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PREFACE

As researchers at the National Physical Laboratory and Stanford University, and as con-
tributors to the Numerical Algorithms Group (NAG) software library, we have been involved for
many years in the development of numerical methods and software for the solution of optimiza-
tion problems. Within the past twenty years, there has been a dramatic increase in the efficiency
and reliability of optimization methods for almost all problem categories. However, this improved
capability has been achieved by the use of more complicated ideas, particularly from the areas of
numerical linear algebra and finite-precision calculation.

The best methods available today are extremely complex, and their manner of operation is far
from obvious, especially to users from other disciplines. This book is intended as a treatment —
necessarily broad — of the subject of practical optimization. The word “practical” is included in
the title in order to convey our concern not only with the motivation for optimization methods,
but also with details of implementation that affect the performance of a method in practice.
In particular, we believe that some consideration of the effects of finite-precision computation
is essential in order for any description of a method to be useful. We also believe that it is
important to discuss the linear algebraic processes that are used to perform certain portions of
all optimization methods.

This book is meant to be largely self-contained; we have therefore devoted one chapter to
a description of the essential results from numerical linear algebra and the analysis of rounding
errors in computation, and a second chapter to a treatment of optimality conditions.

Selected methods for unconstrained, linearly constrained, and nonlinearly constrained op-
timization are described in three chapters. This discussion is intended to present an overview of
the methods, including the underlying motivation as well as particular theoretical and computa-
tional features. Ilustrations have been used wherever possible in order to stress the geometric
interpretation of the methods. The methods discussed are primarily those with which we have
had extensive experience and success; other methods are described that provide special insights
or background. References to methods not discussed and to further details are given in the ex-
tensive Notes and Bibliography at the end of each section. The methods have been presented in
sufficient detail to allow this book to be used as a text for & university-level course in numerical
optimization.

Two chapters are devoted to selected less formal, but nonetheless crucial, topics that might
be viewed as “advice to users”. For example, some suggestions concerning modelling are inciuded
because we have observed that an understanding of optimization methods can have a beneficial
effect on the modelling of the activities to be optimized. In addition, we have presented an
extensive discussion of topics that are crucial in using and understanding a numerical optimization
method — such as selecting a method, interpreting the computed results, and diagnosing (and,
if possible, curing) difficulties that may cause an algorithm to fail or perform poorly.
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CHAPTER ONE

INTRODUCTION

Mankind always sets itself only such problems as it can solve. ...

—KARL MARX (1859)

1.1. DEFINITION OF OPTIMIZATION PROBLEMS

An optimization problem begins with a set of independent variables or parameters, and often
includes conditions or restrictions that define acceptable values of the variables. Such restrictions
are termed the ccastraints of the problem. The other essential component of an optimization
problem is a single measure of “goodness”, termed the objective function, which depends in some
way on the variables. The solution of an optimization problem is a set of allowed values of the
variables for which the objective function assumes an “optimal” value. In mathematical terms,
optimization usually involves maximizing or minimizing; for example, we may wish to maximize
profit or minimize weight.

Problems in all areas of mathematics, applied science, engineering, economies, medicine,
and statistics can be posed in terms of optimization. In particular, mathematical models are
often developed in order to analyze and understand complex phenomena. Optimization is used
in this context to determine the form and characteristics of the model that corresponds most
closely to reality. Furthermore, most decision-making procedures involve explicit solution of an
optimization problem to make the “best” choice. In addition to their role per se, optimization
problems often arise as critical sub-problems within other numerical processes. This situation is
so common that the existence of the optimization problem may pass unremarked — for example,
when an optimization problem must be solved to find points where a function reaches a certain
critical value. '

Throughout this book, it will be assumed that the ultimate objective is to compute the
solution of an optimization problem. In order to devise solution techniques, it is helpful to assume
that optimization problems can be posed in a standard form. It is clearly desirable to select a
standard form that arises naturally from the nature of most optimization problems, in order to
reduce the need for re-formulation. The general form of optimization problem to be considered
may be expressed in mathematical terms as:

NCP minimize F(z)
TER™
subject to ¢;(z) =0, ©=1,2,...,m/; "
ci(z2) >0, t=m'+1,....m

The objective function F and constraint functions {c;} (which, taken together, are termed the
problem functions) are real-valued scalar functions.
To illustrate some of the flavour and diversity of optimization problems, we consider two
specific examples. Firstly, the layout of the text of this book was designed by the TEX computer
1



2 Chapter 1. Introduction

typesetting system using optimization techniques. The aim of the system is to produce a visually
pleasing arrangement of text with justified margins. Two means are available to achieve this
objective: the spaces between letters, words, lines and paragraphs can be adjusted, and words
can be split between lines by hyphenation. An “ideal” spacing is specified for every situation
in which a space may occur. These spaces may then be stretched or compressed within given
limits of acceptability, subject to penalties for increasing the amount of deviation from the ideal.
Varying penalties are also imposed to minimize undesirable features, such as two consecutive lines
that end with hyphenated words or a page that begins with a displayed equation. The process
of choosing a good text layout includes many of the elements of a general optimization problem:
a single function that measures quality, parameters that can be adjusted in order to achieve the
best objective, and restrictions on the form and extent of the allowed variation.

We next consider a simplified description of a real problem that illustrates the convenience of
the standard form. The problem is to design the nose cone of a vehicle, such that, when it travels
at hypersonic speeds, the air drag is minimized. Hence, the function to be optimized is the drag,
and the parameters to be adjusted are the specifications of the structure of the nose cone. In
order to be able to compute the objective function, it is necessary first to devise a model of the
nose cone in terms of the chosen parameters. For this problem, the nose cone is represented as
a series of conical sections, with a spherical section as the front piece and a fixed final radius R.
Figure 1a illustrates the chosen model, and shows the parameters to be adjusted. Although the
idealized model deviates from a real-world nose cone, the approximation should not noticeably
impair the quality of the solution, provided that the number of conical sections is sufficiently
large.

The next step is to formulate the drag as a scalar function of the eight parameters a4, ..., a4,
r1,...,74. The function D(ay,...,04,71,...,74) Will be assumed to compute an estimate of the
drag on the nose cone for a set of particuiar values of the free variables, and thus D will be the
objective function of the resulting optimization problem.

In order to complete the formulation of the problem, some restrictions must be imposed on
the values of the design parameters in order for the mathematical model to be meaningful and for
the optimal solution to be implementable. In particular, the radii 74, ..., 74 must not be negative,
so that the constraints

r,;zo, 1 == 1,...,4,

(g

- C

T r T3 £

T

Figure 1a. Cross-section of a conical representation of a nose cone.



