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CHAPTER 1

Sets, Functions, and Integers

ALGEBRA starts as the art of manipulating sums, products, and powers of
numbers. The rules for these manipulations hold for all numbers, so the
manipulations may be carried out with letters standing for the numbers. It
then appears that the same rules hold for various different sorts of numbers,
rational, real, or complex, and that the rules for multiplication even apply to
things such as transformations which are not numbers at all. An algebraic
system, as we will study it, is thus a set of elements of any sort on which
functions such as addition and multiplication operate, provided only that
these operations satisfy certain basic, rules. The rules for multiplication and
inverse are the axioms for a “group”, those for addition, subtraction, and
multiplication are the axiomis for a “ring”, and the functions mapping one
system to another are the “morphisms”. This chapter starts with the neces-
sary ideas about sets, functions, and relations, Then the natural numbers are
used to construct the integers and the integers modulo n, with their addition
and multiplication. This serves as an introduction to the notion of a mor-
phism from one algebraic system to another.

Many developments in algebra depend vitally upon defining the right
concept. When our presentation reaches any definition, the term being
defined is put in italics, as group, ring, field, and so on. However, terms little
used in the sequel as well as terminology alternative to that selected here are
put in quotation marks; thus “range” stands for codomain and “onto” for
surjective (see §2 below). . :

A reference such as Theorem 3 is to Theorem 3 of the current chapter,
while Theorem IL3 is to Theorem 3 of Chapter II. In like manner, Corollary
IV.52 refers to Corollary 2 of Theorem 5 of Chapter IV, and Equation
(VL11) to Equation (11) of Chapter V1. Within each Chapter, Theorems and
Propositions are numbered in a single series. More difficult exercises and
sections which may be omitted on first reading are denoted by an asterisk, *.

1. Sets

Intuitively, a “set” is any collection of elements, and a “function” is any

"~ rule which assigns to each element of one set a corresponding element of a

second set.
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Examples of sets abound: The set of all lines in the plane, the set Q of all
rational numbers, the set C of all complex numbers, the set Z of all integers
(positive, negative, or zero). Sets with only a finite number of different
elements may be described by listing all their elements, often indicated by
writing these elements between braces. Thus the set of all even integers
between 0 and 8, inclusive, may be exhibited as {0, 2, 4, 6, 8}, while the set
of all positive divisors of 6 is the set {1, 2, 3, 8}). The order in which the
elements of a set are listed is irrelevant: {1, 3,6,2}) = {1, 2, 3, 6)}.

More formally, “x € S” stands for “x is an element of the set S~ or
equivalently, “x is a member of the set S” or “x belongs to S”. Also, x & S
means that x is not an element of S. Since a set is completely determined by
giving its elements, two sets S and T are equal if and only if they have the
same elements; in symbols:

$S=T & Forallx,xESifan(‘ionlyifxET. (1)

(Here the two-pointed double.arrow “e " stands for “if and only if”.) Also, S
is a subset of T (or, is included in T) when every element of § is an element
of T, so that, if x € S, then x € T; in symbols:

SCT « Foralr,xeS=x€T

(Here, on the right, the one-pointed double arrow “=s” stands for “im-
plies”) By this definition, S C T and T c U imply S C U, while the
equality of sets, as defined above, may be rewritten as

S=T & SCcTandTCS.

A set § is empty if it has no elements! By the equality rule (1), any two
empty sets are equal: Hence, we speak of the empty set, written &. It is also
called the null set or the void set; it is a subset of every set. Also, S is a
proper subset of a set U when S C Ubut S = Jand S # U. :
A particular subset of a given set U is often described as the set of all
those elements x in U which have a specified property. Thus the subset of
those complex numbers z such that z2 = — 1 is written {2]z € C and
z* = — 1}, while the formulas

E={zxlx€Zandx =2y forsomey €Z}, N = {a|x €Zandx > 0)

describe the set E of all even ‘integers and the set N of all nonnegative
integers, respectively. Different properties may describe the same subset;

us
{nln€Zand0<n<1} and (nn€Zandn®= -1)

both describe the empty set &.
Next we consider the operations of intersection and union on sets. If R
and S are given sets, their intersection R N S is the set of all elements
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common to R and S:
RN S={x|xERaf1dx€S},

'~ while .ﬂleir union R U S is the set of all elements which belong either to R

or to S (or to both):
RuS={xjx€ Rorx € S}.
These definitions may be stated thus:

x&E(RNS) & rERandx € S,

tE(RUS) © xERor x€ 8.

This display correlates the operations of intersection and union with the
logical connectives “and” and “or”. The corresponding correlate of “not” is
the operation of “complement”: If S is a subset of U, the complement S’ of S
in U is the set of all those elements of U which do not belong to S:

S’={xlxEVUandx&S)}.

For example, for the sets E and N above, E N N is the set of even
nonnegative integers, E U N the set of all integers except the negative odd
ones, while the complement E’ of E in Z s the set of all odd integers.

The operations of intersection, union, and complement satisfy various
“identities”, valid for arbitrary sets. A sample such identity is

RN{SuT)=(RNS)U(RNT), (2)

valid for any three sets R, S, and T. (This equation states that the operation
“intersection” is distributive over the operation “union”.) To prove this
statement, consider any element x. By the definitions of N and U above,

x€E[RN(SUT)] & xrERandx€SUT
< xE€Rand(xESorx€T).

For similar reasons,
*x€[(RNS)U(RNT)] & (x€ERandx €ES)or(x € Randx € T).

Now, in view of familiar properties of “and” and “or”, the two different
statements made about x at the right of the two displays above are logically
equivalent. Hence, the two sets in question have the same elements and
therefore are equal. In other words, this proof reduces property (2) of
intersection and union to an exactly corresponding property of the logical
connectives “and” and “or”.

A similar argument gives another distributive law,

Ru(SNnT)=(RuS)n(RUT). (3)
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Other algebraic properties of intersection, union, and complement will be
considered in the exercises in §3 below.

Two sets, R and S, ¥re called disjoint when R N S = 2.

Given a set U, the set P(U) of all subsets S of U is called the power set of
U; thus P(U) = (8|S C U}. For example, if U has two elements, it has four
different subsets which are the four elements of P(U). Explicitly, P({1, 2}) =
{{1. 2}, (1), {2}, D). Here & is the empty set (a subset of every set, as
above).

EXERCISES

1. For subsets R, S, and T of a set U, establish the following identities:
@RNS=SNR, RN(SNT)=(RNS)NT.
MRUS=SUR, RU(SUT)=(RUS)UT
() BRNSy=R'US, (RuUuSyY=R'NS.
dSN(SuUT =S8 Su(SNT)=S.

2. Show that any one of the three conditions S C T, SN T = S, and

S U T = T on the sets S and T implies both of the others.

3. FrSCcUschowthat SN S’ = FandSuU S’ = U.

4. List the elements of the sets P(P({1})) and P(P(P({1}))).

5. Show that a set of n elements has 2" different sub.ets.

8. If m < n, show that a set of n elements has (nl)/(n — m)i(m!)
different subsets of m elements each, where m.=1 2 - . m,

2. Functions

A function f on a set S to a set T assigns to each element s of S an
element f(s) € T, as indicated by the notation

s+ f(s), s E€S.

The element f(s) may also be written as fs or f,, withdut parentheses; it is
the value of f at the argument s. The set S is called the domain of f, while T
is the codomain. The arrow notation

f:8-T or S —f> T
indicates that f is a function with domain § and codomain T. A function is
often called a “map” or a “transformation”.

To describe a particular function, one must specify its domain and its.
codomain, and write down its effect upon a typical (“variable™) element of
its domain. Thus the squaring function f:R — R for the set R of real numbers
may be described in any of the following ways: As the function f with
f(x) = x* for any real number x, or as’the function (—)2, where -— stands
for the argument, or as the function which sends each x € R to 12, or as the
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function given by the assignment x> 2* for x € R. We systematically use
the barred arrow to go from argument to value of a function and the straight
arrow S — T to go from domain to codomain.

Note that a letter such as f or g stands for a function, while an expression
such as f(x) or g(x) stands for a value of that function for an element x of its
domain. For example, in trigonometry the expression “sin x”stands for a
number, so we speak not of “the function sinx” but of the function
sin:R — R. By using a barred arrow, we can describe particular functions
without naming them as f or g; for example, x> 2* + 3x + 2 for x real
describes a function R — R.

Two functions f and g are equal (in symbols, f = g) when they have the
same domain, the same codomain, and the same value f(s) = g(s) for each
element s of this common domain. For example, the assignment x> x + 2
(add two) defines on the integers Z a function f:Z — Z; on the set R of real
numbers it also defines a function g:R — R; these are different functions
because they have different domains.

The image of g function f:S — T is the set f(s) of all values f(s) for s € S;
it is always a subset of the codomain of f.

For any set S, the identity function 15:S — S is that function s > s which
maps each element s of S onto itself. Different sets have different identity
functions. If S is a subset of U, the insertion i:S — U is that function on § to
U which assigns'to each element of S the same element, now in U. Note that
“insertion” is a function S — U and “inclusion” a relation S C U; every
inclusion relation gjves rise to an insertion function. ‘

The composite f o g = fg of two functions is the function obtained by

_ applying them in succession; first g, then f—provided this makes sense; that

is, provided the domain of f is the codomain of g. More formally, given the
functions :

' g: RS, f:S->T,
their composite is the funchonf o g:R — T with values given by

(f  g)(r) = f(g(r)), allr € R. (4)
This definition may be visualized by the “mapping diagram” displayed

below:
f-og T
N /
S.

To go from the set R directly to the set T by the composite f © g is the same
as going through § in two steps, the first by g and the second by f. We also
express this fact by saying: This triangular diagram “commutes”.

R
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Composition of functions obeys the

Associative law:  (feg)oh=fo(g°h),

Wwhenever the composites involved are defined. This is obvious intuitively;
both (f e g) e h and f o (g ° h) have the effect of applying first h, then g,
and finally f, in that order. Formally, given h:P — R, g:R — S,and f:S - T,
both triple composites (f > g) ° h and f > (g ° h) are functions on P to T,
while the first composite assigns to each p € P the value

\
[(fe)h] P(f;h(fg)(hp) f-—g-f( g(hp)) ;f((gh)r’)ﬂ;) [fieh) ]1ps

here each step depends on applying the definition (4) of composition to the
composite indicated below the equality symbol for that step. By the defini-
tion of equality for functions, this proves the associative law (fg)h = f(gh):
P — T. Note that here (and often later) it is convenient to omit the symbol
“°”inf o g and the parentheses in h(p) or (gh)p.

Under composition each function f:S — T obeys the

Identity law:  folg=f=1;f:S>T.

To prove the first equality, note by (4) that (flg)s = f(l5s) = fs for all
s € S;-hence, flg = f, by the definition of equality for functions. The
second equality is proved similarly.

A function r:S — T is said to be a restriction of a function f:U — V when
Sc U, T C V,and 1(s) = f(s) for each s € S. (One also then says that f is
an extension of the function r.) For example, given a subset S c U, the
insertion i:S — U is a restriction of the identity 1,,:U — U.

Certain useful special types of functions will now be defined.

A function f:S — T is injective or an injection when s, # s, in S implies
fsy # fsy in T; that is, when f. carries distinct elements of its domain to
distinct elements of its codomain. For example, every insertion is an injec-
tion. A function h:S — T is surjective or a surjection when its image is the
whole codomain T; that is, when to each ¢t € T there exists at least one
s € S with hs = ¢t. Finally, a bijection b:S — T is a function which is both
an injection and a surjection; thus b is bijective if and only if to each t € T
there is exactly one element s € S with bs = t. The notation =, as in
b:S = T, indicates that b & a bijection of S to T.

For example, among the functions Z — Z, the function n—>(—n) is a
bijection, the function n > 2n is an injection but not a surjection, and the
function n > n? is neither an injection nor a surjection.

Again, for example, if R” is the set of all nonnegative real numbers, the
squaring function g:R — R* given by g(x) = x® is surjective, because every
nonnegative real is the square of some real number. However, the squaring
function f:R — R with f(x) = x* and codomain all the real numbers is not

- —d -t

T1Ta
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surjective. These two squaring functions (though they have the same values)
count as different functions because they have different codomains: Whether
or not a function is a surjection depends on its codomain.

There is another parallel terminology for these ideas:

Injéction S —» T = “one-one” map of S “into” T;
Surjection S » T = mapof S onto T;

Bijection S— T = one-one mapof$ onto T,

or, in the last case, a “one-one correspondence” of S to T. The older
terminology (that to the right) will not be used in this book. :

Any function f can be written as a composite f = g  h, where g is
injective and h surjective. Indeed, if f:S — T has image U C T, its restric-
tion r:S — U is a surjection, the insertion i:U — T is an injection, and f itself
is the composite f = i o r.

Certain functions have “inverses”. Suppose that g:T - S and f:S —» T, so
that the composite f © g is defined. If this composite is the identity 11 =
feog call f a left inverse of g and g a right inverse of f. When the
compogites in both orders are identities, so that feg=1rand g ° =1
call f a two-sided inverse of g (and hence g a two-sided inverse of f).

THEOREM 1. A function with non-empty domain is an injection if and
only if it has a left inverse. A function is a surjection if and only if it has a
right inverse. _ :

Proof: Suppose first that g:T — S has a left inverse f:S —» T. Then
fo =1z, so g(t)) = g(t,) implies ¢, = fg(t;)) = fg(ts) = t5. Therefore, g is
injective. Conversely, suppose that g: T — § is injective with domain T # J;
pick some t, € T. Since g is injective, there is to each s € § at most one ¢
with s = g(t); hence, a function f:S — T is defined by

f(s) = that ¢ with g(¢) = s, when s € image ( g),

= 1o otherwise.

This function f sends each g(t) “back where it came from”; so f(g(t)) = ¢ for
every t. This states that f o g = 1,, so f is the desired left inverse for g.
Note, however, that an injection g which is not a bijection will have in
general many left inverses; for example, one for each choice of the ¢, above.
It remains to prove the second half of the theorem, concerning surjections.
Suppose first that a function f:S — T has a right inverse g. Now 1, = fo g
means that ¢ = f(gt) for all ¢, so each t € T is in the image of f, and f is
surjective, as required. Conversely, suppose that f:§ — T is ‘surjective; this
means that to each ¢ € T there is at least one s € S with f(s) = t. Choose
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one such s for each ¢ and define g:T — S by letting g(t) be the chosen s.
Then f(g(t)) = ¢, so fog =1, and g is the desired right inverse. This
completes the proof of the theorem.

Note: This proof depends on making a (possibly) infinite number of choices (one
s €. with f(s) = ¢ for each t € T). In an axiomatic treatment of set theory, when
all the operations on sets are derived from a complete list of formal axioms on the
membership relation x € $, one of the axioms states that such a set of choices can be
made. This axiom, called the “axiom of choice”, states that to each set F whose
elements are disjoint nonvoid sets, there exists a set C such that each C N S, for
S € 9, has exactly one element. This axiom is equivalent to the assumption that
every surjection has a right inverse (Exercise 11).

CoroLiLARrY. The following properties of a function g:T — S are equiv-
alent:
() g is a bijection.
(ii) g has both a left inverse f and a right inverse h.
(iii) g has a two-sided inverse.

When this is the case, any two inverses (left, right, or two-sided) of g are
equal. This unique inverse of g (written g~") is bijective, and satisfies

(g =g (5)

Proof: First suppose that T % & and S # O, so the theorem can be used.
Since a bijection is both surjective and injective, the theorem at once gives
the equivalence of (i) and (ii). As for (iii), any two-sided inverse is trivially
both a left and a right inverse; thus (iii) implies (ii). Conversely, (ii) implies

f=feli=felgeW=(fogeh=1oh=h

which means that f = h is a two-sided inverse for g; hence (ii) gives (iii).
This argument also shows that any left inverse f of g must equal any right
inverse h; this is the next clause of the corollary. Finally, the inverse f = h
of g has g for a two-sided inverse, hence, it is also bijective and has g as its
inverse. This is the conclusion (5) of the corollary.

Only the (uninteresting) case of the corollary when T or § is empty
remains: Now a function g:& — S with empty domain must assign to each
element of J an element of S. But there are no elements of the empty set &,
so there is exactly one function & — § (namely, the one which involves no
assignments). If S 7 &, this function g is not a bijection; on the other hand,
there can be no function § — &, so g has no inverses of any sort. Thus the
corollary holds in this case. If S = &J it holds trivially, and hence in all cases.
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Note incidentally that the function g:&J — S with S # @ is injective but
has no left inverse. '

If g:T— S and k:S — R are both bijections, so is their composite k ° g; its
inverse is given by

(kog)™'=g ek~ (reverse the order). " (6)

Indeed, k™' o k = 1 and g ! o g = 1, so, by the associative law,

g kg =g lig=g g =1,

and g~ 'k ™" is a left inverse for kg. A similar calculation shows that it is also
a right inverse, hence the conclusion and (6).

Conventions on functions differ. In this discussion (as elsewhere in this
book), we have written each function to the left of its argument, as in
f(s)—and as is customary in analysis and topology. In consequence, the
composite f ° g has meant first apply g, then apply f. Functions may also be
written to the right of their arguments; then a composite has the opposite
meaning,

EXERCISES

L If § = {0, 1} is a set with exactly two elements, exhibit all functions
$ — S and classify them as injective, surjective, bijective, or none of these.

2. If f g is defined and both f and g have left inverses, show that
f ° g has a left inverse.

3. Show that the composite of two surjections is a surjection, and
similarly for injections.

4. If f is a bijection and f o g is defined, show that g is an injection if
and only if f o g'is, and a surjection if and only if f o g is one.

5. With N the set of nonnegative integers, show that the function
fiN— N given by n+> n* has no right inverse, and exhibit explicitly two
left inverses.

8. If f is injective, while both f o g and f g’ are defined, show that
feg=f-g=g=4¢g.

7. Find an analog of Exercise 6 for surjections.

8. For any function f:S —T with S &, construct a function h:T—$
with fhf = f. Deduce from this the results of Theorem 1.

9. Show that a function which has a unique right.inverse is necessarily

+ bijective.
10. Prove the Corollary of Theorem 1 without using the axiom of
choice.
*11. Assuming that every surjection has a right inverse, prove the axiom
of choice as stated in the text. (Hint: Let U be the union of all § € g,
define f:U — F by f(u) = S when u € S, and show f surjective.)



10 SETS, FUNCTIONS, AND INTRGERS [Ch. ]

3. Relations and Binary Operations

To treat functions of two variables or relations between two variables we
use “ordered pairs”. The ordered pair consisting of two elements, s and ¢, in
that order, is written (s, t). The equality of two ordered pairs is defined by
the rule

()=(st) & s=5 and t=1t.

The cartesian product S X T of two sets S and T is defined to be the set of
all ordered pairs (s, t) of elements from S and T, respectively. Thus

SXT={(st)]s€8 te€T}

Thus, if R is the set of all real numbers, R X R is the set of all ordered pairs
(x, y) of real numbers; in other words, R X R is just the set of all cartesian
coordinates of points in the plane (relative to given coordinate axes).

Any cartesian product S X T may be “projected” onto its “axes”, S and 7:

sZsxridr

These projections are the functions p and g defined by p(s,‘t)_= s and
q(s, t) = t, as in the diagram

T| d ‘DS X T

P

—8S.

We call this the cartesian-product diagram.

Note the bijection S X T = T X S given by (s, #) - (¢, $).

Ordered triples may be described in terms of ordered pairs. Given r, s, and
t, define the ordered triple (r, s, t) to be (r, (s, t)). Write R X § X T for the
set R X (§ X T) of all triples (r, (s, t)) for r ER, s € S, and t € T, and
note that the assignment (r, (s, t)) = ((r, s), £) is a bijection R X (S X T) =
(R X §) X T. Ordered “quadruples” (r,s, t, u) and the like are defined
similarly.

One may also form the cartesian product of functions. Given two. func-
tions u:§ — §" and v: T — T, their cartesian product is the function u X v:
§ X T— §" X T’ defined by (u X v)(s, t) = (us, vt).

The cartesian product is useful in describing the usual functions of two or
more arguments; a function F with two arguments s € S and t € T and with
values in a set W is a function

F:SXT->W

on the cartesian product S X T to the set W. Such a function F assigns to
each ordered pair (s, t) € S X T a value F(s, t) € W.
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