atl 3

BEFEhiE
MSWEN

(BAYIR - $R)

e

Programming

CONCEPTS & CONSTRUCTS

Ravi Sethi (AR
g M o, (%) Ravi Sethi #

N MW T W W ORR A A
China Machine Press \ A 4

Addison-Wesley

BrEthiae
WmEHSNE

IR - SR2R)

(

Rav

hi
%)

1 Set
e

&
=4

)

English reprint edition copyright © 2002 by PEARSON
EDUCATION NORTH ASIA LIMITED and CHINA MACHINE PRESS.

Programming Languages: Concepts and Constructs, Second
Edition by Ravi Sethi, Copyright © 1996 by AT&T.

All rights reserved.

Published by arrangement with Pearson Education, Inc.

AR EN A B X E Addison Wesley 2> sHEZRHLEE T H iR
HEPEAREARRERET, REHBREF, NMELUERTA
3. EHS RAGPALMERR ST .

REALERE , RS

KBRENREBIZS: BEF: 01-2001-5009
HHERSE (CIP) B8

BERIMES: BMaMEHW (SRR - HB28) / (X)) ER
(Sethi,R.) &. - Jba0: YU T HARE:, 20021

(ZHFRRBE)

P43 Programming Languages: Concepts and Constructs, 2E

ISBN 7-111-09594-4

.8 0.2 0.8BFEF-%FX V. TP312
b A B BECIPEIRE F (2001) 350885675

PUR Tk IR R BRR T EA#22S BB 100037)
HILRE:. & =E

EE B FBOR QR - FreBELRRITRRRT
20024E1 B 85 1R - 200243 A 20K ED R

880mm x 1230mm 1/32 - 20.875E13k

¥ 2 001-4 000/

EHr: 39.007T

RgAds, AER., BRI, 8T, BAETHRER

HhRE BYE

XZERXMURE, BoniKARAE MRS TE R EARRE, #85E
KIEBARRHE &N SEEUE T 2R E; BIERXHENES, #XE
E%E&ﬁﬁﬁ%#+§¢@%%%$\ﬁ@m%oﬁﬁﬂkWﬂﬁ*,%
H = R SHE Rk ERESE, FEVER T SR LI R A
B AR F M BRRILR E'ﬂlﬂiﬁﬁf‘thB'J ZWBEEE, DMUBRTHRG
WEE, BMIBE THEAMELD, REFEEAMNE, XER¥EE M, HIMEHT
AHER R T IRGR .

B, E2RFEEAXBH#ZT, RENHTEIELRRAE, &
WAFHFRBIREY . XXITEVET RALARAHMEEREVLIE, Rk
i MEBWBMMBRERTER LEEBELEE, EREFEBERLREM
B . Ak AREDHBLRT , XESEXSERELTEIRIYZRYIL
RPN ZBBM A TS EREEZA, B, sl#—#EMLEIT
BB R REHBEIEETE LN ZBRFRMESNER, tR5HRE
P, BREENAR—FKFHLHZ M,

PUBR D At EE U E B A A RIS R EIRE “HIRERIHERS .
199848, BRI TAEARE T #E . BERMIBEHM L, 2
TS 11, AT 5Prentice Hall, Addison-Wesley, McGraw-Hill,
Morgan Kaufmann%t REZ KA TR T REFAAEXR, NENBAEN
¥OE A4 P % Tanenbaum, Stroustrup, Kernighan, Jim Gray2$ kU4 %
B—H2 e, UL TTEHREAST HEIRER, fHEEEST. BIRK
B, KEALGENEE, WEERR T XEN BRSO,

“UEIBEAS WHRTAESAT BRI EENRHEH, BRGNS
EARET P EREEIE S, ARG EHIT TRIFMEROTHE; W
R EOHE S X HERETBNEER, ANESHARLBHPREE
FFo &%, TTEVREAE” BRBRTET AR, XSEBEEEEDR
MTRIFMOM, HEFEERRANERXZM NS EBE, ht—£H
H5ERBEITT TIREHERL,

’, /

{ ey
g fa/ l\f

MEE F R A TEEFBM SR ZEHRL, #eRXMESIMTEN
A BT R TN AEZE A — B B . AL, SEEARIRS HEM Y
NE, £ “EEHTF MEHMRMZTHER=EARZIINITENEM . SRR
HEWZDIREE, HIBOMNEEETMR “EIEREM" R ITREBREEAT,
Wi Fr R o “SHMFRBE" ; ENERZHEBEMTISEY HEIM
FAET B REEERM A, SEEHRFTH&ER. T RIEX=FEARH
BB, [Rafdh T S o AR 1R S5, REARIMEE T P EBY
Be. bR K%, WHERYE, BRI KRS, B8 k%, FBTHERYE. R
K, LIRS, PEBHERY . BRETIRY, BRLERE. FEA
RA%., SEEMSAMRKE, CaRE A%, PILKE., BREBIT Y,
MK B T¥8. PEEREBRSWTEAESO % BN E & K¥EM
MIVMEITEILN SN ESFEEAR “EREIFEHS", ARIIE
PR WA AR M

“ERFERPBE" RN E R LR ERENEMNEE, AEA
BRI ENEFEERITEN, £ EMIERHETIRA BN “SFESRAL”
WELE, RINBLEETX0EMEIRNEEE ., HEEREARNEM, H
P KE S EZBMLT. . Stanford, U.C. Berkley. C.M.U.S R 40 k¥ %
Ho ABMURE FRBFRGH, BIRSH. BERSG. BV RSH . 848
FE. SRFIE. BROTR. BB¥. BE5MNE. BHEESEARFETENL
LRI R LIEE, MASEASE—ANEAESRITEZF. 1
B=+HEMAZE, ANCHESHANLEEREM, EXSRPOE KL
KERSIZT, EELEETEVNE RN ERFPHBEEMAE,

PRHEE . ZROEM. —RKEE. PHROFKE. KENRE, X
HREFERNGERE THRENRIE, ARIMNIVEFRRERE, MMM
BERERBIMMEBX L BIRNERR . SHAHBREERININGER
FHRA ., FEAFRKBEBMAMEE RO TEREBRNERATFRE, &
IR AR BT

B FHB4: hzedu@hzbook.com
BREE: (010) 68995265

BFEsbht. EEWIERX AN EREELS
HRB RS : 100037

LEA
V2 &3
kI
ZR 4 8
J
#% B &
St E

ERIBESERS

(ek BT)

EN
& i
FIHE
I 7
B
748 i

R
B K

A
FrEF
F I
[&3k
HoE
N3
£ 8

% AL
X &
Fry
P w1 2%
=W
JEHHR
EXIE

% £ H
Z B R
wmAF
ERCES
EEX
BA A=

Preface

This book is designed for junior/senior level courses on programming lan-
guages. A minimal pre-requisite is an introductory programming course.
With supplementary readings, the book can also be used for graduate courses.

What’s New in this Edition?

Changes on the language scene and feedback from the use of the book have
prompted a thorough revision. Instructors liked the emphasis on concepts,
but asked that the concepts be illustrated using fewer languages. Meanwhile,
Modula-2 has faded, and C++ has taken off as a language for production pro-
gramming. Candidates for functional languages now include Standard ML,

Haskell, and Miranda.
The new edition has 15 chapters, three more than the first edition. The

role of the three new chapters is as follows:
¢ Data types like arrays, records, and pointers have a new chapter.
¢ Functional programming is introduced using ML in a new chapter.
¢ Language summaries appear in a final chapter.

Language description and syntax are now treated early, in Chapter 2.

Organization of this Book

The emphasis is on concepts and how they work together, rather than on lan-
guage features. Related concepts are therefore covered together, to allow
meaningful examples and programming exercises along the way. Just enough
of a language is introduced, as needed, for the examples and exercises. Lan-
guage summaries appear in Chapter 15.

Part |: Introduction
Chapter 1 traces the role and development of programming languages. It
introduces the programming paradigms in this book. They include impera-
tive, object-oriented, functional, and logic programming.

vII

Vil

Preface

Syntax description is treated in Chapter 2, 50 it can be applied in the rest
of the book. The examples in the chapter deal with expressions, since methods
for describing the syntax of expressions carry over to the rest of a language.

Part li: Imperative Programming

The imperative family is treated in Chapters 3-5. The term “imperative”
comes from command or action; the computation model is that of a sequence
of actions on an underlying machine.

Chapter 3 deals with control flow. Structured constructs like while state-
ments organize the flow of control so that the unit of programming is a struc-
tured statement, instead of an individual assignment. Students in a course
that emphasizes imperative programming are usually familiar with Pascal, so
this chapter goes beyond assignments and structured statements to consider
programming with invariants. The examples deal with basic values, like inte-
gers, and arrays.

Chapter 4 deals with data in imperative languages. Data representation
facilities such as arrays, records, and pointers, have been stable since Pascal
and C appeared. The treatment of these facilities anticipates their use to repre-
sent objects in Chapters 6 and 7.

Chapter 5 rounds out the discussion of the core of imperative languages,
embodied in a language like Pascal or C. Among the topics are the distinction
between the source text of a procedure and its activations, parameter passing,
scope rules, and storage allocation.

This book illustrates imperative programming using Pascal, where possi-
ble. Pascal suffices as a vehicle for Chapters 3-5. C is an alternative.

Part li}: Object-Oriented Programming

As programs get larger, the natural unit of programming is a grouping of data
and operations. The progression of concepts for such groupings can be
described in terms of modules, user-defined types (for example, stacks), and
classes (as in object-oriented programming).

Chapter 6 begins with of programming with procedures, modules, and
classes. These constructs serve distinct needs and can be used in combination
with each other: procedures are needed to implement operations in a module
or class; modules can be used to statically partition the source text of a pro-
gram with classes. Some versions of Pascal support modules; they can be used
for the first half of Chapter 6 as well. C+, an extension of C, is introduced in
Chapter 6.

The model of computation in Chapter 7 is that of independent objects.
The objects interact by sending messages to each other. The first third of the
chapter introduces object-oriented programming in general, using a running
example that has similar implementations in C+ and Smalltalk. The rest of
the chapter has independent coverage of C++ and Smalltalk, so either one can

Preface

be used to explore object-oriented programming. Based on feedback from
instructors, this edition covers G+ before Smalltalk, inverting the order in the
previous edition. Object-oriented programming is illustrated using both G+
and Smalltalk, since the two represent different approaches.

All of the concepts in Chapters 3-7 can be illustrated using C+. Students

can be introduced directly to Ci+, without going through C.

Part IV: Functional Programming

Functional programming is worth studying as a programming style in its own
right; as a setting for studying concepts such as types; and as a technique for
language description. The emphasis in Chapter 8 is on concepts, in Chapters 9
and 10 on programming style, and in Chapter 13 on language description.
The computational model is based on an expression interpreter; an expression
consists of a function applied to subexpressions.

The emphasis in Chapter 8 is on concepts. The simplicity of functional

languages makes them convenient for introducing concepts such as values,
types, names, and functions. The simplicity results from the emphasis on
expressions and values, independent of the underlying machine. The chapter
treads ground common to functional languages, using ML as the working lan-
guage.
The fundamental difference between ML and Lisp is that ML is typed; the
influence of types permeates the language. Chapter 9 uses ML to illustrate the
use of functions-and datatypes. As first-class citizens, functions have the same
status as any other values in functional programming. This first-class status
permits the creation of powerful operations on collections of data.

Functional programming originated with Lisp. Programs and data are
both represented by lists in Lisp; the name is a contraction of ““List Processor.”
The uniform use of lists makes Lisp eminently extensible. Chapter 10 explores
the use of lists, using the Scheme dialect of Lisp.

See also Chapter 13, which contains an interpreter for a small subset of
Scheme, and Chapter 14, which covers the lambda calculus.

Part V: Other Paradigms

Logic programming goes hand in hand with Prolog, in Chapter 11. Logic pro-
gramming deals with relations rather than functions. Where it fits, programs
are concise, consisting of facts and rules. The languages uses the facts and
rules to deduce responses to queries.

Concurrent programming is illustrated using Ada, in Chapter 12. An
alternative approach would have been to cover concurrent programming after
object-oriented programming. Processes can be formed by giving each object
its own thread of computation. The present organization puts functional pro-
gramming before concurrent programming,

Preface

Part VI: Language Description

The methods for language description in Chapter 13 are aimed at specialists.
The methods range from attributes used for language translation, to logical
rules for used type inference, to interpreters used for clarifying subtle lan-
guage questions.

A language can be described by writing a definitional interpreter for it, so
called because its purpose is to define the interpreted language; efficiency is
not a concern. McCarthy’s & original definitional interpreter for Lisp in Lisp
remains important for language description, so language description is illus-
trated using the Scheme dialect of Lisp. Chapter 13 develops an interpreter
for a small subset of Scheme.

The lambda calculus is the intellectual ancestor of functional languages.
The small syntax of the lambda calculus has also led to its use as a vehicle for
studying languages. Variants of the lambda calculus are introduced in Chap-
ter 14. The chapter progresses from the pure untyped lambda calculus to
typed lambda calculi.

Chapter 15 contains brief summaries of the languages in this book.

Acknowledgments From the First Edition

A graduate seminar at Rutgers University gave me both the opportunity and
the incentive to collect material on programming languages. I'd like to thank
Alex Borgida, Martin Carroll, Fritz Henglein, Naftaly Minsky, Bob Paige, and
Barbara Ryder for keeping the seminar lively.

An undergraduate course at Harvard University used an early draft of
this book. Written comments by the students in the course were very helpful.

The organization of this book has benefited greatly from the comments
and especially the criticism of the then anonymous reviewers contacted by
Addison-Wesley. They are Tom Cheatham, Harvard University, John Cren-
shaw, Western Kentucky University, Paul Hilfinger, University of California,
Berkeley, Barry Kurtz, New Mexico State University, Robert Noonan, College
of William and Mary, Ron Olsson, University of California, Davis, William
Pervin, University of Texas at Dallas, Paul Reynolds, University of Virginia,
David Schmidt, Kansas State University, and Laurie Werth, University of
Texas at Austin. '

For all their technical help, I am grateful to Al Aho, Jon Bentley, Gerard
Berry, Eric Cooper, Bruce Duba, Tom Duncan, Rich Drechsler, Peggy Ellis,
Charlie Fischer, Dan Friedman, Georges Gonthier, Bob Harper, Mike Harri-
son, Bruce Hillyer, Brian Kernighan, Kim King, Chandra Kintala, Dave Mac-
Queen, Dianne Maki, Doug Mcllroy, John Mitchell, Mike O'Donnell, Dennis
Ritchie, Bjarne Stroustrup, Chris Van Wyk, and Carl Woolf.

This book on programming languages was produced with the help of a
number of little languages. The diagrams were drawn using Brian
Kernighan's Pic language; the grey-tones in the diagrams rely on the work of

Preface X1

Rich Drechsler. The tables were laid out using Mike Lesk’s Tbl program. Eqn,
Lorinda Cherry and Brian Kernighan's language for typesetting mathematics,
handled the pseudo-code as well. The Troff program was originally written
by the late Joe Ossanna and is kept vital by Brian Kernighan. Page layout
would have suffered without a new Troff macro package and post-processor
by Brian Kernighan and Chris Van Wyk. The indexing programs were sup-
plied by Jon Bentley and Brian Kernighan. Cross references were managed
using scripts written with the help of Al Aho for managing the text of the
“dragon’’ book.

Finally, I'd like to thank Bell Labs for its support. 1have learnt more from
my colleagues here than they might suspect. Whenever a question occurred,
someone in the building always seemed to have the answer.

Acknowledgments

[really appreciate the comments I have received on the first edition. The
experience of instructors and the frank opinions of reviewers have guided the
revision.

Debbie Lafferty of Addison-Wesley has been the voice on the phone
through the months, coordinating reviews and credits, and generally keeping
the project on track. I now know that the reviewers include Bill Appelbe,
Michael Barnett, Manuel E. Bermudez, Ray Ford, Aditya P. Mathur, L. A.
Oldroyd, and Hamilton Richards — thanks.

For technical help and discussions, I am grateful to Jon Bentley, Lorinda
Cherry, Brian Kernighan, Dave MacQueen, Jon Riecke, Bjarne Stroustrup, and
Rich Wolf. My colleagues at Bell Labs have been greatly supportive.

A lot has happened while [have been immersed in the Book, including a
death, a birth, a move, a fire. Dianne Maki has helped me navigate through it

all.
RS

Contents

| INTRODUCTION
1 The Role of Programming Languages

1.1
1.2
1.3
1.4

Toward Higher-Level Languages 4

Problems of Scale 8

Programming Paradigms 11

Language Implementation: Bridging the Gap 18
EXERCISES 21

BIBLIOGRAPHIC NOTES 23

2 Language Description: Syntactic Structure

21
22
23
2.4
25
2.6

Expression Notations 28
Abstract Syntax Trees 31
Lexical Syntax 33
Context-Free Grammars 35
Grammars for Expressions 41
Variants of Grammars 46
EXERCISES 49
BIBLIOGRAPHIC NOTES 52

it IMPERATIVE PROGRAMMING
3 Statements: Structured Programming

3.1
3.2
33
34
3.5

The Need for Structured Programming 59
Syntax-Directed Control Flow 63

Design Considerations: Syntax 72
Handling Special Cases in Loops 77
Programming with Invariants 80

25

55
59

Xl

XIv Contents

3.6 Proof Rules for Partial Correctness 86
3.7 ControlflowinC 90

EXERCISES 94

BIBLIOGRAPHIC NOTES 99

4 Types: Data Representation 101

4.1 The Role of Types 102
4.2 Basic Types 107
4.3 Arrays: Sequences of Elements 111
4.4 Records: Named Fields 117
4.5 Unions and Variant Records 120
46 Sets 123
4.7 Pointers: Efficiency and Dynamic Allocation 125
4.8 Two String Tables 133
4.9 Types and Error Checking 136
EXERCISES 143
BIBLIOGRAPHIC NOTES 146

5 Procedure Activations 147

5.1 Introduction to Procedures 148

5.2 Parameter-Passing Methods 155

5.3 Scope Rules for Names 160

5.4 Nested Scopes in the Source Text 166

5.5 Activation Records 172

5.6 Lexical Scope: Procedures asin C 181

5.7 Lexical Scope: Nested Procedures and Pascal 190
EXERCISES 198
BIBLIOGRAPHIC NOTES 202

il OBJECT-ORIENTED PROGRAMMING 205

6 Groupings of Data and Operations 209

6.1 Constructs for Program Structuring 210
6.2 Information Hiding 217

6.3 Program Design with Modutes 220

6.4 Modules and Defined Types 229

6.5 Class Declarations in C+ 232

6.6 Dynamic Allocationin C+ 238

Contents XV

6.7 Templates: Parameterized Types 244
6.8 Implementation of Objects in CH+ 245
EXERCISES 248
BIBLIOGRAPHIC NOTES 251

7 Object-Oriented Programming 253

7.1 Whatis an Object? 253
7.2 Object-Oriented Thinking 256
7.3 Inheritance 260
7.4 Object-Oriented Programming in C+ 267
7.5 An Extended C+ Example 274
7.6 Derived Classes and Information Hiding 281
7.7 Objects in Smalltatk 285
7.8 Smalltalk Objects have a Self 291
EXERCISES 294
BIBLIOGRAPHIC NOTES 299

IV FUNCTIONAL PROGRAMMING 301

8 Elements of Functional Programming 305

8.1 A Little Language of Expressions 306
8.2 Types: Values and Operations 313
8.3 Function Declarations 318
8.4 Approaches to Expression Evaluation 321
85 Lexical Scope 327
8.6 Type Checking 331
EXERCISES 335
BIBLIOGRAPHIC NOTES 339

9 Functional Programming in a Typed Language 341

9.1 Exploting a List 342

9.2 Function Declaration by Cases 346
9.3 Functions as First-Class Values 351
9.4 ML: Implicit Types 357

9.5 Data Types 360 ,

9.6 Exception Handling in ML 367

XVI Contents

9.7 Littie Quilt in Standard ML 369
EXERCISES 380
BIBLIOGRAPHIC NOTES 383

10 Functional Programming with Lists . 385

10.1 Scheme, a Dialect of Lisp 386

10.2 The Structure of Lists 392

10.3 List Manipulation 396

10.4 A Motivating Example: Differentiation 404

10.5 Simpilification of Expressions 409

10.6 Storage Allocation for Lists 413
EXERCISES 417
BIBLIOGRAPHIC NOTES 421

V OTHER PARADIGMS 423

11 Logic Programming 425

11.1 Computing with Relations 426
11.2 Introduction to Prolog 430
11.3 Data Structures in Prolog 438
11.4 Programming Techniques 442
11.5 Control in Prolog 450
11.6 Cuts 461
EXERCISES 470
BIBLIOGRAPHIC NOTES 472

12 An Introduction to Concurrent Programming 475

12.1 Parallelism in Hardware 476

12.2 Streams: Implicit Synchronization 478

12.3 Concurrency as Interleaving 482

12.4 Liveness Properties 485

12.5 Safe Access to Shared Data 489

12.6 Concurrency in Ada 491

12.7 Synchronized Access to Shared Variables 498
EXERCISES 507
BIBLIOGRAPHIC NOTES 510

Contents

VI LANGUAGE DESCRIPTION

13 Semantic Methods

13.1 Synthesized Attributes 517

132 Attribute Grammars 520

13.3 Natural Semantics 523

13.4 Denotational Semantics 529

13.5 A Calculator in Scheme 530

136 Lexically Scoped Lambda Expressions 532

13.7 An Interpreter 535

13.8 An Extension: Recursive Functions 542
EXERCISES 545
BIBLIOGRAPHIC NOTES 546

14 Static Types and the Lambda Calculus

14.1 Equality of Pure Lambda Terms 549
14.2 Substitution Revisited 554
14.3 Computation with Pure Lambda Terms 556
14.4 Programming Constructs as Lambda-Terms 561
14.5 The Typed Lambda Calculus 566
14.6 Polymorphic Types 569
EXERCISES 576
BIBLIOGRAPHIC NOTES 577

15 A Look at Some Languages

15.1 Pascal: A Teaching Language 579

15.2 C: Systems Programming 583

15.3 C+: A Range of Programming Styles 591
154 Smalltalk, the Language 594

165 Standard ML 598

156 Scheme, a Dialect of Lisp 602

15.7 Prolog 607

Bibliography
Credits

Index

XVH

513
515

547

579

613
627
629

