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PREFACE

Real-time systems have proliferated over the past few years. Today, computers
are found embedded in almost everything, from toasters to cars to fly-by-wire
aircraft. The computational workload of such embedded systems varies widely,
from machines expected to do a few arithmetic operations every second to com-
puters executing complex calculations at tremendous rates. The consequences of
computer failure also vary widely, from burnt toast at the one extreme to the loss
of life in an air crash or a chemical plant explosion at the other.

The objective of this book is to introduce readers to design and evaluation
issues in such systems. We cover a wide range of topics; both hardware and
software issues are treated in some detail. We expect this book to be used by both
practicing engineers and graduate or final-year undergraduate students. .

Some of the discussion is mathematical. Wherever possible, we have sepa-
rated the more mathematical portions from the descriptive. This enables the text
to be read at multiple levels. The more advanced sections are starred (x); these
require additional perseverance or ability to understand them, and can be skipped
if necessary. However, we urge the reader to avoid skipping the mathematical
portions. Most often, avoidance of mathematics is grounded on nothing more
substantial than a primitive fear of and negative associations with mathematical
symbols. A true understanding of many of the issues covered here cannot be
achieved without understanding their mathematical underpinnings.

This book contains far more material than can comfortably be covered in a
one-semester course. Instructors may decide to concentrate on particular topics,
for example, task assignment and scheduling, or fault-tolerance. Alternatively,
they may decide to present a wide-ranging survey of the various topics of interes
to the real-time systems engineer. To enable both approaches to be used, we have
tried to make the chapters as independent of one another as possible. In addition,
this allows the book to be used as a reference handbook by the practicing engineer.
Typographical or other errors should be reported to the authors at

rtbook@tikva.ecs.umass.edu
We plan to maintain a page of errata on the World Wide Web at
http://www.ecs.umass.edu/ece/gradfac/krishna.html
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CHAPTER

1

INTRODUCTION

After writing a book on real-time systems, you might think that we would be able
to give you a precise, cogent statement of what a real-time system is. Unfortu-
nately, we cannot. If pressed for a definition, we might say something like this:

Any systermn where a timely response by the computer to external stimuli is
vital is a real-time system.

The above statement is true, but only because it is almost content-free. If
you take a second look at it, you will find that it raises as many questions as it
answers. If you decide to dig a little deeper by taking apart the above definition,
you might have the following dialogue with us:

You: What do you mean by “timely”?

Us: It means a real-time system runs tasks that have deadlines.

You: By *‘deadlines” do you mean that the task must be done by then?

Us: Not necessarily. Sometimes, yes: If you are controlling an aircraft by
computer and you miss a sequence of deadlines as the aircraft comes in to land,
you risk crashing the plane. Sometimes, no: If you are playing a video game and
the response takes a mite longer than specified, nothing awful will happen.

You: What do you mean by a task being “done”? Is there a sharp distinction
between when a task is “done” and when it is not?

Us: Not necessarily. Sometimes, yes: If you have a banking application that
needs to total some figures before it will let you draw a million dollars from your
checking account, then yes. Sometimes, no: If your application needs to calculate
the value of , it can decide either to stop early and accept a less accurate value,
or to continue calculating and make the estimate more and more accurate.
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FIGURE 1.1
Examples of task value functions.

You: What do you do with a real-time task that misses its deadline? Do you
drop it or complete it anyway?

Us: It depends. If you are on the aircraft that has crashed because a series of
deadlines has been missed, neither you nor the computer is in a position to care.
If, on the other hand, you have a video-conferencing application that encounters a
minor delay in processing a voice packet, you may decide not to drop that packet.
In any case, a task’s value will drop to a certain level after the deadline has been
missed. In some cases, it will be reduced abruptly to zero; in others, it will decline
more gradually. Figure 1.1 shows some examples.

You: Does this make every computer a real-time computer by your defini-
tion?

Us: Unfortunately, yes. If you read our definition too legalistically, the
general-purpose workstation or personal computer is also a real-time system: if
you hit the key and the computer takes an hour to echo the character onto the
screen, you will not be very happy. Everything is “real-time” in the sense of our
needing the result within a finite time. So, our definition covers all computers and
is therefore worthless.

You: Do you want to change your definition of real-time systems?

Us: Yes. The new definition is fuzzier, less sweeping, and not as clear-cut,
but it has the inestimable virtue of ending this argument.

A real-time system is anything that we, the authors of this book, consider to
be a real-time system. This includes embedded systems that control things
like aircraft, nuclear reactors, chemical power plants, jet engines, and other
objects where Something Very Bad will happen if the computer does not
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deliver its output in time. These are called hard real-time systems. There is
another category called (not surprisingly) soft real-time systems, which are
systems such as multimedia, where nothing catastrophic happens if some
deadlines are missed, but where the performance will be degraded below
what is generally considered acceptable. In general, a real-time system is
one in which a substantial fraction of the design effort goes into making
sure that task deadlines are met.

1.1 A CAR-AND-DRIVER EXAMPLE

To understand the major issues of real-time computing, consider a familiar prob-
lem of human control—driving a car. The driver is the real-time controller, the
car is the controlled process, and the other cars together with the road conditions
make up the operating environment. By understanding what is required of the
driver, we can understand something of the major issues in real-time computing.

The main actuators in a car are the wheels, the engine, and the brakes.
The controls are the accelerator, the steering wheel, the brake-pedal, and other
elements (such as the switches for the lights, radio, wipers, etc.).

What are the constraints that the driver must meet? She must get from her
starting point to the destination without colliding with other vehicles or stationary
objects and keep her speed within designated limits. Let us translate this into the
terms used in real-time computing.

The driver may be said to be performing a mission—that of getting to her
destination while satisfying the constraints mentioned above. How can we quantify
the driver’s performance? We measure the outcome of the driver’s actions, taken
in the context of the operating environment. One obvious outcome is getting to the
destination; a secondary consideration is the time it takes to get there. However,
our assessment of the time taken must be weighted by a consideration of the road
conditions: A driver may be performing very well if she maintains an average
speed of 15 mph in a snowstorm (and gets to her destination without killing or
maiming herself or anyone else); if the weather is dry and the roads are clear,
however, the same speed of 15 mph represents an abject failure.

Suppose the driver fails to get to her destination and instead ends up unhurt
in a ditch by the side of the road. Once again, our assessment of the driver’s
performance depends not just on the outcome—her landing in the ditch—but also
on what caused her to get there. If she was forced into the ditch to avoid a head-on
collision with someone driving on the wrong side of the road, we count that as a
success; if she went into the ditch by taking a turn too quickly and skidding, we
count that as a failure.

The point is that performance is not an absolute commodity. Performance
must be measured instead in terms of what the conditions allow. In other words,
performance measures the goodness of the outcome relative to the best outcome
possible under the circumstances. This is an important point, and we shall return
to it in Chapter 2.

Let us consider now the tasks that the driver must perform. Some of them
are critical to the success of the mission, and some are not. Steering and braking
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are critical tasks; tuning the radio is a noncritical task. Steering and braking are
real-time tasks with varying deadlines that depend on the operating environment.
The deadlines associated with driving down a quiet street at 6 o’clock on a Sun-
day morning are very different from those associated with driving along a busy
highway at the height of the rush hour. Task deadlines in real-time systems are
not constant; they vary with the operating environment.

What information do we need about the driver’s physical condition in order
to predict her performance? It is not sufficient to know that the driver will be
awake for 99.99% of her trip. If she falls asleep for more than a second or two
at a stretch, she will fail catastrophically. If, on the other hand, there are many
periods of “micro-sleep” along the way, each lasting no more than half a second,
the chances are high that she will not fail. Simple average measures are useless
to predict the performance of a real-time controller.

Even if she gets to her destination safely, it is possible that the micro-
sleeping driver has cause to brake and accelerate abruptly. This can increase her
fuel consumption; so even if she completes her mission successfully, her micro-
sleep has not been free of cost. It is possible to discriminate on the basis of
secondary factors, such as fuel consumption or time taken, among missions that
have been successfully completed.

Suppose we try to precisely specify the responsibilities of the driver. The
overall goal of the mission is clear: get to the destination safely, without commit-
ting any traffic violations. But what of the details? Suppose we are to include in the
specifications precisely what the driver must do in each conceivable eventuality.
How would we write such specifications and then ensure that the specifications
were complete? The reader might, as an exercise, try writing out a set of spec-
ifications in plain English. A few minutes of this activity will be sufficient to
convince him that to write a complete and correct set of specifications for even so
well understood a task as driving a car is extremely difficult. Writing out formal
specifications and validating them are perhaps the most difficult tasks in real-time
systems. They are also the tasks about which researchers know the least.

With this background, we now turn to listing some major issues in real-time
computing.

1.2 ISSUES IN REAL-TIME COMPUTING

A real-time computer must be much more reliable than its individual hardware
and software components. It must be capable of working in harsh environments,
rich in electromagnetic noise and elementary-particle radiation, and in the face of
rapidly changing computation loads.

The field of real-time computing is especially rich in research problems be-
cause all problems in computer architecture, fault-tolerant computing, and operat-
ing systems are also problems in real-time computing, with the added complexity
that real-time constraints must be met.

For example, take task scheduling. The purpose of task scheduling in a
general-purpose system is fairness, by which we mean that the computer’s re-
sources must be shared out equitably among the users. This end is usually achieved



