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Preface

Many books have been written in a popular style to emphasize the
importance of x-ray crystallography and to create interest in the won-
derful findings of the workers in the field. A few books have been
written with riger for the benefit of the most advanced scholars.
In between the extremes of popular and rigorous there is a gap. As
a consequence of this gap, a very large proportion of the x-ray crystal-
lographers actively engaged in the field in America today are working
out structures successfully only because they have bridged the gap
by having read a necessarily large number of those papers in the
scientific journals which serve as signposts for the theory and the
proper procedure. It is the purpose of the present text to furnish a
common source in which the student may find condensed the teach-
ings of the pioneers in crystallography. Although the lone investi-
gator is borne in mind throughout the book, it has been hoped that the
book may also be of use as a university text in a two-quarter course in
structure analysis. Much of this book has been used as lecture mate-
rial over a six-vear period at the University of Utah (1947-1953)
and, in the form of mimeographed lecture notes, has been under
constant vevision from the beginning. The first fonr chapters pertain
to crystallography preparatory to the last five chapters on structure. .

Thanks for advice and encouragement during the early writing of the
text are due Dean Carl J. Chrigtensen, Dr. John R. Lewis, and Dr.
Hugh Hamilton of the University of Utah; and facilities for the final
completion of the manuscript were furnished by Dr. Thomas C. Poulter
of the Stanford Research Institute to whom I am grateful. TUnusual
effort and skill in drawing and typing by Alice Morey Bailey con-
tributed to the early progress. Other contributors were Mrs. J. Fred-
rickson, Hazel Christopher, and Mrs. Laurie Chamberlain to whom
[ am appreciative.  Mrs. Fredolyn McLachlan kindly gave invaluable
aid in proofreading. I am especially grateful for the critical reading

and criticisms of Dr. George E. Duvall and Dr. Bruno J. Zwolinseki.
#i.



F PREFACE

Thanks are also due to many workers who have allowed the repro-
duction of diagrams and photographs from their works, and acknowl-
edgment is made in each case in the text. It is impossible to over-
emphasize the assistance obtained from the writings of such men as
R. W. James, A. H. Compton, and many others, and again an attempt
is made throughout the text to give them credit.

Dan McLachlan, Jr.
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CRYSTALS

1-1. Introduction

The history of orvstahogra,phy is divisible into two parts: (1) before
1912 and (2) after 1912. Prior to 1912, crystals were studied by
optical methods almost exclusively. By means of optical goniometers
and microscopes, thousahds of crystals, particularly minerals and some
organic compounds, Lad been investigated. From the great quantity
" of data thus obtained, a number of laws were deduced in the field of
crystallography. "The rules of symmetry were established and the
32 crysta! classes identified and defined. The concept of Miller indices
was developed. The existence of six crystal systems was recognized.
The principle of nodes or centers was developed, and the 14 Bravais
lattices were enumerated. The art of pictorial representation by
means of projections and other geometrical devices was well advanced,
and nomenclature was growing faster than it wus being unified. With
the polarizing microscope, crystals could be classified into uniaxial and
biaxial types, and indicatrices could be drawn or computed. With
this knowledge, the optical tools of crystallography were used for
identification in industry and mining as well as for academic purposes
in promoting the science. L

With the first successful dlfrra'-nun of x-rays in 1912, crystallogra—
phers began investigations of crystals on an atomic ba%xs. - X-rays
furnished means for studyving the manner in which atoms are held
together in the systematic configurations which aceount for the sym-
metry and beauty of crystals. It was recognized almost immediately
that the atoms in the crystal are arranged in repeating imaginary cells
similar to eggs in an egg crate; only there may be many atoms in one
cell. It was found that each cell exhibits the same symmetry as the

1 .



2 CRYSTALS

entire crystal. The theory of point groups (giving rise to the 32 crys-
tal classes) could be applied to the individual cells. While gross
properties were previously used to identify symmetry, now symmetry
could be based on the configuration of atoms in each cell.

By studying the arrangement of diffraction spots on a photographic-
film and by placing particular attention on the systematic absence of
spots where they would otherwise be expected to oceur, crystals were
further classified beyond the 32 classes. There are 230 space groups
among crystals, all identifiable by the occyrrence of absences or
extinctions. ‘

By measuring the position and distances between diffraction spots
on the x-ray film, interplanar distances can be computed. Hence the
crystallographer is not confined in his study to the external planes or
growth faces of a crystal; he can now consider internal planes. Witk
a broader concept of crystallographic planes, Miller indices took on a
broader meaning. The dimensions of the cell could be measured.
Knowing density, Avogadro’s number, and atomic weight, the atomic
content of the cell can be computed.

Barly in the x-ray studies, attention was directed toward the vary-
ing inteusities of the diffraction spots. With the introduction of
Fourier series as a mathematical tool, crystallographers learned to
incorporate the measured intensities of the spots into computation of
the positions of atoms in unit cells.  This is the objective and ulti-
mate goal of present-day crystaliography; and the overcoming of the
many difficulties in its achievement has occupied the time of some of
the most inventive and most analytical thinkers since 1927,

Some of the achievements of past workers are listed below in the
order in which they were encountered. The further improvement of
methods (as well as the development of new methods) furnishes fields
of research for years to come.

1. The production of an intense monochromatic collimated beam of
X-Lays.

2. Acquiring a crystal either from nature or by growth in the
laboratory.

3. The development of cameras for recording diffraction maxima in
such a configuration that they can be identified and assigned the
appropriate Miller indices.

1. The measurement of intensities by photographic means or by
ionization chambers, Geiger counters, or scintillation counters.

5. The correction of intensities for polarization, divergence of beam,
temperature, absorption of crystal, and the speed of rotation of
the crystal.



CRYSTALS 3

6. The development of facilities and machines for hastening the -
computations of the theoretical structure factors and electron
densities. '

7. Devjsing theories and means for finding the phases of the Fourier
coefficients.

While the above items outline broadly the achievements in develop-
ing x-ray diffraction as a tool in crystallography, the list of achieve-
ments in the successful applications of x-rays in the study of the
structure of matter is much longer. Contributions to the fields of
textiles and fibers, drugs, metals, minerals, foods, and living tissues
are beyond the scope of this text. While this book is largely devoted
to the use of x-rays in structure determination, this first chapter dis-
cusses the general properties of crystals.

1-2. The Crystal Systems or Primitive Lattices

The two most pronounced properties of crystals which distinguish
them from all other forms of matter are: (1) the properties of crystals

7
' .
T L7 777
7 L &7] 7 I/

i
L

/ ! _
s A .

ey X
F1a. 1-1. The general (triclinic) space lattice showing the unit cell dimensions a,b,

¢ and the angles o, 8, and v. Tt is becoming standard practice among crystal-
lographers, however, to make o, B, and v represent the obtuse angles.

are 2 function of the direction along which the properties are measured
and (2) the atomic configuration is repetitive in three dimensions.
The directions are usually referred to three crystallographic axes,
z, Y, and z. The volume of the repeating pattern is called a unit cell.

The concept of a repetitive unit cell immediately brings up the
question as to how many shapes can be used to fill space with identical
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* cells so that there are no voids and no overlaps. The answer is that
there are six such primary shapes or crystal lattices.

The edges of the unit cell have the dimensions a along z, b along y,
and ¢ along 2. A face of a cell which has the edges a and b as twc of
its boundaries is called a C face, one bounded by a and ¢ isa B face,
and, by b and ¢, an A face.

Y
!
!
|
i
!
i
1
SR S R
4B X
z .
Tig. 1-2. The triclinic cell. Fi6. 1-3. The monoclinic cell:
Z
! Z4
T :
i ]
|
) ; Y
! |
Py .'
Voo #1-
i N
. X
X
Fia. 1-4, The orthorhombic cell. ) Fia. 1-5. The tetragonal cell.
g
P Z
3 Y
i >
[
T
7 X
F16. 1-6. The hexagonal cell. Fig. 1-7. The cubic cell,

In three dimensions there is one general lattice, and the others are
special cases of the general one. The general lattice is the triclinic
lattice shown in Fig. 1-1. It is produced by the intersection of three
parallel sets of planes in such 2 manner that the distances between the
points of intersection have general dimensious e, b, and ¢. The lines
connecting these intersections are considered the unit cell edges, and
the angles between them have general values a, 8, and 7.

The special lattices result from special values of @, b, ¢, , 8, or 7.
Yor example, one very special case is the cube, in which e = b = ¢ and
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a = f = v =90° The special lattices obtained in this way, as well
as the general lattice, are shown in Table 1-1.

Table 1-1
1. Trielinie.... ... ... ., a#=bgec a #f 7 v 90°
2. Monoclinic... ...... a=bsc a =y = 90°% 8 = 90°
3. Orthorhombic. ... .. a>=bsc a=f8=~=00°
4. Tetragonal . ... ... .| a=bs=c¢ a === 90°
5-Cuble.............. am=bh=g¢ a=f =~ = 90°
6. Hexagonal.,......... a=bsc¢ a=8=00° vy = 120°

The six lattices enumerated in this table are shown in Figs. 1-2 to 1-7.
The angle between the b and ¢ edges is designaied «, between @ and ¢
vdges 8, und belween the a and b edges 7.

1-3. Atomic Positions

If one can name all the atoms in a crystal according to the accepted
sympols in the periodic table and tell where each atom is iocated in
. the crystal, then the crystal structure is known. Since all crystals
are repetitive in content and atomic configuration, the task is reduced
to that of naming and locating only the atoms in one unit cell. The
location of the ¢th atom in ‘a unit cell is determined by measuring its
position with respect to the three crystallographic directions z, y, and z
. and expressed as zwiz:. The positions from which the distances are
measured are called centers. In the primitive lattices, the centers are
the corners of the unit cells and the directions are the edges.

1-4. Bravais Lattices

The discovery that cells have centers other than those at the unit
cell corners was made by Bravais. This discovery resulted in 14
lattices instead of the original six. These 14 lattices are often called
Bravais lattices because of his discovery of them by optical means.
The 14 Bravais lattices are shewn in Figs. 1-2a to 1-7a. The symbols

Table 1-2

No centers except corners. ... ... .. P
Centered on A face................ A
Centered'on Bface................ B
Centered on C face........... ... .. c
Centered on all faces........... .. .. F
Body-centered.................. .. 1
- Rhombohedral.................... R
H
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Fia. 1-2a.” The triclinic F16. 1-3a. The monoclinic lattice may be primitive,
lattice is always primi- P, or centered, C, i.e., centered on the ab ‘face.
tive, P. * . (Note that in this lattice only the y axis is vertical.
This long-established practice may some day be

abandoned.)

Z z _ Z

/1 [ AN 4 I
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Fia. 1-4a. The orthorhombic lattices are the primitive, P, the centered, C, the body-
centered, I, and the face-centered, F {centered on all faces).
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F16. 1-5a. The tetragonal lattice may Fig. 1-6a. The hexagonal system is
be primitive, P, or body-centered, I. divided into the hexagonal division,
H, and the rhombohedral division, K.
z z
y J
[} [
T ST
I \'\.\"G P
i
' Y 'k
A YN
2 X I X

Frc. 1-7a. The cubic system may be primitive, P, body-centered, I, or face-cen-
tered, FF.
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shown in Table 1-2 are used to designate the various k'm&is of primitive ,
and nonprimitive cells. -

1-5. Miller Indices

One consequence of the fact that a crystal is a repeating pattern of
unit cells fitting together, each containing atoms in identical configu-
rations, is that the atoms appear to be located in a laminar manner
along parallel planes. That atoms may appear to be so aligned is
analogous to the numerous lines upon which the trees in an orchard
appear to be arranged.- The directions of the planes of alignment
through the crystal are indicated by the Miller indices.

Z A

ny

Fra. 1-8. Showing the position of the (312) plane and the (100) plane in the unit cell.

Mil_l;r indices! * can be described as follows. Any -natural crystal
can be considered as having three axes designated as the x, y, and z axes.
Three reference distances a, b, and ¢ can be set off aJong each of these
axes. While optical methods can furnish only the ratios a:b:c of these
axes, x-rays furnish their actual length. Any naturally grown face of
a crystal is so oriented that its intercepts on the z, y, and =z axes cut
a, b, and ¢ at integral fractions of their lengths. In Fig. 1-8 is a unit
cell having dimensions a, b, and ¢ in the z, y, and 2 directions, respec-
tively, with a plane cutting the z axis at ¢, the y axis at s, and the
z axis at u. This plane has been so oriented that a has been cut at 14,
b at unity, and c at 4. The Miller indices are defined as the reciprocal
of these fractions and, therefore, the Miller indices of this plane are

*Superscript numbers refer to the references at the ends of the chapters.
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(312). The plane wogr of Fig. 1-8, for example, cuts a at unity, b at «,
and ¢ at o, and has the Miller indices (100). Thus, the direction of
any plane or family of planes can be uniquely defined in terms of the
Miller indices. A tetragonal crystal with its external faces labeled
according to the Miller indices is shown in Fig. 1-12.

1-4. Families of Planes

Whereas Fig. 1-8 showed only one plane having the Miller indices
(312), there cre many pianes having this same direction. To show
this, Fig. 1-9 has drawn within a unit cell the plane s't'w’ having Miller
indices (824). As the figure shows, there are innumerable planes
within a very large crystal having this same direction. All are spaced

ZA

x

F1a. 1-9. Bhowing all the planes belonging to the (824) family of planes. They are
all parallel, equally spaced, and commensurate with the unit cell dimensions.

80 that their intercepts on the z axis are spaced at a/8, on the y axis b/2,
and on the z axis c/4. Such a set of planes is called a family of planes.
Each plane may or may not bc populated with atoms. Of great sig-
nificance in x-ray work is the perpendicular distance duu between the
planes, which is to be discussed later.

1-7. Orientation within the Crystal

" In x-ray work a person may desire to take a crystal which the optical
crystallographer has classified as far as he can go (i.e., to the 32 classes)
and rotate it about a given set of crystallographic axes in one of the
single-crystal x-ray cameras. In ‘‘setting up the erystal’”’ one must
know the orientation of the axes with respect to the external shape of
_ the crystal. For example, in Fig. 1-10 the left-hand figure has the unit
cell edges parallel with some of the prominent faces of the crystal so
that the face M is perpendicular to z and parallel to the ¥ and z axes;



