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Chapter 1

Introduction

1.1 Motivation for Studying Optimization

There exist an enormous variety of activities in the everyday world which
can usecfully be described as systems, from actual physical systems such as
chemical processing plants to theoretical entities such as economic models.
The efficient operation of these systems often requires an attempt at the
optimization of various indices which measure the performance of the system.
Sometimes these indices are quantified and represented as algebraic vari-
ables. Then values for these variables must be found which maximize the
gain or profit of the system and minimize the waste or loss. The variables
are assumed to be dependent upon a number of factors. Some of these
factors are often under the control, or partial control, of the analyst respon-
sible for the performance of the system.

The process of attempting to manage the limited resources of a system
can usually be divided into six phases: (i) mathematical analysis of the
system; (ii) construction of a mathematical model which reflects the impor-
tant aspects of the system; (iii) validation of the model; (iv) manipulation
of the model to produce a satisfactory, if not optimal, solution to the model;
(v) implementation of the solution selected; and (vi) the introduction of a
strategy which monitors the performance of the system after implementation.
It is with the fourth phase, the manipulation of the model, that the theory
of optimization is concerned. The other phases are very important in the
management of any system and will probably require greater total effort
than the optimization phase. However, in the presentation of optimization -
theory here it will be assumed that the other phases have been, or will be,
carried out. Because the theory of optimization provides this link in the
chain of systems management it is an important body of mathematical
knowledge.
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1.2 The Scope of Optimization

One of the most important tools of optimization is linear programming. A
linear programming problem is specified by a linear, multivariable function
which is to be optimized (maximized or minimized) subject to a number of
linear constraints. The mathematician G. B. Dantzig (1963) developed an
algorithm called the simplex method to solve problems of this type. The
original simplex method has been modified into an efficient algorithm to
solve large linear programming problems by computer. Problems from a
wide variety of fields of human endeavor can be formulated and solved by
means of linear programming. Resource allocation problems in government
plarining, network analysis for urban and regional planning, production
planning problems in industry, and the management of transportation dis-
tribution systems are just a few. Thus linear programming is one of the
successes of modern optimization theory.

. Integer programming is concerned with the solution of optimization prob-
lems in which at least some of the variables must assume only integer values.
In this book only integer programming problems in which all terms are
linear will be covered. This subtopic is often called integer linear program-
ming. However, because little is known about how to solve nonlinear integer
programming problems, the word linear will be assumed here for all terms.
Many problems of a combinatorial nature can be formulated in terms of
integer programming. Practical examples include facility location, job se-
quencing in production lines, assembly line balancing, matching problems,
inventory control, and machine replacement. One of the important methods
for solving these problems, due to R. E. Gomory (1958), is based in part on
the simplex method mentioned earlier. Another approach is of a combina-
torial nature and involves reducing the original problem to smaller, hope-
fully easier, problems and partitioning the set of possible solutions into
smaller subsets which can be analyzed more easily. This approach is called
branch and bound or branch and backtrack. Two of the important contri-
butions to this approach have been by Balas (1965) and Dakin (1965).
Although a number of improvements have been made to all these methods,
there does not exist as yet a relatively efficient method for solving realistically-
sized integer programming problems.

Another class of problems involves the management of a network. Prob-
lems in traffic flow, communications, the distribution of goods, and project
scheduling are often of this type. Many of these problems can be solved by
the methods mentioned previously—linear or integer programming. How-
ever because these problems usually have a special structure, more efficient
specialized techniques have been developed for their solution. Outstanding
contributions have beeri made in this field by Ford and Fulkerson (1962).
They developed the labelling method for maximizing the flow of a commodity
through a network and the out-of-kilter method for minimizing the cost of
transporting a given quantity of a commodity through a network. These
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ideas can be combined with those of integer programming to analyze a
whole host of practical network problems.

Some problems can be decomposed into parts, the decision processes of
which are then optimized. In some instances it is possible to attain the opti-
mum for the original problem solely by discovering how to optimize these
constituent parts. This decomposition process is very powerful, as it allows
one to solve a series of smaller, easier problems rather than one large,
intractable problem. Systems for which this approach will yield a valid
optimum are called serial multistage systems. One of the best known tech-
niques to attack such problems was named dynamic programming by the
mathematician who developed it, R. E. Bellman (1957). Serial multistage
systems are characterized by a process which is performed in stages, such
as manufacturing processes. Rather than attempting to optimize some
performance measure by looking at the problem as a whole, dynamic
programming optimizes one stage at a time to produce an optimal set of
decisions for the whole process. Problems from all sorts of areas, such as
capital budgeting, machine reliability, and network analysis, can be viewed
as serial multistage systems. Thus dynamic programming has wide applica-
bility. ‘ :

In the formulation of many optimization problems the assumption of
linearity cannot be made, as it was in the case of linear programming. There
do not exist general procedures for nonlinear problems. A large number of
specialized algorithms have been developed to treat special cases. Many of
these procedures are based on the mathematical theory concerned with
analysing the structure of such problems. This theory is usually termed
classical optimization. One of the outstanding modern contributions to this
theory has been made by Kuhn and Tucker (1951) who developed what are
known as the Kuhn-Tucker conditions.

The collection of techniques developed from this theory is called nonlinear
programming. Despite the fact that many nonlinear programming problems
are very difficult to solve, there are a number of practical problems which
can be formulated nonlinearly and solved by existing methods. These
izclude the design of such entities as electrical transformers, chemical
processes, vapour condensors, microwave matching networks, gallium-
arsenic light sources, digital filters, and also problems concerning maximum
likelihood estimation and optimal parts replacement.

1.3 Optimization as a Branch of Mathematics

It can be seen from the previous section that the theory of optimization is
mathematical in nature. Typically it involves the maximization or minimi-
zation of a function (sometimes unknown) which represents the performance
of some system. This is carried out by the finding of values for those variables
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(which are both quantifiable and controllable) which cause the function to
vield an optimal value. A knowledge of linear algebra and differential
myltivariable calculus is required in order to understand how the algorithms
operate. A sound knowledge of analysis is necessary for an understanding
of the theory.

Some of the problems of optimization theory can be solved by the classical
techniques of advanced calculus—such as Jacobian methods and the use
of Lagrange multipliers. However, most optimization problems do not
satisfy the conditions necessary for solution in this manner. Of the remaining
problems many, although amenable to the classical techniques, are solved
more efficiently by methods designed for the purpose. Throughout recorded
mathematical history a collection of such techniques has been built up.
Some have been forgotten and reinvented, others received little attention
until modern-day computers made them feasible.

The bulk of the material of the subject is of recent origin because many
of the problems, such as traffic flow, are-only now of concern and also
because of the large numbers of people now available to analyze such
problems. When the material is catalogued into a meaningful whole the
result is a new branch of applied mathematics.

1.4 The History of Optimization

One of the first recorded instances of optimization theory concerns the
finding of a geometric curve of given length which will, together with a
straight line, enclose the largest possible area. Archimedes conjectured
correctly that the optimal curve is a semicircle. Some of the early results are
in the form of principles which attempt to describe and explain natural
phenomena. One of the earliest examples was presented approximately
100 years after Archimedes’ conjecture. It was formulated by Heron of
Alexandria in C. 100 B.C,, who postulated that light always travels by the
shortest path. It was not until 1657 that Fermat correctly generalized this
postulate by stating that light always travels by the path which incurs least
time rather than least distance.

The fundamental problem of another branch of optimization is concerned
with the choosing of a function that minimizes certain functionals. (A
functional is a special type of function whose domain is a set of real-valued
functions.) Two problems of this nature were known at the time of Newton.
The first involves finding a curve such that the solid of revolution created
by rotating the curve about a line through its endpoints causes the minimum
resistance when this solid is moved through the air at constant velocity.
The second problem is called the brachistochrone. In this problem two points
in space are given. One wishes to find the shape of a curve joining the two
points, such that a frictionless bead travelling on the curve from one point
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to the other will cover the journey in least time. This problem was posed as a
competiton by John Bernoulli in 1696. The problem was successfully solved
by Bernoulli himself, de I'Hapital, Leibniz, and Newton (who took less than
a day!). Problems such as these led Euler to develop t* ideas involved into
a systematic discipline which he called the calculus of variations in 1766,
Also at the time of Euler many laws of mechanics were first formulated in
terms of principles of optimality (examples are the least action principle of -
Maupertuis, the principle of least restraint of Gauss, and Lagrange’s kinetic
principle). Lagrange and (Gauss both made other contributions. In 1760
Lagrange invented a method for solving optimization problems that had
equality constraints using his Lagrange multipliers. Lagrange transforma-
tions are, among other uses, employed to examine the behaviour of a function
in the neighbourhood of a suspected optimum. And Gauss, who made
_contributions to many fields, developed the method of least squares curve
fitting which is of interest to those working in optimization as well as
statistics.
1n 1834 W. R. Hamilton developed a set of functions called Hamiltonians
which were used in the statement of a principle of optimality that unified
what was known of optics and mechanics at that time. In 1875 J. W. Gibbs
presented a further prineiple of optimality concerned with the equilibrium
of a thermodynamical system. Between that time and the present there have
been increasing numbers of contributions each year. Among the most out-
standing recent achievements, the works of Dantzig and of Bellman have
already been mentioned. Another is the work of Pontryagin (1962) and others,
who developed the maximum principle which is used to solve problems in
the theory of optimal control.

1.5 Basic Concepts of Optimization

This section introduces some of the basic concepts of optimization. Each
concept is illustrated by means of the following example.
The problem is to:

Maximize: Xo = f(X) = f(x;,x3) (1.1)
subject to: h(X)<0 (1.2}
x;, =0 (1.3)
X; 2 0. (1.4)

This is a typical problem in the theory of optimization—the maximization
(or minimization) of a real-valued function of a number of real variables
(sometimes just a single variable) subject to a number of constraints (some-
times the number is zero). The special case of functionals, where the domain
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of the function is a set of functions, wili be dealt with under the section on the
calculus of variations in Chapter 7.

The function f is called the objective function. The set of constraints, in
this case a set of inequalities, is called the constraint set. The problem is to
find real values for x, and x,, satisfying (1.2), (1.3) and (1.4), which when
inserted in (1.1) will cause f(x;, x,) to take on a value no less than that for
any other such x,, x, pair. Hence x, and x, are called independent variables.

Three objective function cogtours are present in Figure 1.1. The objective
function has the same value at all points on each line, so that thé contours
can be likened to isobar lines on a weather map. Thus it is not hard to see

X = 0.25

—

X2
©, 1}

©, 0y x

Figure 1.1. Objective function contours and the feasible region for an optimization
problem.
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that the solution to the problem is:
X* = (x1,x3) = (1,0).

This means that
f(X® = fiX) forall XeS. (1.5)

‘When a solution X* € S satisfies (1.5) it is called the optimal solution, and
in this case the maximal solution. If the symbol in (1.5) were “<”, X* would
be called the minimal solution. Also, f(X*) is called the optimum and is
written x§.

On looking at Figure 1.1 it can be seen that greater values for f could
be obtained by choosing certain x,, x, outside S. Any ordered pair of real
numbers is called a solution to the problem and the corresponding value of
f is called the value of the solution. A solution X such that

XesS
is called a feasible solution.
Let us examine which x,, x, pairs are likely candidates to achieve this
maximization. In Figure 1.1 the set of points which satisfy this constraint
set has been shaded. The set is defined as S:

§S= {(xbxl): h(xx,xz) < O’ Xy 2 O) X 2 0}

Such a set S for an optimization problem is often a connected region and
is called the feasible region.

Many optimization problems do not have unique optimal solutions. For
instance, suppose a fourth constraint

hy(x1,%2) <0 (1.6)

is added to the problem. The feasible region is shown in Figure 1.2. In this
case one of the boundaries of S coincides with an objective function contour.
Thus all points on that boundary represent maximum solutions.
However, if it exists the optimal value is always unique.
As another example of a problem which does not have an optimal solution,
suppose (1.2) is replaced by: -
- h(X) <0 1.7

On examining Figure 1.2, it becomes apparent that (1.7) does not hold for

\X* =(1,0), hence X* ¢ S. In fact, there is no solution which will satisfy
(L.5), as points successively closer to (but a positive distance away from)
(1,0) correspond to successively larger x, values. To recognize this situation
we called f(X')an upper bound for f under S if

fX) = f(X) forall XesS. (1.8)

Also f(X') is called a least upper bound or supremum for f under S if f(X')
is an upper bound for f under S and

f(X') < f(X) for all upper bounds f(X) for f under S. (1.9)
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Xy

Figure 1.2. Feasible region for an optimization problem where one constraint is
identical with an objective function contour.

Most of the preceding ideas have been concerned with maximization. Of
course many optimization problems have the aim of minimization and each
of the above concepts has a minimization counterpart. The sense of the
inequalities in (1.7), (1.8), and (1.9) need to be reversed for minimization.
The counterparts of the terms are:

minimum maximum

lower bound upper bound
greatest lower bound least upper bound
infimum supremum
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Throughout the remainder of book we shall deal mainly with maximi-
zation problems only, because of the following theorem.

Theorem 1.1. If X* is the optimal solution to problem P1:
Maximize: f(X),
subject to: g/(X) =0, j=1,2,...,m
h(X)<0, j=12...,k
then X* is the optimal solution to problem P2:
Minimize: —f(X),
subject to: gX)=0, j=L12...,m
h(X)<0, j=12,...,k

PROOF. Because X* is the optimal solution for P1, it is a feasible solution
for P1, hence :
gi(X*) =0, j=12...,m

h(X¥) <0, j=1,2....k
Hence X* is a feasible solution for P2.
Also,
f(X*) = f(X) forallXeS
where

S={X:gX)=0,j=12,. .., mh(X)<0,j=12...,k}

Hence
—f(X*) < —f(X) forall X eS.

Hence X* is optimal for P2. O

This result allows us to solve any minimization problem by multiplying
its objective function by — 1 and solving a maximization problem under the
same constraints. Of course we could have just as easily proven another
theorem concerning the conversion of any maximization problem into an
equivalent minimization problem.



Chapter 2

Linear Programming

2.1 Introduction

This present chapter is concerned with a most important area of optimiza-
tion, in which the objective function and all the constraints are linear. Prob-
lems in which this is not the case fall in the nonlinear programming category
and will be covered in Chapters 7 and 8.

There are a large number of real problems that can be either formulated
as linear programming (L.P.) problems or formulated as models which can
be successfully approximated by linear programming. Relatively small prob-
lems can readily be solved by hand, as will be explained later in the chapter.
Large problems can be solved by very efficient computer programs. The
mathematical structyre of L.P. allows important questions to be answered
concerning the sensitivity of the optimum to data changes. L.P. is also used
as a subroutine in the solving of more complex problems in nonlinear and
integer programming.

This chapter will begin by introducing the basic ideas of L.P. with a sim-
ple example and then generalize. A very efficient method for solving L.P.
problems, the simplex method, will be developed and it will be shown how
the method deals with the different types of complications that can arise.
Next the idea of a dual problem is introduced with a view to analyzing the
behaviour of the optimal L.P. solution when the problem is changed. This
probing is called postoptimal analysis. Algorithms for special L.P. problems
will also be looked at.

10
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2.2 A Simple L.P. Problem

A coal mining company producing both lignite and anthracite finds itself in
the happy state of being able to sell all the coal it can process. The present
profit is $4.00 and $3.00 (in hundreds of dollars) for a ton of lignite and an-
thracite, respectively. However, because of various restrictions the cutting
machine at the coal face, the screens, and the washing plant can be operated
for no more than 12, 10, and 8 hours per day, respectively. It requires 3, 3,
and 4 hours for the cutting machine, the screens, and the washing plant, re-
spectively, to process one ton of lignite. It requires 4, 3, and 2 hours for the
cutting machine, the screens, and the washing plant, respectively, to process
one ton of anthracite. The problem is to decide how many tons of each type
of coal will be produced so as to maximize daily profits.

In order to solve this problem we need to express it in mathematical terms.
Toward this end the decision (independent) variables are defined as follows.
Let

x, = the daily production of lignite in tons,

x, = the daily production of anthracite in tons,

Xxo = the profit gained by producing x, and x, tons of lignite and anthra-
cite, respectively. '

If x; tons of lignite are produced each day, and the profit per ton is $4.00
then the daily profit for lignite is

$4x,.

Similarly, if x, tons of anthracite are produced each day with a profit of $3.00
per ton, then the daily profit is

$3x,.

Thus for a daily production schedule of x, and x, tons of lignite and anthra-
cite, the total daily profit, in dollars, is:

4x1 + 3x2 (=XD).

It is this expression whose value we must maximize.

We can formulate similar expressions for the constraints of time on the
various machines. For instance, consider the cutting operation. If x, tons of
lignite are produced each day and each ton of lignite requires 3 hours’ cut-
ting time, then-the total cutting time required to produce those x, tons of
lignite is ‘

3x, hours.

Similarly, if x, tons of anthracite are produced each day with each ton taking
4 hours to cut, the total cutting time required to produce those x, tons of
anthracite is

4x, hours.
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Thus the total cutting time for x, tons of lignite and x, tons of anthracite is
Ix; + 4x,.

But only 12 hours’ cutting time are available each day. Hence we have the
constraint:
3x; +4x; < 12

We can formulate similar constraints for the screening and washing times.
This has been done below. The problem can now be stated mathematically:

Maximize: 4x, + 3x, = X 2.1
subject to: 3x; +4x, <12 (2.2)
3x; +3x, <10 ’ (2.3)

4x, + 2x, <8 (2.4

X, =0 (2.5)

x5, 2 0. (2.6)

The above expressions are now explained:. .

(2.1): The objective is to maximize daily profit.

(2.2): A maximum of 12 hours cutting time is available each day.

(2.3): A maximum of 10 hours screening time is available each day.

(2.4): A maximum of 8 hours washing time is available each day.
(2.5), (2.6). A nonnegative amount of each type of coal must be produced.

Because only two independent variables are present it is possible to solve
the problem graphically. This can be achieved by first plotting the constraints
(2.2)~(2.6) in two-dimensional space. The origin can be used to test which
half-plane created by each constraint contains feasible points. The feasible
region is shown in Figure 2.1. It can be seen that constraint (2.3) is redundant,
in the sense that it does not define part of the boundary of the feasible region.
The arrow on constraint {2.3) denotes the feasible half-plane defined by the
constraint. The problem now becomes that of selecting the point in the fea-
sible region which corresponds to the maximum objective function value —
the optimum. This point is found by setting the objective function equal to a
number of values and plotting the resulting lines. Clearly, the maximum

value corresponds to point (£,4%). Thus the optimal solution is

=% and x¥ =12,
with value 10%. Hence the best profit the company can hope to make is $1,040
by producing 0.8 tons of lignite and 2.4 tons of anthracite per day.

When more than two independent variables are present, linear programs
are solved by analytic methods, as it is difficult to draw in three dimensions
and impossible in higher dimensions. The next section introduces the general
problem.
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x;

2.2

\
\
\
\
/ )
\
2 / N @3)
\

\
©0 g0 N 108 X,
(2.9)

Figure 2.1. Graphical solution to the L.P. example problem.

&

2.3 The General L.P. Problem

The problem of (2.1)—(2.6) can be generalized as follows:
Maximize: X + COXad o+ CX, =X
subject to: A Xy + @paxa + 0+ ax, < by

dg1 Xy + Ay2X9 + -+ Ay X, sz

A1 X1 +am2x2+"'+amn‘xnsbm
x; > 0, i=12...,n

Of course this problem can be stated in matrix form:
Maximize:  C'X
subject to: AX < B,
X >0,



