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Our knowledge of the electrolyte solution-gas phase interface
derives principally from two sources; surface-tension measure-
ments and surface-potential measurements. Practically all the
existing data refer 10 aqueous solutions. Some measurcinents of
the surface tension of non-aqueous solutions of morganic salts
have been made (c.g., references 9 and 25), but because of the
lack of sufficient additional thermodynamic data for the solutions,
calculation of surface excesses is usually impossible. The scope of
this article is therefore restricted to aqueous solutions. Surface-
tension measurements provide the bulk of the information and
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2 J. E. B. RANDLES

since surface compositions must be derived from these by thermo-
dynamic methods, we begin with a brief summary of the relevant
thermodynamics.

I. Thermodynamics of a Liquid-Gas Interface

1. Thermodynamics
The total differential of the energy U of a phase is given by

dU = TdS — PdV + S, p, dn,

where T, P, §, and V are the temperature, pressure, entropy, and
volume of the phase and z; is the number of moles of component i,
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Fig. 1.

whose chemical potential in the phase is u,. The corresponding
equation for a plane interphase (region o in Fig. 1} is (15, section
1.53).

dU? = T dS" — PdV°® + ydA + 3, p,; dn, (1)

where vy is the interfacial tension and 4 the area of the interface.
The terms y dA — P dV° represent the work done on region ¢ in
increasing its area by d4 and its volume by dV°, and these replace
—P dV for a bulk phase. The Gibbs free energy of the interphase
is defined by

G =U — TS + PV — y4 (2)

from which, with (1)

4G° = — §°dT + V°dP — Ady + 3, p, dn; (3)
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whence
G° = Zi Bt (4)

By differentiating (4) and subtracting (3) we obtain the analog
of the Gibbs-Duhem equation

$7dT — V°dP + Ady + 3>, njdu, =0 (5)

We shall be concerned primarily with two-component systems
(single solute + solvent), for which

§°dT — V°dP + Ady 4+ n{ duy + nj du, =0 (6)

Since chemical potentials are uniform throughout the system, du,
and du, may be obtained from the expressions for the bulk liquid
phase

duy = =8, dT + VydP + (0p[0%y)p p dx, (7)
and

duy = —SydT -+ Vy dP + (3us/0xy) 1 p dry (8)

where $;, Sy, V}, and V, are partial molal quantities and x, is the
mole fraction of solute, in the liquid phase. Substituting (7) and
(8) in (6)
Ady + (87 — niS, — n3S,) dT — (V° — iV, — n3V,) dP
- [m(pfBxe) + 73(OefOx)) iy = 0 (9)
The Gibbs-Duhem equation for the liquid phase,

! ox, /v 2 Oxy /1.1

may be used to eliminate either 9,/ 0x, or Ouy/0x, from (9). If we
eliminate dy,/dx, and divide through by A we obtain

dy + (7] DS, — 18, dT — (Vo4 — TV, — [, V,) dP
[y = (ngfny ) U 1(Bpyf0xy) dx, = O (10)

wherc It nyjd and 1, nmyfd. In a strictly two-component
systewn dP cannot be zero if T or x, is varied because 1t is the
vapor pressure of the solution. However, since the density of the
region ¢ is similar to that of the liquid, the term (V?/4 — IV, —
[',V,) dP is negligible, as usual for liquid systems. Also, in practice,
the presence of air or other inert gas does not appreciably affect



4 J. E. B. RANDLES

aqueous surface tensions, and P may in fact be kept constant,
Thus, neglecting the term in dP

(0y[0T),, = (574 - TSy - 1,S,) — s (11)
(Oyfopmy)y (1 hz'.l/”])“]] = o (12)
03/ 0pyjy = [Iy — (mfngjTy] = Ty (13)

The quantity s, the surface excess entropy, is the amount by which
the entropy per unit area of surface exceeds the entropy of the
same material content in the liquid phase. The surface excess of
component 2 (relative to component 1), i.e., Iy, is the amount
by which I', exceeds the quantity of component 2 which would be
associated with I'; of component 1 in the liquid phase; and con-
versely for I'y,). (It will be noticed that all three quantities, s,
Iyq), and Ty, are invariant with respect to the separation of
planes A8 and CD in Fig. 1, provided that the separation is great
enough to include in ¢ the whole of the layer in which composition
1s varying across the interface). Equation 13 is derived from the
equation [similar to (10)] obtained by eliminating du,/dx, from
(9). For the pure solvent we have an equation analogous to (11),

—(dyO)dT) = (74 — T,87) = s (14)

It will be noticed that there has been no mention of ions, and
in fact the above equations are independent of whether the solute
is an electrolyte or non-electrolyte. Since a gas phase at equilib-
rium with a liquid phase contains no measurable concentration of
ions (at ordinary temperatures) and since the interphase as a
whole must be clectrically neutral, the surface excess of cations
must be equivalent to that of anions, and can be described as a
surface excess of ncutral molecules. However, there may be
different distributions of cations and anions, and surface-potential
measurements show that anions usually approach the surface more
readily than cations. This information cannot be derived from a
thermodynamic study of the surface. In contrast, in the system
known as an 1deal polarized electrode (37), an unbalanced surface
excess of, say, anions on the electrolyte side of the interface may
be countered by a corresponding deficit of electrons in the metal
electrode, and the charge density in this double layer across the
physical interface is a measurable quantity. Together with the
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conjugate intensive quantity, i.e., the e.m.f. between the metal
and a reversible electrode in the electrolyte phase, the charge
density can be included in a thermodynamic treatment (36) of
the interface. Surface excesses of individual ionic species can be
derived, and, with some reasonable assumptions about the diffuse
ionic layer the specific adsorption of different ions can be calcu-
lated. Nothing of this sort is at present possible for the electrolyte
solution—gas interface.

2. Surface of the Pure Solvent : Temperature Dependence of
Surface Tension

The surface tension of most liquids (a few metals may be
exceptions) decreases with increasing temperature, indicating a
positive surface excess entropy. For water at 25°C,

s = —{dy/dT) = 0.157 erg cm~? deg™!

One square centimeter of a monolayer of water molecules contains
about 1.7 x 10~° mole water* so that if the excess entropy were
restricted to a single layer of molecules it would be equivalent to
2.18 cal deg ' mole~! in this layer. This is equal to the entropy
increase in bulk water when its temperature is raised from 25° to
63°C. This is not a large amount and although it is probably not
concentrated in one layer of water molecules it is unlikely to
extend to more than two or three layers. More definite evidence
of the rather abrupt transition from the liquid to the vapor phase
is provided by optical studies. The ellipticity of light reflected
from the surface of a liquid at the Brewsterian angle (tan-!n,
where n is the refractive index of the liquid) depends on the
thickness of the transition layer and the way in which the refrac-
tive index changes through the layer. For an absolutely abrupt
transition the ellipticity would be zero. For most liquids it is very
small (39,42) and for water McBain 32} concludes that the
transition layer cannot be less than 2.26 A thick but probably
does not exceed this greatly. Since the thickness of a monolayer of

* This figure is equivalent to the number of water molecules in the surface
of one face of a l-cm cube of water. 'The number of molecules in the cube is
(6.02 » 10)/18*% - 3.34 ~ 10?2, therefore the number on a face (334 ~
1022263 104 < 10 molecules 1,72 < 10" mole.
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water molecules is about 3 A, the implication is that the layer of
intermediate densities at the surface of water 1s only one or two
monolayers thick. This is also the region in which the greater part
of the change of diclectric constant occurs since there is no reason
to suppose that molecular rotation is more restricted than in the
bulk (preferential orientation of dipoles near the surface seems to
be small, see section 111.1).

The temperature dependence of the surface tension of aqueous
electrolyte solutions is very similar to that of pure water (26).
Solutions of those salts such as nitrates and thiocyanates that
cause a smaller increment of surface tension than usual, appear
to have a smaller temperature coefficient (—dy/d7T) than does
either pure water or solutions of other 1:1 salts, but the available
data is not of sufficient accuracy for any significant deductions to
be made.

II. The Concentration Dependence of Surface
Tension

1. General Considerations

Early work on the surface tension of aqueous solutions of salts
showed that in general the surface tension increased approximately
linearly with increasing concentration of salt (19). It was also
noticed that equivalent concentrations of many different salts of
the same valence type gave almost identical increments of surface
tension (46). This observation suggests that the effect of low
concentrations of ionic solutes on the surface tension of water may
be explicable on the basis of Coulombic forces enly. At higher
concentratinns different ions of the same charge begin to exhibit
specific differences and there is a correlation with the “lyotropic
series” (10). The higher an jon is in this series (i.e., the more
highly hydrated), the greater the increment in surface tension it
causes. The effects of the two ions present in a solution of a simple
salt are roughly additive.

There are thus two main problems of interest: first, the inter-
pretation of the surface tension of very dilute electrolyte solutions
on the basis of Coulombic forces (equivalent to the Debye-Hiickel
theory for dilute solutions), and second, the interpretation of
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specific differences at higher concentrations. For the study of both
these problems, but particularly of the former, very accurate
surface-tension measurements are required since the differences of
surface tension are very small. The methods most frequently used
in the more recent work have been the drop-weight method
(14,16-18) the capillary rise method (20,21) and the maximum
bubble pressure method (2,3,30,38). The most precise measure-
ments are probably those of Jones and Ray (20,21), Long and
Nutting (30), and Passoth (38). The original papers should be
consulted for details of the methods. We shall proceed directly to
consider the theoretical predictions for dilute solutions and the
comparison of these with the experimental results.

2. Theory and Experimental Results

A. Theory for Dilute Solutions. The surface tension of
very dilute electrolyte solutions, as we have remarked, appears to

’

ve
AR : D=1
Water x D=80
e
Fig. 2.

depend on concentration and valence type only and should there-
fore be determined by Coulombic forces alone. The first attempt
to work out a quantitative theory on this basis was made by
Wagner (48). A charged particle near the interface between two
dielectrics, e.g., water and air, is subject to an image force tending
to drive the particle from the phase of lower dielectric constant
into that of higher. An ion in an aqueous solution is thus repelled
from the surface. Taking the dielectric constant of the gas phase
(air + water vapor) to be 1 and that of water as D, an ion of
charge ¢ at a distance x from the surface (Fig. 2) is repelled as
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though by a charge ¢’ at a distance 2x in a uniform medium of
dielectric constant D, where

e (D - LD + D)e (15)

In view of later approximations i1t is sufficientiy accurate when
D ~ 80 (water) to substitute | for (D - 1)/(D + 1). The electro-
static energy of a charge ¢ due to this image force is then

LA o2
.[) b ™~ ape W 16)

If the concentration is ¢ at x — oo, the concentration at x is
cexp [—W(x)[kT] and the total amount desorbed per unit area
of surface is

Ty = o[ - el WRATYd = = (1)

This leads to an infinite increment of surface tension, a paradox
which is resolved by taking into account the screening effect of
the tonic atmosphere. When x is larger than the radius of the ionic
atmosphere, 1/k, [k = (4n/DkT) Y, c,¢?] the electrical image of
the ionic atmosphere largely cancels that of the central ion. The
image force and W(x) therefore fall rapidly towards zero as x
increases beyond 1 /. In the calculation of W(x) for smaller values
of x, a considerable mathematical difficulty arises from the
dependence of « on concentration which itself depends on x. To
overcome this, Wagner made the approximation of giving « the
same value from x — 0 to x as it has at distance x. However,
laborious numerical integrations were still required to solve the
equations, and Onsager and Samaras (35) further simplified the
problem by assuming « to be constant, having the same value up
to the surface as in the bulk of the solution. Expression (16) for
W(x) then becomes

W(x) = (¢2/4Dx)e™ 2= (18)

which obviously decreases rapidly as x exceeds 1{«. On substituting
this into (17), [y, becomes finite. By substituting into Eq. 12 the
calculated value of Ty, and integrating, Onsager and Samaras
obtained an expression for Ay(=y — y,) as the sum of a series.
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Values of this sum are tabulated (35) for a range of concentrations
of electrolyte in aqueous solution. The limiting law for very
dilute solutions of 1 :1 salts takes the form

Ayaee = 1.012m log,,(1.467/m) dyne cm~! (19)

for water as solvent at 25°C. Expression 19 and also Onsager
and Samaras’ tabulated values are plotted in Fig. 3.

1 [ 1 i

) F3 r g
10*¢c/MOLE LiTRE™

Fig. 3. Full lines: measurements of Jones and Ray; broken lines: theoretical
curves calculated by Onsager and Samaras; upper curve: tabulated values;
lower curve: limiting law (Eq. 19). Circles: measurements of Long and
Nutting.

B. Comparison of Experimental Results with the
Onsager-Samaras Equations. In order to test the validity of
the Onsager-Samaras theory, Jones and Ray (20,21) made a series
of measurements of surface tension of dilute aqueous solutions of
several salts. By using a highly sensitive differential capillary rise
method, with a quartz capillary, they were able to make signifi-
cant measurements of Ay/y, down to 0.00004, i.e., Ay ~ 0,003
dyne cm~. Their results indicated an apparent decrease of surface
tension with increasing salt concentration up to about 10-3 equiva-
lent per liter for all the salts they studied, followed by the normal
increase at higher concentrations (curves for KCland CsNO, are
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plotted in Fig. 3). This unexpected result, which became known
as the Jones-Ray effect, implies adsorption of the salt at the sur-
face at very low concentrations followed by desorption at higher
concentrations. Attempts were made to explain the phenomenon
as a truc surface-tension effect, by Dole (8) and Bikerman (5).
However, an alternative suggestion by Langmuir (28) that it
might be an instrumental error due to the finite thickness of the
“wetting layer” on the inside of the capillary has since proved to
be correct. In contact with a dilute aqueous solution of a non-
surface-active 1:1 salt such as KCl, a quartz surface becomes
negatively charged and this gives rise to a complementary diffuse
layer of charge in the adjacent solution. The thickness of this layer
is related to the Debye length, 1/«, and the concentration of ions
in it depends on the charge density (i.e., on the { potential) of the
quartz surface. When a quartz capillary is wetted internally with
a dilute electrolyte solution and then raised, the osmotic effect of
the excess ionic strength in the diffuse layer of charge prevents the
drainage of liquid from the surface when the remaining film has
been reduced to a thickness comparable to 1/x. The reduction of
the effective bore of the capillary by this layer should be greatest
when the ionic strength is least and should diminish, with rising
ionic strength, to a negligible amount when the electrolyte
concentration approaches 10-2 M. This change in the effective
bore of the capillary causes a decrease in the capillary rise which
is superimposed on, and at very low concentration completely
obscures, the increase of rise due to increasing surface tension with
Increasing concentration,

Experiments designed to test the ability of Langmuir’s theory
to account quantitatively for the observed effects were made by
Jones and Wood (22). They made careful measurements of the {
potential of quartz in aqueous KCI at low concentrations and on
the basis of Langmuir’s theory calculated the thickness of the
wetting layer of these solutions in a quartz capillary. Treating this
as a decrement (— Ar) in the radius of the quartz capillary used
by Jones and Ray (20) they made the appropriate corrections to
the latter’s measurements of y. The results are summarized in
Table I. The Ay’s in this table are increments in y over that for
10-3 A KCl, with and without making the correction for the
wetting layer in the capillary for each solution. The surface
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TABLE I
Measurements of Jones and Ray Corrected for
Wetting Layer in Capillary (22)
(Internal radius of capillary = 0.0136 cm)

m (KCl) 10-8 M 104 M 103 M
L, volt -0.148 —0.135 ~0.112
i, A 962 304 96.2
—Ar, A 520 450 250
Ay[y,, uncorrected — —0.00003 —0.00018
Ayl yg, corrected — +0.00002 +0.00002

tension of 10-3 M KCI may be taken as equal to that for water,
within the experimental error. According to the Onsager-Samaras
theory Aypfy, for 104 M and 10-% M KCI should be 0.6 x 10-8
and 4.5 x 1075 respectively, with which the corrected experi-
mental value of 2 x 10-3 for each solution agrees to within the
probable experimental error. Thus the low concentration anomaly
disappears. Similar calculations by Robinson (43) confirm this
conclusion.

It has also been found possible by using other methods of
measurement to obtain directly surface-tension values which
exhibit no anomalous behavior at low concentrations. Long and
Nutting (30) used an elegant differential form of the maximum
bubble pressure method to measure surface tensions of aqueous
KCl at concentrations up to 0.01 M. Their results are also
shown in Fig. 3 and give no indication of a minimum in the
y—concentration curve. At first sight this is surprising since the
inside of the capillary was wetted by the solution in the intervals
between bubble formation as is usual in this method, and the
effective internal diameter should then be diminished by the
wetting layer as in the capillary rise method. An explanation has
been put forward by Passoth (38) who used another modification
of the same method. He found that if the interval between the
bubbles was long (2 min) he obtained a minimum in the y-
concentration curve, while if it was fairly short (15 sec) there was
no such minimum (Fig. 4). He suggested that if there is sufficient
time for drainage of the liquid film in the capillary down to the
limit prescribed by Langmuir’s theory, then the minimum in the
y—¢ curve will be found, but if much less time is allowed the hiquid
film always reaches the same thickness determined simply by the
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rate of drainage and no minimum appears. This seems to be a
probable explanation even though Long and Nutting did not
detect any dependence of bubble pressure on bubble frequency
over a limited range of the latter. The horizontal wire detachment
method [due to Lenard (29)] has been used as a high-precision
differential method by Schifer ¢t al. (44} who also found no

'l L
o 4 8 12
10°C/MOLE LITRE™

Fig. 4. Full line: Onsager-Samaras equation; broken line: Jones and Ray
experimental curve for NaCl; triangles: NaCl; squares: KBr; both with bubble
interval 15 seconds; circles: NaCl, with bubble interval 2 min (From Passoth,
ref. 38).

Jones-Ray effect. This is to be expected if the Langmuir theory
is correct since a small variation of the thin film of liquid adhering
to the wire would not (even if it occurs) appreciably affect the
measured force of detachment from the liquid surface.

The correctness of Langmuir’s theory and the absence of any
minimum in the true surface tension-concentration curves may
therefore be assumed. We must therefore enquire how well such
curves, without minima, are represented by the Onsager-Samaras
calculations. Reference back to Fig. 3 shows that agreement with
the results of Long and Nutting for KCI up to 0.01 M is fairly
good. At higher concentrations the curve for KCl shows
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increasing deviation with increasing concentration but there is
rather better agreement for CsNOj. In Fig. 5 the comparison is
extended up to a concentration of 0.1 M and the minimum in each
curve has been eliminated by extrapolating the normal part of
each curve (y increasing with concentration) back to zero con-

centration. The curves for KCl and NaCl (Jones and Ray’s

10 C/MOLE LITRE™

Fig. 5. Full lines and circles: Experimental results of Jones and Ray.
Broken lines: upper curve, calculated by Schmutzer (ref. 45); lower curve,
from Onsager and Samaras’ tabulated figures.

results) also represent quite accurately the surface tension data of
Schifer et al. (44) for these two salts. It can be seen that the curve
representing the Onsager and Samaras equation has an initial
slope similar to that of the KCl curve but falls markedly below it
at concentrations above about 0.01 M. (This theorctical curve is
drawn from the figures tabulated by Onsager and Samaras. The
himiting law, Eq. 19, falls significantly below the line drawn in
Fig. 5 at concentrations above about 0.02 M.) The NaCl curve has
a somewhat higher initial slope, which may be due to experi-
mental error as at higher concentrations the NaCl and KClI
curves almost coincide. On the other hand, the curves for KCIO,
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and KCNS have a lower initial slope than that of the Onsager-
Samaras curve.

Before considering alternative theories and attempts to obtain
better agreement with experiment at higher concentrations, we
shall briefly discuss the main physical facts which are omitted
from the Onsager-Samaras model. In the first place, this model
underestimates the electrical image forces by ignoring the increase
in 1/k as the surface is approached. If this were taken into account
Ay would be increased. Second, the concept of a uniform dielec-
tric bounded by a plane ignores the gradual decline of density
and dielectric constant through a surface layer about two mole-
cules thick (see section 1.2). This decrease of dielectric constant
near the boundary of the liquid phase has been cited (38,44) as
causing a deficit of ions near the surface additional to that calcu-
lated in the Onsager-Samaras theory, but its net effect on the
surface excess I'y) is probably small. * Third, and most important,
the influence of the molecular structure of the dielectric on its
interaction with an ion is ignored. One effect of this which might
be expected is that the reluctance of some ions to lose their first
hydration shell (as indicated by the existence of hydrated ions in
crystalline salts) would prevent their losing it at the surface of the
solution. At the nearest approach of such ions to the surface, at
least one water molecule would be retained between the ion and
the gas phase. If this were true of both species of ion present in an
electrolyte solution, there would be an ion-free layer at least one
water molecule thick at all concentrations of the solution, which
would increase Ay over the value calculated by Onsager and
Samaras. On the other hand, as we have seen, some salts (KCIO,,
KCNS) cause a Ay less than that predicted by the Onsager-
Samaras theory. This can only result from adsorptive forces which
oppose the various desorptive forces. The mechanism of these
specific adsorptive forces is not known, but it must be related to
the structure of the hydration shell of the ions concerned and the
structure of the water surface. We shall discuss the question in
more detail in section III.1.

* While the lower dielectric constant lowers the number of ions in a surface
layer of specified depth, the lower density of the water also means less water
in the same layer. Thus both I'; and I'j in Eq. 12 are decreased and the
effects on I'yy) tend to cancel,
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C. Other Theoretical Approaches. A rather claborate
calculation based on the same model as that of Onsager and
Samaras has been carried out by Buff and Stilbinger (6); this has
yielded theoretical values of Ay which do not fall below the experi-
mental values until higher concentrations, but the improvement
1s not very great, Other theories of the surface tension of aqueous
electrolytes have been put forward by Oka (34), Ariyama (1),
Belton (4), Schiafer et al. (44), and Schmutzer (45). Oka and
Ariyama attributed the forces repelling ions from the surface
entirely to the lack of ionic atmosphere on the gas-phase side of
the interface. Image forces resulting from the change of dielectric
constant at the interface were ignored, and this neglect must
render these theories unrealistic. Belton (4), on the other hand,
ignored ion-ion interactions and considered only interactions
between ions and the polar molecules of the solvent. However, he
assumed an arbitrary distance of closest approach of an 1on to the
surface, equal to 4 A, and his calculations were only directed to
finding out how the “water layer” at the surface of an aqueous
salt solution changed with changing salt concentration. Why there
should be a 4-A water layer at the surface was not considered.

Schifer et al. (44) developed a theory based on electrical image
forces, with partial screening by the ionic atmosphere. The image
forces are interpreted as a loss of (negative) hydration energy as
the surface is approached. This is a legitimate interpretation and
allows the authors to introduce differences for different ions by
using Webb’s (49) values for “effective’ ionic radii and dielectric
constant close to an 1on. However, the theory is complicated and
its value diminished by the use of adjustable parameters related
to the hydration of ions and to the closest possible approach of
ions to the surface. In this respect the work of Schmutzer (45} is
preferable. He assumes the existence of forces repelling ions from
the surface additional to those included in the Wagner-Onsager
model, but represents them ssmply by an inhmte potential barrier
at a distance d from the surface. It must be admitted that present
knowledge of ion-water interactions and the surface structure of
water does not justify any more detailed model. Beyond the ion-
free layer of thickness 4, Schmutzer calculates the distribution of
ions on the basis of electrical image forces partly screened by the
ionic atmospheres, as did Onsager and Samaras. Thus the two
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theories give the same limiting law for infinite dilution, when the
surface layer of the solution is devoid of ions as a result of the
image forces (without any special assumption about a potential
barrier). For medium concentrations (order of 0.1 M) Schmutzer’s
formula is

mvR Ty kT

Av AR
' 1000 322

1,(20x) (20)

where m is the molality of the solution, » the number of ions per
molecule of solute, R and k the gas constant per mole and per
molecule, respectively, and ¢ is the osmotic coefficient of the
solution. I(2d«) is an integral function which Schmutzer has
cvaluated and tabulated for a series of values of 20« (x is the
reciprocal of the radius of the ionic atmosphere).

The first term on the right-hand side of Eq. 20 is the surface-
tension increment due to the ion-free layer of thickness §. This is
easily demonstrated. Suppose that below the ion-free layer the
solution is uniform, therefore there is a surface excess of water
(T'y2)) equal to the quantity in this layer. The volume of the layer
is 0 cm? per square centimeter. Alternatively this layer may be
regarded as y monolayers of water molecules where y need not be
an integer. Thus, taking the molecular volume of water as 18 cm3,
and using also the figure given in the footnote in section 1.2,

I'ypy = 8/18 = 1.72 x 10~® y moles cm~2

The activity of water in the solution is related to the molal osmotic
coefficient, ¢, by

Inay,g - (18wm/1000)q
so that
dityy (18RT/1000) d(vmg)
Thus Eq. 13 becomes
dy  I8RT

30omy] ~ 1000 I')s = 0.248 108 = 0.767y
dyne em~Y(mole kg ) (21)
a result which we shall make use of later. If 0 1s constant we have
Ay = (RTH[1000)ymg (22)
which is identical with the first term on the right-hand side of (20).



