计算机科学丛书

数据通信与网络

(英文版)

Introduction to Data Communications and Networking

(美) Behrouz Forouzan 著

Behrouz Forouzan: Introduction to Data Communications and Networking.

Copyright ©1998 by The McGraw-Hill Companies, Inc. All rights reserved. Jointly published by China Machine Press/McGraw-Hill. This edition may be sold in the People's Republic of China only. This book cannot be re-exported and is not for sale outside the People's Republic of China.

RISBN: 007-1162550

本书英文影印版由McGraw-Hill公司授权机械工业出版社在中国大陆境内独家出版发行,未经出版者许可,不得以任何方式抄袭、复制或节录本书中的任何部分。

版权所有,侵权必究。

本书版权登记号: 图字: 01-99-1093

图书在版编目(CIP)数据

数据通信与网络 / (美) 弗鲁赞 (Forouzan, B.) 著.-影印本.-北京: 机械工业 出版社, 1999.5

(计算机科学从书)

书名原文: Introduction to Data Communications and Networking ISBN 7-111-07206-5

I. 数… Ⅱ. 弗… Ⅲ. 数据通信-通信网 Ⅳ. TN919.2

中国版本图书馆CIP 数据核字(1999) 第10885号

出版人: 马九荣 (北京市百万庄大街22号 邮政编码 100037) 北京市南方印刷厂印刷·新华书店北京发行所发行 1999年5月第1版第1次印刷

787mm×1092mm 1/16·45印张

印数: 0001-5000册

定价: 59.00元

凡购本书,如有缺页、倒页、脱页,由本社发行部调换

PREFACE

Networks and digital communications may be the fastest growing technologies in our culture today. One of the ramifications of that growth is a dramatic increase in the number of professions where an understanding of these technologies is essential for success—and a proportionate increase in the number and types of students taking courses to learn about them. Today students wanting to understand the concepts and mechanisms underlying telecommunications and networking come from a variety of academic and professional backgrounds. To be useful, a textbook on data communication and networking must be accessible to students without technical backgrounds while still providing substance comprehensive enough to challenge more experienced readers. This text is written with this new mix of students in mind.

Features of the Book

Several features of this book are designed to make it particularly easy for students to understand data communication.

Structure

We have used the seven-layer OSI model as the framework for the text not only because a thorough understanding of the model is essential to understanding most current networking theory but also because it is based on a structure of interdependencies: Each layer builds upon the layer beneath it and supports the layer above it. In the same way, each concept introduced in our text builds upon the concepts examined in the previous sections.

The first eight chapters emphasize the physical layer, which is essential for understanding the rest of the layers. These chapters are particularly needed for students with no background in networking or telecommunication.

Chapters 9 through 13 describe all issues related to the data link layer. Chapters 14 to 20 discuss topics associated with the network layer. Chapter 21 describes the transport layer. Chapter 22 focuses on upper layers, which are normally combined in most protocols.

Chapter 23 describes one of the most important protocols, TCP/IP.

Visual Approach

The book presents highly technical subject matter without complex formulas, using a balance of text and figures. The approximately 700 figures accompanying the text provide a visual and intuitive opportunity for understanding the material. Figures are particularly important in explaining networking concepts, which are based on connections and transmission, both often more easily grasped visually than verbally.

Highlighted Points

Important concepts have been repeated in colored boxes for quick reference and immediate attention.

Examples and Applications

Whenever appropriate, we have included examples that illustrate the concept introduced in the text. Also, real-life applications have been added throughout each chapter to motivate students.

Summary

Each chapter ends with a summary of the material covered by that chapter. The summary is a bulleted overview of all the key points in the chapter.

Practice Set

Each chapter includes a practice set designed to reinforce salient concepts and encourage students to apply them. It consists of two parts: multiple choice questions and exercises. Multiple choice questions are designed to test students' grasp of basic concepts and terminology. Exercises require deeper understanding of the material.

Appendixes

The appendixes are intended to provide quick reference material or a review of materials needed to understand the concepts discussed in the book.

Glossary and Acronyms

The book contains an extensive glossary and a list of acronyms.

How to Use the Book

This book is written for both an academic and a professional audience. The book can be used as a self-study guide for interested professionals. As a textbook, it can be used for a one-semester or one-quarter course. The chapters are organized to provide a great deal of flexibility. The following are some suggestions:

- Chapters 1 through 12 and Chapters 14, 16, 20, 21, and 22 are fundamental to understanding the concepts of data communication and networking.
- Chapters 13, 14, 15, 20, and 23 can also be covered in a quarter or a semester.
- Chapters 17, 18, and 19, which discuss the emerging technologies, can be covered if time permits.

Acknowledgments

It is obvious that the development of a book of this scope needs the support of many people. We must first thank the hundreds of students at De Anza College who have used the text and made useful comments. We must also thank the De Anza staff: their encouragement and support materialized the project and contributed to its success. In particular, we thank Sandy Acebo, Richard Gilberg, Martha Kanter, Anne Oney, John Perry, George Rice, Mark Sherby, Orva Stewart, and John Wanlass.

The most important contribution to the development of a book such as this comes from peer reviews. We cannot express our gratitude in words to the many reviewers who spent numerous hours reading the manuscript and providing us with helpful comments and ideas. We would especially like to acknowledge the contributions of the following reviewers:

Russell J. Clark, University of Dayton Charles K. Davis, University of Houston John W. Gray, University of Massachusetts at Dartmouth James M. Frazier, University of North Carolina at Charlotte Thomas F. Hain, University of South Alabama Paul N. Higbee, University of North Florida Seung Bae Im. California State University at Chico Rose M. Laird, Northern Virginia Community College Jorg Liebeherr, University of Virginia Wallace C. Liu, California State University at Fresno T. Radhakrishnan, Concordia University Peter Maggiacomo, Sinclair Community College Larry D. Owens, California State University at Fresno Michael Peterson, Iowa Western Community College Satya Prakash Saraswat, Bentley College Heidi Schmidt, San Francisco State University Gordon Springer, University of Missouri at Columbia

Special thanks go to the staff of McGraw-Hill. Betsy Jones, our senior editor, proved how a proficient editor can make the impossible, possible. Bradley Kosirog, the assistant editor, gave us help whenever we needed it. Beth Cigler, our project manager, guided us through the production process with enormous enthusiasm. We also thank Heather Burbridge in production, Kiera Cunningham in design, and Janet Renard, the copy editor.

Trademark Notices

Throughout the text we have used several trademarks. Rather than insert a trademark symbol with each mention of the trademarked name, we acknowledge the trademarks here and state that they are used with no intention of infringing upon them. Other product names, trademarks, and registered trademarks are the property of their respective owners.

- Apple, AppleTalk, EtherTalk, LocalTalk, TokenTalk, and Macintosh are registered trademarks of Apple Computer, Inc.
- Bell and StarLan are registered trademarks of AT&T.
- DEC, DECnet, VAX, and DNA are trademarks of Digital Equipment Corp.

- IBM, SDLC, SNA, and IBM PC are registered trademarks of International Business Machines Corp.
- Novell, Netware, IPX, and SPX are registered trademarks of Novell, Inc.
- Network File System and NFS are registered trademarks of Sun Microsystems, Inc.
- PostScript is a registered trademark of Adobe Systems, Inc.
- UNIX is a registered trademark of UNIX System Laboratories, Inc., a wholly owned subsidiary of Novell, Inc.
- Xerox is a trademark, and Ethernet is a registered trademark of Xerox Corp.

TABLE OF CONTENTS

Chapter 1: INTRODUCTION 1
DATA COMMUNICATION 2
Components 3
NETWORKS 4
Distributed Processing 4
Network Criteria 4
Applications 6
PROTOCOLS AND STANDARDS 7
Protocols 7
Standards 8
STANDARDS ORGANIZATIONS 9
Standards Creation Committees 9
Forums 11
Regulatory Agencies 12
SUMMARY 13
PRACTICE SET 13
Multiple Choice 13
Exercises 15
Chapter 2: BASIC CONCEPTS 17
LINE CONFIGURATION 17
Point-to-Point 18
Multipoint 18
<u>-</u>
TOPOLOGY 18 Mesh 19
TOPOLOGY 18
TOPOLOGY 18 Mesh 19
TOPOLOGY 18 Mesh 19 Star 21
TOPOLOGY 18 Mesh 19 Star 21 Tree 21
TOPOLOGY 18 Mesh 19 Star 21 Tree 21 Bus 22

TRANSMISSION MODE 24

Simplex 25

Half-Duplex 25

Full-Duplex 25

CATEGORIES OF NETWORKS 26

Local Area Network (LAN) 26

Metropolitan Area Network (MAN) 28

Wide Area Network (WAN) 28

INTERNETWORKS 29

SUMMARY 30

PRACTICE SET 30

Multiple Choice 30

Exercises 32

Chapter 3: THE OSI MODEL 35

THE MODEL 35

Layered Architecture 35

FUNCTIONS OF THE LAYERS 39

Physical Layer 39

Data Link Layer 40

Network Layer 41

Transport Layer 43

Session Layer 45

Presentation Layer 47

Application Layer 48

Summary of Layer Functions 49

SUMMARY 49

PRACTICE SET 50

Multiple Choice 50

Exercises 53

Chapter 4: SIGNALS 55

ANALOG AND DIGITAL 55

APERIODIC AND PERIODIC SIGNALS 57

Periodic Signals 57

Aperiodic Signals 58

ANALOG SIGNALS 59

Simple Analog Signals 59

Complex Signals 64

Frequency Spectrum and Bandwidth 65

DIGITAL SIGNALS 67

Amplitude, Period, and Phase 67

Decomposition of a Digital Signal 68

Medium Bandwidth and Significant Bandwidth 69

Medium Bandwidth and Data Rate: Channel Capacity 70

Use of Analog Signals to Transmit Digital Data 71

MATHEMATICAL APPROACH (OPTIONAL) 73

SUMMARY 74 PRACTICE SET 75

Multiple Choice 75 Exercises 77

Chapter 5: ENCODING 79

DIGITAL-TO-DIGITAL ENCODING 79

Unipolar 80

Polar 82

Bipolar 85

ANALOG-TO-DIGITAL ENCODING 90

Pulse Amplitude Modulation (PAM)

Pulse Code Modulation (PCM) 92

Sampling Rate 94

DIGITAL-TO-ANALOG ENCODING 95

Aspects of Digital-to-Analog Encoding 95

Amplitude Shift Keying (ASK) 96

Frequency Shift Keying (FSK) 99

Phase Shift Keying (PSK) 101

Quadrature Amplitude Modulation (QAM) 104

Bit/Baud Comparison 106

ANALOG-TO-ANALOG ENCODING 107

Amplitude Modulation (AM) 108

Frequency Modulation (FM) 110

Phase Modulation (PM) 112

SUMMARY 112

PRACTICE SET 114

Multiple Choice 114

Exercises 118

Chapter 6: TRANSMISSION OF DIGITAL DATA: INTERFACES AND MODEMS 121

DIGITAL DATA TRANSMISSION 121

Parallel Transmission 122

Serial Transmission 123

DTE-DCE INTERFACE 125

Data Terminal Equipment (DTE) 126

Data Circuit-Terminating Equipment (DCE) 126

Standards 127

EIA-232 Interface 127

OTHER INTERFACE STANDARDS 134

EIA-449 134

EIA-530 138

X.21 139

MODEMS 140

Transmission Rate 142

Modem Standards 145

SUMMARY 152
PRACTICE SET 154
Multiple Choice 154
Exercises 160

Chapter 7: TRANSMISSION MEDIA 163

GUIDED MEDIA 164

Twisted-Pair Cable 164 Coaxial Cable 168 Optical Fiber 169

UNGUIDED MEDIA 176

Radio Frequency Allocation 176
Propagation of Radio Waves 176
Terrestrial Microwave 181
Satellite Communication 182
Cellular Telephony 184

PERFORMANCE 187

SUMMARY 188

PRACTICE SET 190

Multiple Choice 190 Exercises 195

Chapter 8: MULTIPLEXING 197

MANY TO ONE/ONE TO MANY 197 TYPES OF MULTIPLEXING 198

> Frequency-Division Multiplexing (FDM) 199 Time-Division Multiplexing (TDM) 202 Inverse Multiplexing 209

MULTIPLEXING APPLICATION:

THE TELEPHONE SYSTEM 210

Common Carrier Services and Hierarchies 210

Analog Services 211 Digital Services 213

SUMMARY 219

PRACTICE SET 220

Multiple Choice 220 Exercises 223

Chapter 9: ERROR DETECTION AND CORRECTION 225

TYPES OF ERRORS 225

Single-Bit Error 226 Multiple-Bit Error 226 Burst Error 227

DETECTION 227

Redundancy 227

Vertical Redundancy Check (VRC) 228

Longitudinal Redundancy Check (LRC) 230

Cyclic Redundancy Check (CRC) 232

Checksum 235

ERROR CORRECTION 237

Single-Bit Error Correction 237

Hamming Code 238

Multiple-Bit Error Correction 241

SUMMARY 242

PRACTICE SET 243

Multiple Choice 243

Exercises 245

Chapter 10: DATA LINK CONTROL 247

LINE DISCIPLINE 248

ENQ/ACK 248

FLOW CONTROL 253

Stop-and-Wait 253

Sliding Window 255

ERROR CONTROL 258

Automatic Repeat Request (ARQ) 258

Stop-and-Wait ARQ 259

Sliding Window ARQ 261

SUMMARY 267

PRACTICE SET 268

Multiple Choice 268

Exercises 270

Chapter 11: DATA LINK PROTOCOLS 273

ASYNCHRONOUS PROTOCOLS 274

XMODEM 274

YMODEM 275

ZMODEM 275

BLAST 275

Kermit 275

SYNCHRONOUS PROTOCOLS 276

CHARACTER-ORIENTED PROTOCOLS 276

Binary Synchronous Communication (BSC) 277

BSC Frames 278

Data Transparency 281

BIT-ORIENTED PROTOCOLS 282

HDLC 284

Frames 286

More about Frames 291

Link Access Procedures 300

SUMMARY 300

PRACTICE SET 302

Multiple Choice 302

Chapter 12: LOCAL AREA NETWORKS 307

PROJECT 802 307

IEEE 802.1 309

LLC 309

MAC 309

Protocol Data Unit (PDU) 309

ETHERNET 310

Access Method: CSMA/CD 311

Addressing 312

Electrical Specification 312

Frame Format 312

Implementation 314

TOKEN BUS 319

TOKEN RING 319

Access Method: Token Passing 319

Addressing 321

Electrical Specification 322

Frame Formats 322

Implementation 325

FDDI 327

Access Method: Token Passing 327

Addressing 330

Electrical Specification 330

Frame Format 332

Implementation: Physical Medium Dependent (PMD) Layer 333

COMPARISON 335

SUMMARY 335

PRACTICE SET 337

Multiple Choice 337

Exercises 341

Chapter 13: METROPOLITAN AREA NETWORKS 343

IEEE 802.6 343

Access Method: Dual Bus 343

Distributed Queues 346

Ring Configuration 348

Operation: DQDB Layers 349

Implementation 350

SMDS 351

Connection and Access 352

SUMMARY 353

PRACTICE SET 354

Multiple Choice 354

Chapter 14: SWITCHING: A NETWORK LAYER FUNCTION 357

CIRCUIT SWITCHING 358

Space-Division Switches 359

Time-Division Switches 362

Space- and Time-Division Switching Combinations 364

PACKET SWITCHING 365

Datagram Approach 366

Virtual Circuit Approach 367

MESSAGE SWITCHING 369

NETWORK LAYER 370

Connection-Oriented and Connectionless Services 370

SUMMARY 371

PRACTICE SET 372

Multiple Choice 372

Exercises 374

Chapter 15: INTEGRATED SERVICES DIGITAL NETWORK (ISDN) 375

SERVICES 375

Bearer Services 375

Teleservices 376

Supplementary Services 376

HISTORY 376

Voice Communication over Analog Networks 376

Voice and Data Communication over Analog Networks 377

Analog and Digital Services to Subscribers 377

Integrated Digital Network (IDN) 378

Integrated Services Digital Network (ISDN) 379

SUBSCRIBER ACCESS TO THE ISDN 380

B Channels 380

D Channels 380

H Channels 381

User Interfaces 381

Functional Grouping 383

Reference Points 385

THE ISDN LAYERS 385

Physical Layer 387

Data Link Laver 392

Network Layer 394

BROADBAND ISDN 398

Services 399

Physical Specifications 400

SUMMARY 401

PRACTICE SET 403

Multiple Choice 403

Chapter 16: X.25 409

X.25 LAYERS 409

Physical Layer 410

Data Link Layer 410

Network Laver 410

PACKET LAYER PROTOCOL 411

Information Packets 411

Control Packets 413

Complete Packet Sequence 417

Virtual Channel ID Numbers 418

SUMMARY 419

PRACTICE SET 419

Multiple Choice 419

Exercises 421

Chapter 17: FRAME RELAY 423

FRAME RELAY LAYERS 424

Physical Layer 424

Data Link Laver 425

FRAME RELAY OPERATION 426

Relay 427

Switching 427

Congestion Control 429

IMPLEMENTATION 429

SUMMARY 430

PRACTICE SET 431

Multiple Choice 431

Exercises 432

Chapter 18: *ATM* 433

DESIGN GOALS 433

Packet Networks 434

Mixed Network Traffic 434

Cell Networks 435

Additional Advantages of ATM 439

ATM TOPOLOGY 440

ATM PROTOCOL ARCHITECTURE 442

Application Adaptation Layer (AAL) 442

ATM Layer 449

Physical Layer 453

SUMMARY 453

PRACTICE SET 454

Multiple Choice 454

Chapter 19: SONET/SDH 459

SYNCHRONOUS TRANSPORT SIGNALS 460

PHYSICAL CONFIGURATION 461

SONET Devices 461

Sections, Lines, and Paths 462

SONET LAYERS 462

Photonic Laver 462

Section Layer 462

Line Layer 463

Path Layer 463

Device-Layer Relationships 463

THE SONET FRAME 463

Frame Format 464

Section Overhead 466

Line Overhead 466

Path Overhead 468

Virtual Tributaries 469

Types of VTs 469

MULTIPLEXING STS FRAMES 470

SUMMARY 471

PRACTICE SET 472

Multiple Choice 472

Exercises 475

Chapter 20: NETWORKING AND INTERNETWORKING DEVICES 477

REPEATERS 478

Not an Amplifier 480

BRIDGES 480

Types of Bridges 482

ROUTERS 483

Routing Concepts 485

GATEWAYS 487

ROUTING ALGORITHMS 487

Distance Vector Routing 488

Link State Routing 495

SUMMARY 502

PRACTICE SET 503

Multiple Choice 503

Exercises 506

Chapter 21: TRANSPORT LAYER 507

DUTIES OF THE TRANSPORT LAYER 508

End-to-End Delivery 508

Addressing 509

Reliable Delivery 510

Flow Control 513
Multiplexing 514

CONNECTION 516

Connection Establishment 516
Connection Termination 517

THE OSI TRANSPORT PROTOCOL 517

Transport Classes 517

Transport Protocol Data Unit (TPDU) 518

Connection-Oriented and Connectionless Services 519

SUMMARY 520

PRACTICE SET 521

Multiple Choice 521

Exercises 523

Chapter 22: UPPER OSI LAYERS 525

SESSION LAYER 525

Session and Transport Interaction 526

Synchronization Points 527

Session Protocol Data Unit 528

PRESENTATION LAYER 529

Translation 529

Encryption/Decryption 531

Authentication 534

Data Compression 536

APPLICATION LAYER 538

Message Handling System (MHS) 538

File Transfer, Access, and Management (FTAM) 540

Virtual Terminal (VT) 541

Directory Services (DS) 542

Common Management Information Protocol (CMIP) 543

SUMMARY 545

PRACTICE SET 546

Multiple Choice 546

Exercises 548

Chapter 23: TCP/IP 549

OVERVIEW OF TCP/IP 549

TCP/IP and the Internet 549

TCP/IP and OSI 550

Encapsulation 550

NETWORK LAYER 551

Internetwork Protocol (IP) 551

Other Protocols in the Network Layer 556

TRANSPORT LAYER 558

User Datagram Protocol (UDP) 559

Transmission Control Protocol (TCP) 559

APPLICATION LAYER 562

Domain Name System (DNS) 563

TELNET 564

File Transfer Protocols 566

File Access Using NFS and RPC 568

Electronic Mail: SMTP 569

Simple Network Management Protocol (SNMP) 571

Gopher 573 Archie 573

Veronica 573

Wide Area Information Service (WAIS) 574

Hypertext Transfer Protocol (HTTP) 574

WORLD WIDE WEB (WWW) 574

Uniform Resource Locator (URL) 575

Browser Architecture 577

SUMMARY 581

PRACTICE SET 583

Multiple Choice 583

Exercises 590

Appendix A: ASCII AND EBCDIC CODES 593

Appendix B: NUMBERING SYSTEMS AND

TRANSFORMATION 595

Appendix C: REPRESENTATION OF BINARY NUMBERS 607

Appendix D: ONE'S COMPLEMENT ARITHMETIC FOR

CHECKSUM CALCULATION 615

Appendix E: FOURIER ANALYSIS 619

Appendix F: HARDWARE EQUIPMENT FOR

ERROR DETECTION 623

Appendix G: HUFFMAN CODING 631

Appendix H: IP VERSION 6 639

ACRONYMS 643

GLOSSARY 647

REFERENCES 675

INDEX 677