atl 3

BEFEhiE
MSWEN

(BAYIR - $R)

e

Programming

CONCEPTS & CONSTRUCTS

Ravi Sethi (AR
g M o, (%) Ravi Sethi #

N MW T W W ORR A A
China Machine Press \ A 4

Addison-Wesley



BrEthiae
WmEHSNE




IR - SR2R)

(

Rav

hi
%)

1 Set
e

&
=4

)




English reprint edition copyright © 2002 by PEARSON
EDUCATION NORTH ASIA LIMITED and CHINA MACHINE PRESS.

Programming Languages: Concepts and Constructs, Second
Edition by Ravi Sethi, Copyright © 1996 by AT&T.

All rights reserved.

Published by arrangement with Pearson Education, Inc.

AR EN A B X E Addison Wesley 2> sHEZRHLEE T H iR
HEPEAREARRERET, REHBREF, NMELUERTA
3. EHS RAGPALMERR ST .

REALERE , RS

KBRENREBIZS: BEF: 01-2001-5009
HHERSE (CIP) B8

BERIMES: BMaMEHW (SRR - HB28) / (X)) ER
(Sethi,R.) &. - Jba0: YU T HARE:, 20021

(ZHFRRBE)

P43 Programming Languages: Concepts and Constructs, 2E

ISBN 7-111-09594-4

.8 0.2 0.8BFEF-%FX V. TP312
b A B BECIPEIRE F (2001 ) 350885675

PUR Tk IR R BRR T EA#22S BB 100037)
HILRE:. & =E

EE B FBOR QR - FreBELRRITRRRT
20024E1 B 85 1R - 200243 A 20K ED R

880mm x 1230mm 1/32 - 20.875E13k

¥ 2 001-4 000/

EHr: 39.007T

RgAds, AER., BRI, 8T, BAETHRER




HhRE BYE

XZERXMURE, BoniKARAE MRS TE R EARRE, #85E
KIEBARRHE &N SEEUE T 2R E; BIERXHENES, #XE
E%E&ﬁﬁﬁ%#+§¢@%%%$\ﬁ@m%oﬁﬁﬂkWﬂﬁ*,%
H = R SHE Rk ERESE, FEVER T SR LI R A
B AR F M BRRILR E'ﬂlﬂiﬁﬁf‘thB'J ZWBEEE, DMUBRTHRG
WEE, BMIBE THEAMELD, REFEEAMNE, XER¥EE M, HIMEHT
AHER R T IRGR .

B, E2RFEEAXBH#ZT, RENHTEIELRRAE, &
WAFHFRBIREY . XXITEVET RALARAHMEEREVLIE, Rk
i MEBWBMMBRERTER LEEBELEE, EREFEBERLREM
B . Ak AREDHBLRT , XESEXSERELTEIRIYZRYIL
RPN ZBBM A TS EREEZA, B, sl#—#EMLEIT
BB R REHBEIEETE LN ZBRFRMESNER, tR5HRE
P, BREENAR—FKFHLHZ M,

PUBR D At EE U E B A A RIS R EIRE “HIRERIHERS .
199848, BRI TAEARE T #E . BERMIBEHM L, 2
TS 11, AT 5Prentice Hall, Addison-Wesley, McGraw-Hill,
Morgan Kaufmann%t REZ KA TR T REFAAEXR, NENBAEN
¥OE A4 P % Tanenbaum, Stroustrup, Kernighan, Jim Gray2$ kU4 %
B—H2 e, UL TTEHREAST HEIRER, fHEEEST. BIRK
B, KEALGENEE, WEERR T XEN BRSO,

“UEIBEAS WHRTAESAT BRI EENRHEH, BRGNS
EARET P EREEIE S, ARG EHIT TRIFMEROTHE; W
R EOHE S X HERETBNEER, ANESHARLBHPREE
FFo &%, TTEVREAE” BRBRTET AR, XSEBEEEEDR
MTRIFMOM, HEFEERRANERXZM NS EBE, ht—£H
H5ERBEITT TIREHERL,

’, /

{ ey
g fa/ l\f




MEE F R A TEEFBM SR ZEHRL, #eRXMESIMTEN
A BT R TN AEZE A — B B . AL, SEEARIRS HEM Y
NE, £ “EEHTF MEHMRMZTHER=EARZIINITENEM . SRR
HEWZDIREE, HIBOMNEEETMR “EIEREM" R ITREBREEAT,
Wi Fr R o “SHMFRBE" ; ENERZHEBEMTISEY HEIM
FAET B REEERM A, SEEHRFTH&ER. T RIEX=FEARH
BB, [Rafdh T S o AR 1R S5, REARIMEE T P EBY
Be. bR K%, WHERYE, BRI KRS, B8 k%, FBTHERYE. R
K, LIRS, PEBHERY . BRETIRY, BRLERE. FEA
RA%., SEEMSAMRKE, CaRE A%, PILKE., BREBIT Y,
MK B T¥8. PEEREBRSWTEAESO % BN E & K¥EM
MIVMEITEILN SN ESFEEAR “EREIFEHS", ARIIE
PR WA AR M

“ERFERPBE" RN E R LR ERENEMNEE, AEA
BRI ENEFEERITEN, £ EMIERHETIRA BN “SFESRAL”
WELE, RINBLEETX0EMEIRNEEE ., HEEREARNEM, H
P KE S EZBMLT. . Stanford, U.C. Berkley. C.M.U.S R 40 k¥ %
Ho ABMURE FRBFRGH, BIRSH. BERSG. BV RSH . 848
FE. SRFIE. BROTR. BB¥. BE5MNE. BHEESEARFETENL
LRI R LIEE, MASEASE—ANEAESRITEZF. 1
B=+HEMAZE, ANCHESHANLEEREM, EXSRPOE KL
KERSIZT, EELEETEVNE RN ERFPHBEEMAE,

PRHEE . ZROEM. —RKEE. PHROFKE. KENRE, X
HREFERNGERE THRENRIE, ARIMNIVEFRRERE, MMM
BERERBIMMEBX L BIRNERR . SHAHBREERININGER
FHRA ., FEAFRKBEBMAMEE RO TEREBRNERATFRE, &
IR AR BT

B FHB4: hzedu@hzbook.com
BREE: (010) 68995265

BFEsbht. EEWIERX AN EREELS
HRB RS : 100037



LEA
V2 &3
kI
ZR 4 8
J
#% B &
St E

ERIBESERS

( ek BT )

EN
& i
FIHE
I 7
B
748 i

R
B K

A
FrEF
F I
[ &3k
HoE
N3
£ 8

% AL
X &
Fry
P w1 2%
=W
JEHHR
EXIE

% £ H
Z B R
wmAF
ERCES
EEX
BA A=



Preface

This book is designed for junior/senior level courses on programming lan-
guages. A minimal pre-requisite is an introductory programming course.
With supplementary readings, the book can also be used for graduate courses.

What’s New in this Edition?

Changes on the language scene and feedback from the use of the book have
prompted a thorough revision. Instructors liked the emphasis on concepts,
but asked that the concepts be illustrated using fewer languages. Meanwhile,
Modula-2 has faded, and C++ has taken off as a language for production pro-
gramming. Candidates for functional languages now include Standard ML,

Haskell, and Miranda.
The new edition has 15 chapters, three more than the first edition. The

role of the three new chapters is as follows:
¢ Data types like arrays, records, and pointers have a new chapter.
¢ Functional programming is introduced using ML in a new chapter.
¢ Language summaries appear in a final chapter.

Language description and syntax are now treated early, in Chapter 2.

Organization of this Book

The emphasis is on concepts and how they work together, rather than on lan-
guage features. Related concepts are therefore covered together, to allow
meaningful examples and programming exercises along the way. Just enough
of a language is introduced, as needed, for the examples and exercises. Lan-
guage summaries appear in Chapter 15.

Part |: Introduction
Chapter 1 traces the role and development of programming languages. It
introduces the programming paradigms in this book. They include impera-
tive, object-oriented, functional, and logic programming.

vII
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Syntax description is treated in Chapter 2, 50 it can be applied in the rest
of the book. The examples in the chapter deal with expressions, since methods
for describing the syntax of expressions carry over to the rest of a language.

Part li: Imperative Programming

The imperative family is treated in Chapters 3-5. The term “imperative”
comes from command or action; the computation model is that of a sequence
of actions on an underlying machine.

Chapter 3 deals with control flow. Structured constructs like while state-
ments organize the flow of control so that the unit of programming is a struc-
tured statement, instead of an individual assignment. Students in a course
that emphasizes imperative programming are usually familiar with Pascal, so
this chapter goes beyond assignments and structured statements to consider
programming with invariants. The examples deal with basic values, like inte-
gers, and arrays.

Chapter 4 deals with data in imperative languages. Data representation
facilities such as arrays, records, and pointers, have been stable since Pascal
and C appeared. The treatment of these facilities anticipates their use to repre-
sent objects in Chapters 6 and 7.

Chapter 5 rounds out the discussion of the core of imperative languages,
embodied in a language like Pascal or C. Among the topics are the distinction
between the source text of a procedure and its activations, parameter passing,
scope rules, and storage allocation.

This book illustrates imperative programming using Pascal, where possi-
ble. Pascal suffices as a vehicle for Chapters 3-5. C is an alternative.

Part li}: Object-Oriented Programming

As programs get larger, the natural unit of programming is a grouping of data
and operations. The progression of concepts for such groupings can be
described in terms of modules, user-defined types (for example, stacks), and
classes (as in object-oriented programming).

Chapter 6 begins with of programming with procedures, modules, and
classes. These constructs serve distinct needs and can be used in combination
with each other: procedures are needed to implement operations in a module
or class; modules can be used to statically partition the source text of a pro-
gram with classes. Some versions of Pascal support modules; they can be used
for the first half of Chapter 6 as well. C+, an extension of C, is introduced in
Chapter 6.

The model of computation in Chapter 7 is that of independent objects.
The objects interact by sending messages to each other. The first third of the
chapter introduces object-oriented programming in general, using a running
example that has similar implementations in C+ and Smalltalk. The rest of
the chapter has independent coverage of C++ and Smalltalk, so either one can
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be used to explore object-oriented programming. Based on feedback from
instructors, this edition covers G+ before Smalltalk, inverting the order in the
previous edition. Object-oriented programming is illustrated using both G+
and Smalltalk, since the two represent different approaches.

All of the concepts in Chapters 3-7 can be illustrated using C+. Students

can be introduced directly to Ci+, without going through C.

Part IV: Functional Programming

Functional programming is worth studying as a programming style in its own
right; as a setting for studying concepts such as types; and as a technique for
language description. The emphasis in Chapter 8 is on concepts, in Chapters 9
and 10 on programming style, and in Chapter 13 on language description.
The computational model is based on an expression interpreter; an expression
consists of a function applied to subexpressions.

The emphasis in Chapter 8 is on concepts. The simplicity of functional

languages makes them convenient for introducing concepts such as values,
types, names, and functions. The simplicity results from the emphasis on
expressions and values, independent of the underlying machine. The chapter
treads ground common to functional languages, using ML as the working lan-
guage.
The fundamental difference between ML and Lisp is that ML is typed; the
influence of types permeates the language. Chapter 9 uses ML to illustrate the
use of functions-and datatypes. As first-class citizens, functions have the same
status as any other values in functional programming. This first-class status
permits the creation of powerful operations on collections of data.

Functional programming originated with Lisp. Programs and data are
both represented by lists in Lisp; the name is a contraction of ““List Processor.”
The uniform use of lists makes Lisp eminently extensible. Chapter 10 explores
the use of lists, using the Scheme dialect of Lisp.

See also Chapter 13, which contains an interpreter for a small subset of
Scheme, and Chapter 14, which covers the lambda calculus.

Part V: Other Paradigms

Logic programming goes hand in hand with Prolog, in Chapter 11. Logic pro-
gramming deals with relations rather than functions. Where it fits, programs
are concise, consisting of facts and rules. The languages uses the facts and
rules to deduce responses to queries.

Concurrent programming is illustrated using Ada, in Chapter 12. An
alternative approach would have been to cover concurrent programming after
object-oriented programming. Processes can be formed by giving each object
its own thread of computation. The present organization puts functional pro-
gramming before concurrent programming,
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Part VI: Language Description

The methods for language description in Chapter 13 are aimed at specialists.
The methods range from attributes used for language translation, to logical
rules for used type inference, to interpreters used for clarifying subtle lan-
guage questions.

A language can be described by writing a definitional interpreter for it, so
called because its purpose is to define the interpreted language; efficiency is
not a concern. McCarthy’s & original definitional interpreter for Lisp in Lisp
remains important for language description, so language description is illus-
trated using the Scheme dialect of Lisp. Chapter 13 develops an interpreter
for a small subset of Scheme.

The lambda calculus is the intellectual ancestor of functional languages.
The small syntax of the lambda calculus has also led to its use as a vehicle for
studying languages. Variants of the lambda calculus are introduced in Chap-
ter 14. The chapter progresses from the pure untyped lambda calculus to
typed lambda calculi.

Chapter 15 contains brief summaries of the languages in this book.
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