£)
Al100 Signal generator 55
Al0S Correlator 680
B142 Lock-in amplifier 120
P120 Power supply (2-amp) 45
P150 Power supply (5-amp) 62

Fig. A.1 The Catalogue system

Marketing Computer Stores
— Catalogue system Stock system
| Price and Stock
l Product movements;
{ / changes / ' ?;;:;‘;:ﬁlwel
| [MNPUT /] [iNeuT]
|
|
{ ! !
Product Record fdrmat
file uc (product-no, product-description, price,
| quantity-in-stock, re-order-levet)
]
l
/ | Products to
y . be re-ordered
/ ourerur [/ “outuT]

Fig. A.2 Joint Product file shared by Catalogue and Stock systems

Introduction 5-

The Stock system was thoroughly tested and put into operation at the beginning of
September. Early in October disaster struck. The latest product catalogue (Fig. A.3)
had somehow acquired some additional columns of figures, namely the values of
quantity-in-stock and re-order-level. Unfortunately, the error was not noticed until
after the new catalogues had been distributed to customers. Several customers
concluded that a company which could not print an intelligible catalogue was best
avoided. A competitor discovered the meaning of the figures simply by telephoning one
of the Torg secretaries. As a result the competitor identified several products for which
Torg was having difficulty obtaining supplies and, by changing its marketing strategy,
the competitor was able to win over some important Torg customers.

TORG LTD CATALOGUE
Product no Price (£)
A100 Signal generator . 5501030040
A105 Correlator 68000120025
B142 Lock-in amplifier 12000000300
P120 Power supply (2-amp) 4500840150
P150 Power supply (5-amp) 6200030250

h—-w——-/
The erroneous

output : values of
quantity-in-stock
and re-order-level

Fig. A.3 The corrupted catalogue

An error in the Catalogue printing program was soon traced and corrected but the
‘Catalogue Catastrophe’, as it became popularly known within the company, prompted
Watson to rethink the systems development policy. In future, he decided, each of the
company’s systems would be designed around its own master files. Not only would this
application-centred approach eliminate the possibility of data being seen by an
unauthorised program, but it would also make it possible to concentrate on the
development of one application at a time. |

To start the good work the Catalogue and Stock systems were split. The Catalogue
system reverted to its original design and a new Stock system was designed around its
own Stock file (Fig. A.4). The Product Design Department, who authorised the
addition and deletion of products, were responsible for notifying both Marketing and
Stores of such changes. This solution worked successfully at first, but after some while
complaints were made by the Sales manager that the descriptions of products in the
stock report were sometimes inconsistent with those in the catalogue. There were also
instances of a product appearing in the catalogue but not in the stock report (and vice
versa).

Investigation showed that there were several reasons for the discrepancies. One
problem was that Stores ran its update program weekly, whercas Marketing ran its
update program monthly. Another problem was that mistakes by Product Design
meant that Marketing and Stores did not always receive the same product change data.
Occasionally data was accidentally omitted from an update run, and in a few cases
errors had been made by the computer operators.

6 Data Analysis for Data Base Design

Catalogue system Stock system

- - T]
| / Price and / | } Stock movements; / |
| / Product l | Re-order-level I

/ 1 . . changes;
I / changes Jj I | Product changes |
AR I H / INPUT i
E ' o |
i v . pa— |
| R 4 _ | I Record format I
| ecord format J Catalogue Stock (product-no, product-
| Eiprod.uc_t-no, product- file | I file description, quantity-
‘ escription, price) l I in-stock, re-order-level)
| | | I
| l |
| .
|]
I / | | Products to
| | | be re-ordered l
| Catalogue I | exception I
| | | report |
{ /[ourpur |/ l { /[oureur] {
e e e e e e e e e e e _.n' e e e e e e e e -

Marketing Computer Stores

Fig. A.4 Application-centred solution. Separate Catalogue and Stock systems

almost inevitably lead to inconsistent data. After several rather acrimonious meetings,
in which each of the parties blamed everyone else, it was agreed that the data processing
department would write a ‘consistency audit’ program which would compare the two
files and print a list of discrepancies. This program would be run every few months so
that discrepancies could be identified and corrected. Furthermore, memos were sent to
the clerical staff in Product Design, Marketmg and Stores, emphasising the need for
care in dealing with product changes.

During the next few years several other systems were implemented, including
Production Scheduling, Purchasing, Payroll, and Customer Orders. The policy of
developing each system in isolation had been continued, in the sense that each system
had its own master files, but the growing need to communicate data between systems
had led to the use of transfer files. For example, information about products ordered by
customers was passed from the Customer Orders system to the Production Scheduling
system via a transfer file. As the complexity of the systems grew, the number of transfer
files proliferated (Fig. A.5).

The problem of consistency between systems was by now areal headache. Production
Scheduling, Customer Orders, Purchasing, Catalogue and Stock Control systems all
contained data on products, and much of the data was inconsistent. The consistency
audit program technique was still used, but it had become practically impossible to
maintain consistency in the face of differing update cycles and data input errors. The
proliferation of transfer files caused problems in scheduling work on the computer. A
further worry for Watson was the waste of storage entailed by the duplication of data
between files. Watson knew that if the duplication of data were eliminated, more
master files could be held on-line simultaneously and better use made of the computer’s
multiprogramming capabilities.

Introduction 7

Fig. A.5 Proliferation of transfer files (T1-T5) to communicate between application systems

By this time unproductive maintenance, as Watson called it, was occupying a
substantial amount of the programmers’ time. The problem was well illustrated by the
Payroll system for which some fifteen ad hoc repctt programs had been developed.
These programs were not part of the main payroll suite but were run on request to
provide management information. A new agreement between management and the
Sports and Social Club that membership fees would be deducted automatically from
members’ pay meant that it was necessary to distinguish in the Payroll record between
members and non-members. An extra data item was therefore added to the Payroll
record so that club membership could be indicated. Certain Payroll programs which
made use of the new data item naturally had to be amended, and this work Watson
regarded as productive maintenance. The unproductive maintenance involved the
amendment of the other Payroll programs, including all fifteen ad hoc report programs,
which made no use of the new data item, but which had to be amended (in order to make
their record descriptions consistent with the new record size) and then re-compiled and
tested. Watson recognised that the root of the problem lay in the sharing of the same
Payroll file by many programs, but that it was even less of a practical proposition to

. . L. . L Y T T

8 Data Analysis for Data Base Design

computer files was a valuable resource which could be tapped to provide management
information reports to supplement those provided by the standard application systems.
A common complaint voiced by management was that the data processing department
took weeks, or even months, to write a report program. Consequently, a report was
often not available to a manager until too late to be of any use. The data processing
department replied that many report programs, which had been justified on the grounds
that they would be used frequently, had been used once only, and that management
should know better than to waste the time of an overstretched department.

Up to this point, all Torg’s systems had been run in batch mode. Watson decided that
the time had come to take the plunge into on-line terminal systems. It was decided that
the Catalogue system would be converted to on-line updating and retrieval, with the
primary aim of better servicing of telephoned enquiries from customers. Marketing
asked for on-line access to the Catalogue file via either a product-number or a product-
description. Unfortunately, none of the standard file organisation routines available
within the data processing department could provide a sufficiently fast response to both
types of access. A serial file! was plainly out of the question. A random file? with
product-number as the key would have provided fast access by product-number, but
access by product-description would have entailed a serial search. The same objection
applied to an indexed sequential file.> The basic problem was that none of the file
organisations permitted direct access via more than one key.* Eventually, a solution
was reached in which only product-number could be used for on-line access; retrieval by
product-description was dealt with by referring to a printed list produced in the monthly
batch run.

With the implementation of the company’s first on-line terminal system
successfully completed, Watson reviewed the state of computer systems development.
The old policy of application-centred development had to all intents and purposes
broken down. The spread of computer systems throughout the company had reached
the point at which no major new system could be implemented without considering its
interaction with existing computer systems. In spite of the experience gained over the
years by the data processing department it seemed to be becoming harder rather than
easier to cope with systems development. Perhaps a new man would be able to sort
things out. Watson handed in his resignation and set up as an independent consultant.

A3 Analysis

The problems experienced by Torg Ltd can be summarised as follows.

(1) The duplication of data between different master files is a potential source of
inconsistent data.
(2) The sharing of data between systems poses a security problem.

'As typified by a magnetic tape file.

*i.e. where a randomising algorithm is used to calculate a record’s address from its key.

’i.e. where an index of record keys allows efficient access both in key sequence and directly to individual
records.

‘This is true of the conventional file organisation routines available at Torg Ltd, but not of the more
sophisticated implementations discussed in Part 4.

o

o Imrgduction 9

(3) Unproductive maintenance can become a serious drain on the resources of a data
processing department. -

(4) Managers cannot exploit fully the data avallablc to the computer because of delays
in getting report programs written.

(5) The greater the number of existing computer systems, the longer it is likely to take

- to develop new systems, because there are more interactions to consider..

(6) File organisations supporting only single-key direct access may be” inadequate,

particularly for on-line systems.

(7) Systems were developed rather haphazardly. There was no coordinated view of
the data as a whole, nor was there a proper systems development plan.

In the next chapter we contrast Torg’s application-centred approach to systems
design with a data base approach and, in doing so, introduce the idea of a data base
management system.

Questions

1. Could the ‘Catalogue Catastrophe’ (section A.2) have been avoided by better
program testing? What are the implications of your answer if a large number of
application programs share the same file? - (2min)
2. The catalogue printing program worked correctly with a record format of (product-
no, product-description, price) as in Fig. A.1 but produced incorrect output (Fig. A.3)
when its record description was altered to match the larger record size of the Product file
in Fig. A.2. Assuming that the program was written in COBOL and that the only
change was to add a FILLER data item to the record description, suggest a cause for the
incorrect output. Was there a bug in the original version of the program or not? Do you
have any criticisms to make concerning the program or record design? (5 min)
3. Assuming that the Catalogue system and Stock system share a data base as in Fig.
A.2, discuss whether there is likely to be conflict over the ownership of data (i.e. the

right to amend, add, delete, or restrict access to the data). (5 min)
4. The Product file in Fig. A.2 contains no redundant data. Does it follow that the file
necessarily contains mutually consistent data? (2 min)

5. Which data items are common to both the Catalogue file and the Stock file in the
application-centred solution of Fig. A.4? Are the data items common to both files the

only source of inconsistency? - (2 min)
6. Is better clerical procedures design the answer to inconsistent updating of
duplicated data? (2 min)

7. Suppgse duplication of data between application systems is allowed, but
inconsistency is to be avoided by updating all copies of duplicated data
‘simultaneously’. What are the implications of this procedure with regard to (a) batch
systems, (b) on-line terminal systems, (c) recovery from computer malfunction?

(10 min)
8. The use of transfer files (Fig. A.5) might be a security risk. Does the use of transfer
files have any advantages over allowing applications to access each other’s master files
directly? ‘ (2 min)
9 Whv do vou think “The nroliferation of transfer files caused nroblems in scheduline

10 Data Analysis for Data Base Design

10. Do you think the use of consistency audit programs is a good idea, or is it just
papering over the cracks in a basically unsound approach? (3 min)

Answer pointers

1. Yes. But with a large number of programs to test the chance of faulty testing is
increased. (Is the relationship linear?)

2. One possible explanation is that the print-record-area was defined as being the
same size as the printer page width (say, 132 characters) and that the input record was
moved to the print-record-area by a group MOVE of the record as a whole. In each
version of the program, the excess characters in the print-record-area would be padded
automatically with spaces, but in each case the whole of the input-record would be
transferred to the print-record-area.

There was not a bug in the original version of the program unless the original
specification included maintainability criteria which were not met. The problem would
not have occurred if item-by-item moves had been used instead of a group move. The
record design is unusual in that the product-description values as stored on the Product
file are already surrounded by the formatting blanks required to separate them from the
product-no and price values on the printed output (otherwise a group move would not
work). One might also wonder if it is wise to restrict prices to whole numbers of pounds.
3. The Stores department might object to Marketing deleting the record for a product
which has been withdrawn from the catalogue, but for which Stores still have supplies in
stock which need to be scrapped.

4. No. For example, an input error might mean that a product-description and
product-no are inconsistent. The fact that there are two sources of updates to the
Product file may also lead to inconsistency. Suppose that, because of an increase in the
price of a product, it has been decided that the re-order-level should be reduced. If the
updates performed by the Catalogue and Stock systems are not synchronised the
relevant product record will temporarily contain inconsistent values for price and
re-order-level. A report derived from this file while it is in an inconsistent state would
convey misleading information if it included the values of price and re-order-level.
Similarly, the two reports shown in Fig. A.2 could be inconsistent.

5. Product-no, product-description. No. See answer pointers for question 4.

6. It may help, but cannot guarantee consistency. ‘

7. Some implications are: (a) all copies of the duplicated data must be available to the
updating program when it is run, which may mean the mounting of a large number of
files; (b) the response time to terminal users may be unacceptably long because of the
time taken to update all copies of the data; (c) the recovery procedure may be
complicated by the larger number of files involved.

8. Transfer files will usually have smaller records and give better security because only
those data items to be transferred should be written to them; they may contain fewer
records; they may have a more convenient file organisation; it is simpler to audit the
contents of transfer files than to audit the operation of a program which accesses master
files directly.

Introduction 11

9. The need to mount several transfer files (both input and output files)
simultaneously. The need to ensure that the input transfer files are at a consistent level
of update.

10. As used by Torg, a case of papering over the cracks. We shall see later that even
the best designed data base is likely to contain some duplicated data, in which case the
use of consistency audit programs is sensible, but as a check that all is well rather than as
a firefighting exercise.

