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The Influence of Chaperonins
on Protein Folding

A Mechanism for Increasing the Yield
of the Native Form

S. G. BURSTON, R. SLEIGH, D. J. HALSALL, C. J. SMITH,
J. J. HOLBROOK, AND A. R. CLARKE

Molecular Recognition Center and
Department of Biochemistry
University of Bristol
School of Medical Sciences
Bristol BS8 1TD, England

Molecular chaperones are proteins that promote the correct folding, assembly, and
transport of other protein molecules.! The most widely studied of the molecular
chaperones are the chaperonins; these form a subgroup found in prokaryotic cells, in
mitochondria, and in plastids.>> They are oligomeric proteins of high molecular
weight, which work in conjunction with a smaller, also oligomeric, coprotein. One
such chaperonin is cpn6Q from Escherichia coli, the product of the gro-EL gene locus.
This has a subunit mass of approximately 60,000 daltons, and the whole protein exists
as an assembly of 14 subunits in a “double-doughnut” structure, each ring compris-
ing 7 subunits. The coprotein is produced by the gro-ES locus and is termed cpn10 by
virtue of its 10,000-dalton subunit molecular weight. Cpnl0 exists as a “single-
doughnut” structure of 7 subunits.® In conjunction, these proteins have been shown
to aid the folding and/or assembly of bacteriophages, multimeric and monomeric
protein molecules.”8

They function by binding to unfolded or partially folded protein molecules and,
by transducing the energy of ATP hydrolysis, increasing the yield of the natively
assembled form.? The mechanistic detail of this process remains undefined.

Here we report on preliminary kinetic experiments that explore the interactions
of cpn60 with (a) the folding intermediates of Bacillus stearothermophilus lactate
dehydrogenase (LDH), (b) with ATP and an unreactive analogue (AMP-PNP), and
(c) with the coprotein cpnl0. From these results with LDH we suggest a mechanism
that explains the ability of chaperonins to improve the efficiency of protein folding in
general.

THE BINDING OF cpn60 TO PROTEIN-FOLDING INTERMEDIATES

When bacterial LDH is unfolded to equilibrium in solutions of the denaturant
guanidinium chloride (Gdm-Cl), four structural states of the protein can be iso-
lated.!” The native state (NN) is a dimer which dissociates to give, at 1.0 M Gdm-Cl,
an inactive monomer (N). This unfolds to give, at 2.2 M Gdm-Cl, an expanded
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monomer (G) which retains 60% of its alpha-helix content but is freely penetrated by
solvent. At 4.0 M Gdm-Cl, the protein is fully unfolded (U).

Previous results have shown that when LDH is allowed to renature from
increasingly unfolded states, cpn60 can retard refolding when initiated from the
unfolded state (U) but not from the “molten globule” (G), or the monomer (N1 A
kinetically identifiable, but structurally undefined, intermediate (INT) which occurs
on the conversion from U to G is also bound by ¢pn60. A summary of the folding
intermediates of LDH is presented in FIGURE 1.

From the above observations we conclude that cpn60 associates most strongly
with the least-folded forms of the protein and not with its molten globule state.

To seek a fuller description of this process, we measured the return of LDH
activity over a continuous time course when the fully denatured LDH refolded in the
presence and absence of cpn60 (see FIGURE 2a). LDH folding alone proceeds by two,
slow, unimolecular steps (U — INT — G) and an apparent bimolecular step
(2G — NN). To describe refolding in the presence of cpn60, further steps must be
introduced to account for the interactions of these folding intermediates with the

€—— =M UNFOLDING
STATE4 STATE3 STATE STATE1

@%ﬁﬁigﬁg

EE T

u — INT —> G —> NN

FOLDING KINETICS ——)

FIGURE 1. The folding mechanism of lactate dehydrogenase. The equilibrium (=M) and
kinetic states identifiable in LDH folding are summarized. In the former experiments,'” state 1
(NN) is native, state 2 (N) predominates at 1.0 M Gdm-Cl, state 3 (G) at 2.2 M Gdm-Cl, and
state 4 (U) at and above 4.0 M Gdm-Cl. In the kinetics of refolding,'! the protein passes from U
to G in two, slow unimolecular steps (3 x 1073 and 15 x 1073 seconds !, see FIGURE 2b). As
protein refolding is performed at low protein concentration, the conversion of G to NN is
measured as a single bimolecular step with an apparent rate constant of 5 X 10° M~ ! seconds ™!
{see FIGURE 2b).
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**[ ~.UNFOLDED LDH a)

¢

+ CPN60

4340

TIME (S)

b)

-3 - e 5 -l
.3, -15.10°5" | k=5.10°M"'S
U k=3.10"S INT .k 15.10 3 G » NN

,k cK=1 nM Ik cK= 20nM /k cK= 400-M

CiU—=>C:INT. C:G
k=10 "s™ k210 "'s

FIGURE 2. The association of cpn60 with LDH during refolding. (a) Aliquots of unfolded
LDH (in 4.0 M Gdm-Cl/2 mM dithiothreitol) were added to an enzyme assay mix (0.2 mM
NADH/10 mM pyruvate/2 mM dithiothreitol/50 mM triethanolamine-HCl pH 7.0). As the
enzyme (final subunit concentration 20 nM) refolded, the turnover of NADH was measured by
continuously recording absorbance at 340 nm. The experiment was performed in the presence
and absence of 200 nM cpn60 (14-mer). The points on the curve represent the best fit of the
model described below to the experimental data. (b) Model summarizing the results of fitting
these curves by numerical integration using the FACSIMILE program.!2 The folding kinetics in
the absence of cpn60 (C) are represented on the top line and those steps necessary to describe
the interactions of intermediates with the chaperonin are included underneath (binding is
described by a dissociation constant K). The analysis demonstrates that the more folded the
LDH becomes, the less is its propensity to bind to cpn60.

chaperonin; this goes beyond what is feasible with standard analytical methods, so
numerical integration was used to fit these continuous time courses of refolding.
The model shown in FIGURE 2b is the simplest that will fit the experimental
observations; it confirms that cpn60 binds most tightly to the least structurally
organized forms of LDH and shows that folding can occur on the surface of the
chaperonin, but at a much retarded rate. This latter point is supported by the
experimental observation that the presence of cpn60 increases the yield of active
LDH by two- to threefold when allowed to fold from the fully denatured state.!! The
implication is that, by virtue of its slow folding on the chaperonin surface, the
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early-folding intermediates of LDH are sequestered from the bulk phase and are
therefore protected from irreversible aggregation.

THE INFLUENCE OF NUCLEOTIDE BINDING IN
THE ABSENCE OF HYDROLYSIS

Cpn60 is known to bind and hydrolyze ATP, this process mediating release of
bound protein substrates.® To begin to investigate this aspect of chaperonin function,
we have recorded continuous LDH-folding curves in the presence of cpno60 and at
increasing concentrations of the nonhydrolyzable ATP analogue AMP-PNP. The
results are shown in FIGURE 3, together with the analysis by numerical integration.
This requires the introduction of new binding steps describing the interaction of the
nucleotide with cpn60. The result is striking in that the cpn60/LDH complex gets
weaker as the protein folds, but the binding of nucleotide to cpn60 gets stronger. The
apo-cpn60 has a Ky for nucleotide of 2 pM (the same as that predicted for the
unstable cpn60/molten globule complcx), whereas in the stable cpn60/unfolded
LDH complex the K, rises to 200 wM. We conclude that cpn50 can adopt at least two
structural forms: one associates preferentially with nucleoside-triphosphates, one
with unfolded proteins; nucleotide hydrolysis is not a prerequisite of protein re-
lease.!!

ANALYSIS OF FOLDING TIMES AND EFFICIENCY—THE EFFECT OF ATP
HYDROLYSIS AND THE BINDING OF THE COPROTEIN CPN10

A simplified analysis of the rate of refolding can be made by measuring the lag
time for the regaining of LDH activity (defined in FIGURE 4b} in the presence of
ligands and cofactors. The influence of AMP-PNP and ATP on the lag time for
refolding in the presence of cpn60 is shown in FIGURE 4a. In both cases their effects
on LDH release are half-saturated at a concentration of 100-200 wM; this is in
accord with the model presented in FIGURE 3. However, at saturating concentra-
tions, ATP is able to reduce the lag time further than is AMP-PNP. This shows that
either ATP itself or its turnover products, ADP - P, are better at displacing LDH
from cpn60 than is AMP-PNP. In view of the data presented in FIGURE 4, the latter
seems more likely.

FIGURE 4a also shows the effect of cpn10 on LDH displacement by AMP-PNP.
The result demonstrates that cpn10 alone promotes displacement, but inhibits the
binding/displacement effect of AMP-PNP. This latter effect then appears to be
cooperative. This observation is, at first sight, puzzling, but can be explained if we
accept that the hydrophobic cpn10'? binds to the same form of cpn60 as unfolded
LDH, thus further reducing its nuclcoside-triphosphate affinity. This interaction may
lead to a degree of cpn10/LDH competition for hydrophobic binding faces on cpn60.

The bar chart in FIGURE 5 summarizes these effects on lag times for folding and
illustrates the important point that even in optimal conditions for LDH release from
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0 TIME (S) 5000
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U » INT, ——————» G — NN
by
C C ///
10M 20nM
‘7
C:U p C:INT.---- <Zl p C:
/
A A / A
. 2 uM
200uM 20uM , M
A:C:U » A:C:INT.------- » A:C

FIGURE 3. The interaction of cpn60 with AMP-PNP. (a) Unfolded LDH (20 nM) was added
to an assay medium containing 200 1M cpn60 as described for FIGURE 2. AMP-PNP was
omitted for curve A and present at 0.05 mM for B, 1.25 mM for C, and 3.75 mM for D. (b) This
scheme summarizes the apparent binding affinities of AMP-PNP (A) for the chaperonin:
protein complexes (see also FIGURE 2). The numerical values represent dissociation constants.
The result emphasizes that the nucleotide binds most tightly to apo-cpn60 and most weakly to
the most stable cpn60-protein complex (C:U). In these conditions the interaction of G with the
chaperonin is sufficiently weak that the C:G and A:C:G complexes never accumulate. This is
indicated by the dashed lines showing C:INT and A:C:INT decaying to products at a rate
limited by the folding rather than the dissociation rate.

cpn60 (high [ATP] plus cpnl0), the rate of refolding is not enhanced. In these
conditions, however, the yield is improved dramatically and over a short time period.
This result is presented in full in FIGURE 4b and shows that at high ATP concentra-
tions cpn60 can increase the yield of active LDH over a time period approaching that
of “unaided” folding. The inclusion of cpnl0 accelerates this effect still further. In
the natural cellular environment the chaperonin system comprises cpn6(, cpnl0, and
ATP: we must therefore extend the model shown in FIGURE 3 to account for this.
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FIGURE 4. Lag times for folding; the concentration dependence of nucleotides and the effect
of cpnl0. Assays measuring the regaining of LDH activity were performed as deseribed in
FIGURES 2 and 3, and the lag time for renaturation recorded. Plot a shows the dependence of lag
times on nucleotide concentration. In the case of experiments in the presence of cpnl0, the
concentration of 7-mer was 300 nM. Three progress curves are shown in b: LDH refolding in
the absence of chaperone (giving the definition of the lag time) and in the presence of
cpn60/3.75 mM ATP and cpn60/cpnl0/3.75 mM ATP. The latter are included to show the
improvement of yield in these conditions which occurs over a period comparable to that of
unchaperoned folding.



BURSTON ef al.: CHAPERONINS 7

A PRELIMINARY MECHANISM TO EXPLAIN THE ACTION OF
CHAPERONINS IN IMPROVING THE EFFICIENCY OF PROTEIN FOLDING

Several properties of cpn60 are shown by the results presented here. They are:

1. The protein binds most tightly to the most unfolded forms of LDH, thereby
stabilizing these states preferentially. We propose that the affinity is dictated
by the degrec of exposure of hydrophobic residues.

2 Release of the substrate protein is facilitated by the binding of AMP-PNP.
This effect is more pronounced in the case of ATP; possibly duc to the
formation of a cpn60/ADP - P; complex through hydrolysis.
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FIGURE 5. Summary of folding times; the influence of cpné0, cpnl10, and nucleotides. The lag
times for the regaining of LDH activity were measured as described for FIGURES 2, 3, and 4 and
are represented here as a histogram. The asterisks mark conditions in which the yield 1s
improved.

3. The binding of cpn10 to cpné0 stabilizes the form that associates strongly with
unfolded proteins, not the one that binds AMP-PNP. In doing this, it
competes for the hydrophobic binding surface.

4. In optimal conditions (i.e., with cpnl0 and ATP), the chaperonin is able to
increase the yield of folded protein over a short time period. We see no
increase in the rate of folding. These observations demonstrate the ability of
the chaperonin either to prevent misfolding or to convert misfolded protein to
the native state. We suggest that the latter is more likely.

The previous results of Chandrasekhar ez al.'* show that:

5. Cpnl0 associates with cpn60 after prolonged incubation with ATP, suggesting
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that hydrolysis is required. It does not associate in the presence of nonhydro-
lyzable analogues. This accords with number 3 above.

6. The rate of ATP hydrolysis by cpn60 is enhanced by association with unfolded
protein and inhibited by cpn10.%!* We suggest that cpn10 stabilizes a product
of ATP hydrolysis in the cpn60 nucleotide site, preventing constant turnover.
This product is unlikely to be ADP - P; as this would lock the chaperonin in a
state that has a low affinity for protein substrates. For the mechanistic model,
we tentatively suggest that this product is ADP.

The experimental observations are consistent with the mechanism presented in
FIGURE 6. When LDH folds from the completely denatured state, a minority
(10-15%) folds correctly. Misfolded structures, by virtue of their exposed hydropho-
bic surfaces, bind to the cpn60/cpn10/ADP complex (step A), this induces the
substrate protein to unfold (step B). Cpnl10 is then competitively displaced (step C),
allowing release of ADP and association of ATP (step D). This reduces the affinity of
cpné60 for the unfolded protein, and the hydrolysis of ATP to give ADP - P; (step E)
amplifies this eflect. The unfolded protein is then released (step F), followed by P,
(step G), and the reassociation of cpn10 (step H) returns the system to its original
state.

The net result of this cycle is to use the energy of hydrolysis of ATP to drive the
unfolding of misfolded protein. Chaperonins therefore prevent irreversible aggrega-
tion of misfolded structures by recycling them. This allows proteins to refold to their
native conformation through self-assembly and requires no specific recognition
event.
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