— BEREASR SRS TIEFRZRT 9

Real-time Systems
SN R4

C. M. Krishna
Kang G. Shin

ek tHR&

At fwww

REAL-TIME SYSTEMS

Tsinghua University Press

C. M. Krishna

University of Massachusetts

Kang G. Shin

The University of Michigan

McGraw-Hill

EHEF 158 5

Real-time Systems

Copyright © 1997 by The McGraw-Hill Companies, Inc.

Original English language Edition Pubished by The McGraw-Hill Companies, Inc.
All Rights Reserved.

For sales in Mainland China only.

A HEENRREH McGraw-Hill BAUHE % K% B EPERA (AMUEEE - 8]
FATRX M AEmX) MR AR Z1T.
KEHREBEFT, FEUEMTNEREDREBIHEMES -

A HHERHE McGraw-Hill A FIBULHIthirE . THREELSRHE -
IERTRAVREENERBILS . EF 01-2001-3180

+H 4 . Real-time Systems
SERF ARG

fE # . C.M.Krishna Kang G. Shin

HARE . BEERFHREALTEERELM AR, HR4 100084)
http: //www.tup.tsinghua.edu.cn

BN . AL EZRRE])

RATE : FeHIELIE T EITA

FF A . 787 x9601/16 El5k . 29.25

R ¥: 20009 AFE 1R 200149 A% 1 KHIR

8. ISBN 7-302-04748-0/TP-28 13

Bl %t. 0001~3000

R . 39.007C

ElBRE0 2 K 2 R R B

—— R AR S A CRER RS
i KR % BR
KA

FRRFELHARFEEHAER

=H0, ERENRFERT, HEATNREARNRECLRARFER
EPf—NEERENAE, TABEALOKREEM P EEFE “REARE
W, AREMNR, FHERNE” AR XELFHARIRN — N EES
. FE, BEEREXETH R RMES, BRBATHE —SRHRBRET AN,
FEHFLEEN L EERARALFHEARAEGNRELSEXTHEFHHE
E, mRBFLRERCHE. EX7H, REHFAFEERIMNE KF
FIAREH, Ko R RESCENAEE R E X 82N e,
NEXNBIEERARFRBREE—RAENS S, BHAEEENELES)
fER. ERETRFMER, RIMREERAELRFBEAERMASTEER
RAMEIZ KF R RS HH .

FRIIBM M AFREED FRLREARY, O)HERTEERTES
BARFER AR TRFERTR T ABRER RN F B TR, (2) BH TS
HiE B TRABRKZMW BN ESMMEKEFTRANEM . Q) BMETLHE 5
FARTIHRREFTHEFTIR S (4) BB & TEARE R #FHENRB B R E
BEHFSE N, 6) BHIIENEM MALT EH AN TR RIRE RKEENE
.o (6) BMEIR A E USSR A ENR AR

FRFIEMAES O M RARBIR. A TEFEAERTIEH 0
REITEENFRNREZN AN REBRNAE LR REEERT
&, FERFEM P RITAERHAX SRR BRRENRETFS .
WAL, HT SRS E, N TREEARANRE, RIERANFIETETF
—ARARGR, NFEREMARRREIE, UHEARERAAFRE
RERENEH .

FRIVBAETEE X R A G BEARERM B TRERT RS S LA
FHE, FRRBUHL TRSM VAR ESRE. ARFIEH, KA
{ENFENLRBREM RBESH S, RTREEN TET SRR TR
IMABIARN R R B 32,

HAMSEESL KL FIRRTIEH R— 2R TERBEME AN,
BMEER AN, TRIFSEENHTINE, HE8TEdEAMEERS.
BRI AR TSI KRBTSR BB KR B A

Real-time Systems
¥ H R P

(LT REE) (Real-time Systems) —+5 5[Massachusetts K%£H] C. M.
Krishna ##%#1 Michigan A2#] Kang G. Shin R FRE. FRUBRMANESL
B RGRMHFRTMBN B ZEARCELREE, RRTARFRLL, BETR
EIHAREE, HHBEE AL RETTHNHE.

“SERTRA” WARBIEERE, FNRRAXHEI I ZNA,
B TEN RGN RE. EUFHRAIMEXEED, EFU— /A FENTNE—
BRI RS, WERHEHIRS. SENHIRE. TERRFERA. LEHES
REG%, ABNEEMFREER T ZHEN RGN TERE. ®iHHEMN
RV

APAENE TRAX TR A BB ERSFE MM, walEhs%
BEHARARE ., 75, RPHRMAESE D TRML &N —XREFMN TR
B, ZHEHFERSWT:

1. BRHR. MFrEEEAREEE ST TRAMLER, SHTHEK
AR BX. EH, H#T TIHSSER. A BEERBEF S AT LR
R R FF TR LAEIE 20 FEFTHE R BER S BN, RN A& T %48
b _EVFE BRI FRRR .

2. AEMEE. BEHATEHE, FEEF/LHME, Bl KENS
REER T KRR RE R BT TTENM RPN TE, Pt T HRIGS
SEHAIER RGN STH. B, XEROCERER, FNEIFEETEERR
BKARLRr, ETFEERE.

3. FERLESMHERTFEN . £ UK RERR A ENERITFN
BAELRRIT, AT BMENREN BT ERNEREN L, Rt E
T IUMHAT SN R RMREFN I TR, RE%S T X R
TR, XHRMFRAEHRARERHED.

4. BHERELEE. KEHENRGERHEHNRAILRIAKREN, &5
TE 43 A A CEREAE B8 4 FURAE 30 00 1 LA SR B vt o R BE A B 7 X [T B
G T 7Rt SR R G 3R S R T A B T

BESHES HE P HRNEY, HFRENMFEANEN, HES%
PRHMRRIL, HPHFLRCRABEENARNKRRE. SIMEERFOHES
A, FTEERGEBEBRINE.

HEE R
HHERFIHEHAESEARR
20017 H

ABOUT THE AUTHORS

C. M. KRISHNA

C. M. Krishna has been on the faculty of the University of Massachusetts since
1984. He has published in the areas of distributed processing, real-time systems,
and fault tolerance, edited two volumes of readings for the IEEE Computer So-
ciety Press, and been Co-Guest-Editor of special issues of IJEEE Computer and
the Proceedings of the IEEE on real-time systems. Professor Krishna’s current
research deals with the reliability and performance modeling of real-time sys-
tems, fault-tolerant synchronization, distributed real-time operating systems, and
real-time networks.

KANG G. SHIN

Kang G. Shin is Professor and Director of the Real-Time Computing Laboratory,
Department of Electrical Engineering and Computer Science, The University of
Michigan, Ann Arbor. He has authored and coauthored over 360 technical papers
(about 150 of these in archival journals) and numerous book chapters in the areas
of distributed real-time computing and control, fault-tolerant computing, computer
architecture, robotics and automation, and intelligent manufacturing. Professor
Shin is an IEEE Fellow, was the Program Chairman of the 1986 IEEE Real-Time
Systems Symposium (RTSS), the General Chairman of the 1987 RTSS, the Guest
Editor of the 1987 August special issue of IEEE Transactions on Computers on
real-time systems, and an Editor of IEEE Transactions on Parallel and Distributed
Systems from 1991-1995.

vii

PREFACE

Real-time systems have proliferated over the past few years. Today, computers
are found embedded in almost everything, from toasters to cars to fly-by-wire
aircraft. The computational workload of such embedded systems varies widely,
from machines expected to do a few arithmetic operations every second to com-
puters executing complex calculations at tremendous rates. The consequences of
computer failure also vary widely, from burnt toast at the one extreme to the loss
of life in an air crash or a chemical plant explosion at the other.

The objective of this book is to introduce readers to design and evaluation
issues in such systems. We cover a wide range of topics; both hardware and
software issues are treated in some detail. We expect this book to be used by both
practicing engineers and graduate or final-year undergraduate students. .

Some of the discussion is mathematical. Wherever possible, we have sepa-
rated the more mathematical portions from the descriptive. This enables the text
to be read at multiple levels. The more advanced sections are starred (x); these
require additional perseverance or ability to understand them, and can be skipped
if necessary. However, we urge the reader to avoid skipping the mathematical
portions. Most often, avoidance of mathematics is grounded on nothing more
substantial than a primitive fear of and negative associations with mathematical
symbols. A true understanding of many of the issues covered here cannot be
achieved without understanding their mathematical underpinnings.

This book contains far more material than can comfortably be covered in a
one-semester course. Instructors may decide to concentrate on particular topics,
for example, task assignment and scheduling, or fault-tolerance. Alternatively,
they may decide to present a wide-ranging survey of the various topics of interes
to the real-time systems engineer. To enable both approaches to be used, we have
tried to make the chapters as independent of one another as possible. In addition,
this allows the book to be used as a reference handbook by the practicing engineer.
Typographical or other errors should be reported to the authors at

rtbook@tikva.ecs.umass.edu
We plan to maintain a page of errata on the World Wide Web at
http://www.ecs.umass.edu/ece/gradfac/krishna.html

b 44

XVi PREFACE

ACKNOWLEDGMENTS

Many people have contributed to making this book a reality. We would like to
thank Eric Munson of McGraw-Hill for commissioning it, and for being willing
to countenance a delay of over a year beyond our original deadline. It is perhaps
ironic that the authors of a book that deals largely with tasks meeting deadlines
were themselves unable to meet their contracted deadline!

A number of our colleagues and students have read through this book, ei-
ther in part on in its entirety, and provided valuable suggestions or pointed out
mistakes. We list them below in random order.

Y.-H. Lee C. Ravishankar N. Soparkar
A. Ansari J. Rexford S. H. Son

N. Suri J. Strosnider F. Zhou

A. Mehra W. Feng A. Shaikh

T. Abdelzaher A. Indiresan E. Atkins
P. Ramanathan S. Daniel T. Koprowski
S. Wilson K. Ramamritham W. Preska

Beverly Monaghan of The University of Michigan and June Daehler of
the University of Massachusetts provided valuable secretarial assistance. Julie F.
Nemer of ETP Harrison was the copyeditor, and her comments helped improve the
readability of the text. Thanks are also due to Michael J. Kolibaba for coordinating
our interactions with the copyeditor and to the following reviewers: Wei Zhao,
In-Sup Lee, William Marcy, and Borko Furht.

C. M. Krishna
Kang G. Shin

CONTENTS

1

Preface

Introduction

1.1 A Car-and-Driver Example

1.2 Issues in Real-Time Computing
1.3 Structure of a Real-Time System
1.4 Task Classes

1.5 Issues Covered in this Book

1.5.1 Architecture Issues
1.5.2 Operating System Issues
1.5.3 Other Issues

Characterizing Real-Time Systems and Tasks

2.1
22

23

Introduction

Performance Measures for Real-Time Systems
2.2.1 Properties of Performance Measures
2.22 Traditional Performance Measures
2.2.3 Performability

2.24 Cost Functions and Hard Deadlines
2.2.5 Discussion

Estimating Program Run Times

2.3.1 Analysis of Source Code

2.3.2 Accounting for Pipelining

233 Caches

2.34 Virtual Memory

>
<

SO OVOVVOWNHW -~

—

X CONTENTS

2.4

Suggestions For Further Reading
Exercises
References

3 Task Assignment and Scheduling

31

32

3.3

34

35
3.6
3.7

Introduction
3.1.1 How to Read This Chapter
3.1.2 Notation
Classical Uniprocessor Scheduling Algorithms
3.2.1 Rate-Monotonic Scheduling Algorithm
3.2.2 Preemptive Earliest Deadline First
(EDF) Algorithm
3.2.3 Allowing for Precedence and Exclusion Conditions*
3.24 Using Primary and Alternative Tasks
Uniprocessor Scheduling of IRIS Tasks
3.3.1 Identical Linear Reward Functions
3.3.2 Nonidentical Linear Reward Functions
333 0/1 Reward Functions
3.3.4 Identical Concave Reward Functions
(No Mandatory Portions)
3.3.5 Nonidentical Concave Reward Functions*
Task Assignment '
3.4.1 Utilization-Balancing Algorithm
3.42 A Next-Fit Algorithm for RM Scheduling
3.43 A Bin-Packing Assignment Algorithm for EDF
344 A Myopic Offline Scheduling (MOS) Algorithm
3.4.5 Focused Addressing and Bidding (FAB) Algorithm
34.6 The Buddy Strategy
347 Assignment with Precedence Conditions
Mode Changes
Fault-Tolerant Scheduling
Suggestions for Further Reading
Exercises
References

4 Programming Languages and Tools

4.1
4.2
4.3
44
4.5

4.6
4.7
4.8
4.9
4.10
4.11

Introduction

Desired Language Characteristics
Data Typing

Control Structures

Facilitating Hierarchical Decomposition
45.1 Blocks

4.5.2 Procedures and Functions
Packages

Run-Time Error (Exception) Handling
Overloading and Generics
Multitasking

Low-Level Programming

Task Scheduling

4.11.1 Task Dispatching Policy
4.11.2 Entry Queueing Policy

37
37
38

40

47
47
48

73
80
92

98
101
102

103
106
111
111
112
113
115
117
121
124
128
130
135
135
136

138
138
139
143
147
149
149
150
150
155
159
160
168
169
170
171

4.12
4.13

4.14
4.15

4.16

4.11.3 Protected Data Types
Timing Specifications

Some Experimental Languages
4.13.1 Flex

4.13.2 Euclid

Programming Environments
Run-Time Support

4.15.1 Compiler

4.15.2 Linker

4.15.3 Debugger

4.15.4 Kemel

Suggestions for Further Reading
Exercisess

References

Real-Time Databases

5.1
5.2
5.3

5.4
5.5
5.6
5.7

Introduction

Basic Definitions

Real-Time vs. General-Purpose Databases

5.3.1 Absolute vs. Relative Consistency

5.3.2 Need for Response-Time Predictability

5.3.3 Relaxing the ACID Properties

Main Memory Databases

Transaction Priorities

Transaction Aborts

Concurrency Control Issues

5.7.1 Pessimistic Concurrency Control

5.7.2 Optimistic Concurrency Control

Disk Scheduling Algorithms

A Two-Phase Approach to Improve Predictability

Maintaining Serialization Consistency

5.10.1 Serialization Consistency without Alteration of
Serialization Order

5.10.2 Serialization Consistency with Alteration of
Serialization Order

Databases for Hard Real-Time Systems

Suggestions for Further Reading

Exercises

References

Real-Time Communication

6.1

6.2

6.3

Introduction

6.1.1 <Communications Media
Network. Topologies

6.2.1 Sending Messages

6.2.2 Network Architecture Issues
Protocols

6.3.1 Contention-Based Protocols
6.3.2 ‘Token-based Protocols

6.3.3 Stop-and-Go Multihop Protocol
6.3.4 The Polled Bus Protocol

CONTENTS Xi

17
172
173
173
175
176
181
182
182
182
182

211

212
216
220
220
221

223

223
225
228
232
235
238
238
251
265
267

xii

CONTENTS

6.4

6.3.5 Hierarchical Round-Robin Protocol
6.3.6 Deadline-Based Protocols

6.3.7 Fault-Tolerant Routing
Suggestions for Further Reading

Exercises

References

7 Fault-Tolerance Techniques

7.1

7.2
7.3

7.4
1.5
7.6

7.7
78
7.9
7.10
7.11

Introduction

7.1.1 Definitions

What Causes Failures?

Fault Types

7.3.1 Temporal Behavior Classification

7.3.2 Output Behavior Classification

7.3.3 Independence and Correlation

Fault Detection

Fault and Error Containment

Redundancy

7.6.1 Hardware Redundancy

7.6.2 Software Redundancy

7.6.3 Time Redundancy-—Implementing Backward Error
Recovery

7.6.4 Information Redundancy

Data Diversity

Reversal Checks

Malicious or Byzantine Failures®

Integrated Failure Handling

Suggestions for Further Reading

Exercises

References

8 Reliability Evaluation Techniques

8.1
8.2

8.3

84

85

Introduction

Obtaining Parameter Values

8.2.1 Obtaining Device-Failure Rates

8.2.2 Measuring Error-Propagation Time
8.2.3 Choosing the Best Distribution*
Reliability Models for Hardware Redundancy
8.3.1 Permanent Faults Only

8.3.2 Fault Latency*

8.3.3 Introduction of Transient Faults
8.3.4 The Use of State Aggregation”
Software-Error Models

8.4.1 The Limited Usefulness of Software-Error Models
Taking Time into Account

Suggestions for Further Reading

Exercises

References

9 Clock Synchronization

9.1

Introduction

269
2n
275
276
276
278

280
280
282
283
285
285
286
287
288
288
289
290
300

306
310
315
316
316
322
323
324
325

327

327
328
328
328
330
331
333
339

348
349
353
355
358
358
359

361
361

Appendix

9.2

93
94

9.5

9.6

9.7

Clocks
9.2.1

CONTENTS

Synchronization

A Nonfault-Tolerant Synchronization Algorithm
Impact of Faults

9.4.1

Loss of Synchrony

Fault-Tolerant Synchronization in Hardware

9.5.1
9.5.2
953
954
9.5.5

Completely Connected, Zero-Propagation-Time System
Sparse-Interconnection, Zero-Propagation-Time System
Accounting for Signal-Propagation Delays
Multiple-Fault Classes

Advantages and Disadvantages of Hardware
Synchronization

Synchronization in Software

9.6.1
9.6.2
9.6.3

Interactive Convergence Averaging Algorithm, CAl
Interactive Convergence Averaging Algorithm, CA2
Convergence Nonaveraging Algorithm, CNA

Suggestions for Further Reading
Exercises
References

Review of Modeling Techniques

Review of Basic Probability Theory
Z-Transforms and Laplace Transforms

Some Important Probability Distribution Functions

Al
A2
A3

A4

A5
Ab

A3l
A32
A33
A34
A3S

The Uniform Distribution Functions
The Exponential Distribution Functions
The Poisson Process

The Erlangian Distribution

The Weibull Distribution Functions

Basics of Markov Modeling

A4l
A4.2
A43
A44

Discrete-Time Markov Chains

Continuous-Time Markov Chains

Some Additional Remarks about Markov Chains
The Method of Stages

A Brief Glimpse of Queueing Theory
Suggestions For Further Reading
References

Index

361
364
365
369
370
37
373
378
384
386

387
387
388
394
397
401
402
403

407
410
410
410
412
415
416
417
420
425
430
438
439
442
443

445

CHAPTER

1

INTRODUCTION

After writing a book on real-time systems, you might think that we would be able
to give you a precise, cogent statement of what a real-time system is. Unfortu-
nately, we cannot. If pressed for a definition, we might say something like this:

Any systermn where a timely response by the computer to external stimuli is
vital is a real-time system.

The above statement is true, but only because it is almost content-free. If
you take a second look at it, you will find that it raises as many questions as it
answers. If you decide to dig a little deeper by taking apart the above definition,
you might have the following dialogue with us:

You: What do you mean by “timely”?

Us: It means a real-time system runs tasks that have deadlines.

You: By *‘deadlines” do you mean that the task must be done by then?

Us: Not necessarily. Sometimes, yes: If you are controlling an aircraft by
computer and you miss a sequence of deadlines as the aircraft comes in to land,
you risk crashing the plane. Sometimes, no: If you are playing a video game and
the response takes a mite longer than specified, nothing awful will happen.

You: What do you mean by a task being “done”? Is there a sharp distinction
between when a task is “done” and when it is not?

Us: Not necessarily. Sometimes, yes: If you have a banking application that
needs to total some figures before it will let you draw a million dollars from your
checking account, then yes. Sometimes, no: If your application needs to calculate
the value of , it can decide either to stop early and accept a less accurate value,
or to continue calculating and make the estimate more and more accurate.

2 REAL-TIME SYSTEMS

'
)
'
)
'
)
1
'

Value
Value

]
1
'
'
]
'
1
'
1
1
'
]
'
1
1
'
!

Deadline Deadline

Value
LA

Deadline

FIGURE 1.1
Examples of task value functions.

You: What do you do with a real-time task that misses its deadline? Do you
drop it or complete it anyway?

Us: It depends. If you are on the aircraft that has crashed because a series of
deadlines has been missed, neither you nor the computer is in a position to care.
If, on the other hand, you have a video-conferencing application that encounters a
minor delay in processing a voice packet, you may decide not to drop that packet.
In any case, a task’s value will drop to a certain level after the deadline has been
missed. In some cases, it will be reduced abruptly to zero; in others, it will decline
more gradually. Figure 1.1 shows some examples.

You: Does this make every computer a real-time computer by your defini-
tion?

Us: Unfortunately, yes. If you read our definition too legalistically, the
general-purpose workstation or personal computer is also a real-time system: if
you hit the key and the computer takes an hour to echo the character onto the
screen, you will not be very happy. Everything is “real-time” in the sense of our
needing the result within a finite time. So, our definition covers all computers and
is therefore worthless.

You: Do you want to change your definition of real-time systems?

Us: Yes. The new definition is fuzzier, less sweeping, and not as clear-cut,
but it has the inestimable virtue of ending this argument.

A real-time system is anything that we, the authors of this book, consider to
be a real-time system. This includes embedded systems that control things
like aircraft, nuclear reactors, chemical power plants, jet engines, and other
objects where Something Very Bad will happen if the computer does not

INTRODUCTION 3

deliver its output in time. These are called hard real-time systems. There is
another category called (not surprisingly) soft real-time systems, which are
systems such as multimedia, where nothing catastrophic happens if some
deadlines are missed, but where the performance will be degraded below
what is generally considered acceptable. In general, a real-time system is
one in which a substantial fraction of the design effort goes into making
sure that task deadlines are met.

1.1 A CAR-AND-DRIVER EXAMPLE

To understand the major issues of real-time computing, consider a familiar prob-
lem of human control—driving a car. The driver is the real-time controller, the
car is the controlled process, and the other cars together with the road conditions
make up the operating environment. By understanding what is required of the
driver, we can understand something of the major issues in real-time computing.

The main actuators in a car are the wheels, the engine, and the brakes.
The controls are the accelerator, the steering wheel, the brake-pedal, and other
elements (such as the switches for the lights, radio, wipers, etc.).

What are the constraints that the driver must meet? She must get from her
starting point to the destination without colliding with other vehicles or stationary
objects and keep her speed within designated limits. Let us translate this into the
terms used in real-time computing.

The driver may be said to be performing a mission—that of getting to her
destination while satisfying the constraints mentioned above. How can we quantify
the driver’s performance? We measure the outcome of the driver’s actions, taken
in the context of the operating environment. One obvious outcome is getting to the
destination; a secondary consideration is the time it takes to get there. However,
our assessment of the time taken must be weighted by a consideration of the road
conditions: A driver may be performing very well if she maintains an average
speed of 15 mph in a snowstorm (and gets to her destination without killing or
maiming herself or anyone else); if the weather is dry and the roads are clear,
however, the same speed of 15 mph represents an abject failure.

Suppose the driver fails to get to her destination and instead ends up unhurt
in a ditch by the side of the road. Once again, our assessment of the driver’s
performance depends not just on the outcome—her landing in the ditch—but also
on what caused her to get there. If she was forced into the ditch to avoid a head-on
collision with someone driving on the wrong side of the road, we count that as a
success; if she went into the ditch by taking a turn too quickly and skidding, we
count that as a failure.

The point is that performance is not an absolute commodity. Performance
must be measured instead in terms of what the conditions allow. In other words,
performance measures the goodness of the outcome relative to the best outcome
possible under the circumstances. This is an important point, and we shall return
to it in Chapter 2.

Let us consider now the tasks that the driver must perform. Some of them
are critical to the success of the mission, and some are not. Steering and braking

4 REAL-TIME SYSTEMS

are critical tasks; tuning the radio is a noncritical task. Steering and braking are
real-time tasks with varying deadlines that depend on the operating environment.
The deadlines associated with driving down a quiet street at 6 o’clock on a Sun-
day morning are very different from those associated with driving along a busy
highway at the height of the rush hour. Task deadlines in real-time systems are
not constant; they vary with the operating environment.

What information do we need about the driver’s physical condition in order
to predict her performance? It is not sufficient to know that the driver will be
awake for 99.99% of her trip. If she falls asleep for more than a second or two
at a stretch, she will fail catastrophically. If, on the other hand, there are many
periods of “micro-sleep” along the way, each lasting no more than half a second,
the chances are high that she will not fail. Simple average measures are useless
to predict the performance of a real-time controller.

Even if she gets to her destination safely, it is possible that the micro-
sleeping driver has cause to brake and accelerate abruptly. This can increase her
fuel consumption; so even if she completes her mission successfully, her micro-
sleep has not been free of cost. It is possible to discriminate on the basis of
secondary factors, such as fuel consumption or time taken, among missions that
have been successfully completed.

Suppose we try to precisely specify the responsibilities of the driver. The
overall goal of the mission is clear: get to the destination safely, without commit-
ting any traffic violations. But what of the details? Suppose we are to include in the
specifications precisely what the driver must do in each conceivable eventuality.
How would we write such specifications and then ensure that the specifications
were complete? The reader might, as an exercise, try writing out a set of spec-
ifications in plain English. A few minutes of this activity will be sufficient to
convince him that to write a complete and correct set of specifications for even so
well understood a task as driving a car is extremely difficult. Writing out formal
specifications and validating them are perhaps the most difficult tasks in real-time
systems. They are also the tasks about which researchers know the least.

With this background, we now turn to listing some major issues in real-time
computing.

1.2 ISSUES IN REAL-TIME COMPUTING

A real-time computer must be much more reliable than its individual hardware
and software components. It must be capable of working in harsh environments,
rich in electromagnetic noise and elementary-particle radiation, and in the face of
rapidly changing computation loads.

The field of real-time computing is especially rich in research problems be-
cause all problems in computer architecture, fault-tolerant computing, and operat-
ing systems are also problems in real-time computing, with the added complexity
that real-time constraints must be met.

For example, take task scheduling. The purpose of task scheduling in a
general-purpose system is fairness, by which we mean that the computer’s re-
sources must be shared out equitably among the users. This end is usually achieved

