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Author’s Preface

The purpose of these lectures is to give historical background and leisurely
accounts of some important results in analysis in this century.Most of the results in
classical analysis and the theory of partial differential operators are associated with
Swedish mathematicians, but we also include the Tarski-Seidenberg theorem and
Wiener’s classical results in harmonic analysis, which have demonstrated over time
that simple things may lie behind problems that were once very famous and that
engendered much work.

It goes without saying that the circle of problems treated here represent just a
tiny fraction of the thousands of important results in analysis. Personal affinity
rather than systematic selection has determined my sample.

The inspiration for the lectures was an invitation to join the centenary of
Wuhan University in 1993.For various reasons I was not able to attend at that time,
but I gave some of the lectures when I visited Nankai, Wuhan, Fudan, Jilin and
Beijing universities a year later. I want to express my gratitude for the courtesy
extended to me by all these universities.

I also thank Professor Li Ta-Tsien for arranging the printing of my lectures and
their translation into Chinese. The present expanded version, including lectures on
Picard’s great theorem, Nevanlinna theory, and a personal essay on the impact of
distributions in analysis, has been accepted by the American Mathematical Society
and Higher Education Press, P.R.China.! Finally, I thank Jana Madjarova for
careful proofreading, Natalya Pluzhnikov for expert editing, and Sven Spanne for
helping me with a tricky font.

Lars Garding
Lund, 1997

! The original title, “Some problems of analysis and their history”, has now been changed to
“Some points of analysis and their history™.
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CHAPTER 1
Picard’s Great Theorem

Introduction

Charles Emile Picard (1856-1941) is famous for Picard’s theorem. In its gen-
eral form it says that a meromorphic function assumes all but two values in any
neighborhood of an isolated essentially singular point. Note that a meromorphic
function may have poles of finite order and that these are not essential singularities.

In all proofs the assumption that f avoids three different values in a neighbor-
hood of an isolated essentially singular point leads to a contradiction. Picard’s own
proof was an unexpected fruit of the theory of elliptic functions. His tool was the
so-called modular function, the result of half a century of intense study.

Picard’s theorem was a radical improvement on Weierstrass’s result that an
analytic function comes arbitrarily close to any given value in any neighborhood
of an isolated essentially singular point, but the theorem seemed mysterious for
several reasons. The use of modular functions was out of proportion with the simple
formulation of the theorem and gave no hint why precisely two exceptional values
were the maximum. In the many later proofs of Picard’s theorem the modular
function was first eliminated by the use of various inequalities by Borel (1897) and
Schottky (1904). Landau (1916, 1929) gave a terse account of Schottky’s inequality
in his classic Neuere Ergebnisse der Funktionentheorie. Rolf Nevanlinna’s book
(1929) was motivated by Picard’s theorem and contains it as a special case of a
general theory of the exceptional values of functions which are meromorphic outside
a compact set, the point infinity excepted. Nevanlinna’s theory will be sketched
in Chapter 4. Finally, in (1935b) Lars Ahlfors gave a topological explanation why
there are at most two exceptional values.

Tha aim of this paper is to present or at least sketch some of the proofs in this
turn of events, starting with Picard’s own proof.

Picard’s proof

The task is to prove that a meromorphic function cannot avoid three values
in any neighborhhod of an isolated essentially singular point. Here the exceptional
values may be taken to be 0, 1, co so that it suffices to consider an analytic function
at an isolated essentially singular point which does not take the values 0 and 1. In
fact, if the values not taken are g, b, ¢, the function

_f(2)—a c—a
92 =55 e

avoids the values 0,1, 0o, even if one of a,b, ¢ already is infinity, and if f has an
isolated essential singularity at zp, so does g and conversely.
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2 SOME POINTS OF ANALYSIS

Picard proved two versions of his theorem. The first one (1879) says that an
entire function whose range avoids two separate complex numbers is a constant.
The main theorem was proved one year later (1880). In his papers he could just
refer to known properties of modular functions. For completeness we shall now
describe the one he used.

The modular function

The elliptic integral

v 1
v= /o VA -0 - .

where the module 2 is not 0,1, 0o, defines Jacobi’s elliptic function y = s(, u), the
sinus emplitudinis. For 0 < k? < 1 it has two canonically defined periods o4, 02
obtained by integration along certain closed cycles on the Riemann surface of the
curve y? = (1 — z2)(1 — k2x?). All other periods are then linear combinations of
these two periods, which can always be chosen so that the quotient w = o1 /o3 has
a positive imaginary part.

When the module z = x2 avoids the values 0, 1, 00, the quotient w = w(z) is
an analytic many-valued function of z = k2 with values in the upper half-plane.
Under closed loops, w(z) is subject to certain Mo6bius transformations which form
a discrete group I'. More precisely, the images under w of the lower and upper
half-planes form a ‘tesselation of the upper hali-plane by non-Euclidean triangles
with all three corners on the real axis. The inverse of w is a function from the upper
half-plane to itself which is automorphic in the sense that it is invariant under T.

Picard’s two papers

In his first paper Picard used only the fact that the quotient w = w(2) is
analytic and many-valued with values in the upper half-plane when z is not equal
to 0,1,00. After a Méobius map which makes an entire function f(z) avoid the
points 0,1, the proof of Picard’s first theorem is now obvious: w(f(z)) can be
continued analytically everywhere in the complex plane, hence it is a single-valued
entire function with range in the upper half-plane and must be constant so that f
is constant.

Very soon afterwards Picard could prove also his second theorem by a variation
of the same trick. Actually, Picard’s proof is elementary modulo the existence of
an automorphic function defined in the upper half-plane. It is difficult to read only
because the author uses the theory of M6bius maps in a complicated way. This
was before the present canonical theory of linear algebra, and it is hoped that the
rendering of the proof below is more readable. For completeness the text includes
a sketch of the classical construction of automorphic functions. '

Mobius maps
A Mobius map is an invertible fractional linear map

. az+b
—
cz+d’

ad —bc=1,
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with complex coefficients. When A is the matrix (a,b)/(c, d), it is convenient to

write the right side above as
az+b

cz+d

Alz] =
It is immediate to verify that A4 is invertible and that
AB[z] = (AB)|z].
Reflection z — w in a circle with center « and radius r is given by the formula

(z - a)(w—a) =712

and it is known by elementary geometry that reflections map circles to circles. Qur
map may be written as w = A[Z] with a certain invertible matrix 4. Hence every
reflection in circles (including straight lines) is an improper Mébius map, that is, a
Mébius map preceeded or followed by a conjugation. The product of two such maps
is a Mébius map. In fact, all proper and improper Moébius maps form a group, the
full Mobius group M, generated by reflections. All its elements map circles into
circles.
\

Tesselations of the upper half-plane. Automorphic functions

A triangle bounded by circular arcs which touch each other at the corners so
that all corner angles vanish needs a simple name. Let us call it a vanishing triangle.
Automorphic functions are closely connected with tesselations of the upper half-
plane H by vanishing triangles with all corners on the real axis. Such a tesselation
may start with a triangle K in H bounded by the lines £ = 0 and 2 = 1 and the
half-circle [z — 1/2| = 1/2. Reflections in the sides will then give three adjoining
vanishing triangles whose sides like those of K meet the real axis under right angles
and belong to H. Repeated reflections will then produce a tesselaticn of the upper
half-plane.! At the same time they generate a subgroup G of the full Mébius group
which maps the tesselation to itself. This group is discrete in the sense that if
A,B € Gand z€ H, then A = B when Az and B are sufficiently close.

We can now construct automorphic functions simply by using Riemann’s map-
ping theorem to map K conformally to the upper half-plane H by a function ¢
which maps the corners 0,1, 0o to themselves. If a reflection R maps K to any of
its neighbors, then, by Schwarz’s reflection principle, ¢(z) = o(R™!z) extends ¢ to
RK across their common boundary in such a way that RK is mapped to the lower
half-plane. Continuing this process we have a function I(z) defined in the upper
half-plane and invariant under G. The corners of the tesselation are all mapped to
one of the points 0,1, 0o.

The inverse function J(z) is many-valued but has the crucial property of being
singular only at the points 0,1,00. When z runs through a closed path -y from
zo € H back to 29 which avoids these points, then J(z) assumes a new value
A[J(z0)] for some 4 € G. Since +y crosses the real line an even number of times, we
are sure that A is a Mobius map. ’

IThe reader is advised to draw a figure himself or to look up a corresponding figure in some
standard treatise.
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Normal forms of Mdbius maps of H

In our version of Picard’s proof of his theorem, we shall need to know the normal
forms of Mobius maps z — A|z] of H to itself. Then the real axis is mapped to
itself so that A may be assumed to be real. Further, since

az+b Im =z
Mz rd (ad_bc)lcz+d|2’

the determinant ad — bc is positive. We normalize it to 1. Then the eigenvalues
of A have the form A, 1/X and, since their sum is real, they are either both real or
both of absolute value 1.

The possible normal forms of A under similarity maps A — SAS™! are as
follows:

1. Two complex eigenvalues, S maps H to the unit circle and SAS~! = D is
diagonal with non-real elements e, e~%.

2. Two real eigenvalues A > 1 and 1/, S maps H to itself, SAS~! is diagonal
with elements A, 1/A. :

3. Two eigenvalues equal to 1, A is not diagonalizable, but there is an § which
maps H to itself such that SAS~! is the matrix (1,1)/(0,1).

4. A is the unit matrix.

Proof of Picard’s theorem
Using the elementary statements of the previous section we can now prove the

THEOREM. A function f(z) wkich is analytic and single-valued when restricted
to a meighborhood N of oo can avotd at most one value.

In the proof we may assume that f(z) is never 0 or 1 and use the inverse J(z)
of the automorphic function I(z) defined above. The following lemma is taken as
a matter of course by Picard.

LEMMA. With f as above, the function g(z) = J(f(2)) is analytic in a con-
nected neighborhood N of oo with values in H and, under a turn T in N in positive
direction around the origin,

(1) Tg(z) = Alg(2)]

for some Mobius map A € G.

PRrROOF. Since f(z) is never 0,1,00, g(z) can be continued analytically and
indefinitely in N. Also, if T refers to a path v+ C N in positive direction from
a point zp and back, it is clear that (1) holds with 2 = 2y and some A € G. A
slight modification of v will change A to some A’ € G close to A, but since G is
discrete, A’zp cannot come arbitrarily close to Azp unless A’ = A. Hence A does
not depend on the choice of . Similarly, it cannot depend on the choice of 25. The
last statement follows from Weierstrass’s theorem.

In the rest of the proof we shall see that (1) leads to situations where the
range of f(z) for large z cannot be dense in the upper half-plane contradicting
Weierstrass’s theorem.
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1. Suppose that A has complex eigenvalues ', e~*¢ and let S be a diagonalizing
matrix mapping H to the unit disk. We may assume that 0 < 8 < 7. Then

S[Tg(2)] = €*¥S[g(2)]

so that
Slg(2)] = 2°/"h(2)

where h(z) is single-valued and |S[g(2)]| < 1. This is possible only if h(z) = O(1/z)
and then the left side tends to zero as 2 — oco. But then g(z) = J(f(z)) has a limit
in the upper half-plane as z — 00 so that f cannot be singular at infinity.

2. Suppose that A has real eigenvalues A > 1 and 1/ so that SH C H. Now
zlo8>/7t changes by a factor of A2 under T and hence

S[T"g(2)] = 218 Ami(z)

where h(z) is single-valued and the left side belongs to H. Here, since log A > 0,
we can put z = ™/ %82 where m > 0 is a large integer and then the range of

enr!ogA/ri nm/ni

=e
is dense in the unit circle when n varies. Hence g(z) is not in H and this is a

contradiction.
3. We may suppose that SA[w] = w + 1 and that SH C H. Then

(@) S[Tg(2)) = 5= + h(2)

for all n where h(z) is analytic and single-valued for large arguments. Hence

eiS[Tg(z)] - zl/21reih(z)

where the left side is bounded and its range dense in the unit disk for all regions
|z| > const. But then ¢} tends to zero at least as 1/z and this is a contradiction.

4. Suppose that g(z) is single-valued. Then this function cannot have values in
H unless it is regular at infinity, and this means that g(2) tends to a limit as z — oo.
But the range of g(z) = J(f(z)) is dense in the range of J in every neighborhood
of 0o, whence a contradiction.

The proofs by Borel and Schottky

Picard’s proof of Picard’s theorem explores the absurd consequences of the
assumption that there exists an entire function which avoids two separate values or
the absurd consequences of the existence of a function which avoids three values in
the neighborhood of an isolated essential singularity and is meromorphic outside.
The ensuing proofs of Borel (1897) and Schottky (1904) avoid the theory of elliptic
functions. Borel’s proof, which is simple only in principle, only concerns Picard’s
first theorem about entire functions.

In the first edition of his classic Le¢ons sur les fonctions entiéres (1900) Emile
Borel devoted a chapter to Picard’s theorem and almost proved its analytic version
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by a very simple argument using the concept of growth of entire functions. A simple
paraphrase of Borel’s argument runs as follows.

As has been remarked before, it suffices to consider an entire function f(z)
which is never 0 or 1. Then f(z) = e9(*) for some entire function g(z) never equal
to an integral multiple of 2#¢ and hence also

f(Z) — e—-21rig(z)
where g does not take integral values, in particular not 0 or 1. Hence, if

M(f,r) = gl'g);lf(Z)I, A(f,m) = max Im f(2),

we must have
M(f,r) < e2mAleT)

Now the value of f at a point w with |w| = 7’ < r may be explicitly expressed by
an integral of Im f over a circle |z| = 7 plus a term Re f(0). Hence, for instance,

M(f,7/2) < const A(f,r) + | f(0)f
so that, since M (f,r) tends to infinity with r,
M(g,7/2) = O(log M(f,7)).

In particular, if M(f,7) = O(e™") for some m > 0, then M(g, r) = O(r™). But
then g is a polynomial and assumes all values, which is a contradiction. If exp(")
denotes the function exp iterated n times, the same argument and induction show
that an entire function f which does not take two values cannot have a bound

1£(2)] < exp™(O(]2]™))

for any integer n > 0 and number m > 0. It follows that no entire function of
reasonable growth can avoid two values. This is also the point where Borel stops
in his lectures.

In the beginning of the century Schottky (1904) gave the first proof after Borel
of Picard’s theorem without using a modular function. It was followed by a flurry
of papers by Landau, Hurwitz, Caratheodory and others. In the second edition
(1929) of his book Ergebnisse Landau gives a number of properties of an analytic
function in a disk which avoids the values 0 and 1. One of them, called the theorem
by Schottky, says that a function f which is regular in the unit disk and does not
assume the values 0 and 1 has a bound for |z| < @ < 1 which only depends on ¢
and a bound of |f(0){ away from 0 and infinity.

From this theorem, Picard’s theorem can be deduced as follows. Assume that
F(z) is analytic for 0 < |z| < 1, has an essential singularity at the origin and is
never equal to 0 or 1. Put

F(e') = g(t)

so that g(t) is defined when Ret < 0 and is periodic with the period 2mi. By
Weierstrass’s theorem there is a sequence of radii r, tending to zero and points z,
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on the corresponding circles where |F(z,) — 2| < 1/2. Putting z = ¢! we then have
lg(t,) — 2| < 1/2 where Ret, = logr, tends to —oo. Now the function

h(u) = g(tn +4mu)

is analytic when |u] < 1, it is never 0 or 1 and |h(0) — 2| < 1/2. Hence, by
Schottky’s theorem, h has an absolute bound when |u| < 1/2 and this suffices to
cover an interval between t, and t,, + 2mZ. Hence the function F(z) has a uniform
bound on all circles |z| = r,, and this is a contradiction.

The shortest proof of Schottky’s theorem uses again the inverse J(z) of the
modular function I(z) defined above. In fact, let f(z) be a function analytic in the
unit disk with a fixed a = f(0), assume that f does not take the values 0 and 1
and consider the function

9(2) = J(f(2)

which maps the unit disk to the upper half-plane and so has the form
0

cet ¢z
9(z) = T Ime >0,
with I )
[mg(z,) = M

|1 — eifz|2

Hence if Im g(z) tends to zero for some z in a closed disk D : |z] < b < 1, then Ime
tends to zero and hence Im g(2) tends to zero uniformly for all z € D. Similarly, if
g(z) tends to infinity for some z € D, then ¢ tends to infinity and hence g(z) tends
to infinity uniformly for all z € D.
Now consider a family F of functions f analytic in the open unit disk for whlch
f(0) stays in a compact set not containing 0 and 1. With z restricted to the disk
D : (z| < b < 1, suppose that f(z) comes very close to 0,1 or is very large for some
f € F and some z € D. Then Im g(z) must come very close to the real axis or be
very large and hence all of g(D) has this property uniformly. But this contradicts
the assumption about f(0) and this proves Sehottky’s theorem. A modern proof
where the topological content of the theorem is evident is available in Nevanlinna
(1953).

Ahlfors’s topological proof

Ahlfors’s paper (1935b) which gave him a Fields medal is actually a topological
proof of the essential part of Nevanlinna’s theory. We shall now sketch the idea of
the proof and how it can be used to prove Picard’s theorem that a function f(z)
which is analytic outside a circle |z| = rg can avoid at most one value without being
meromorphic at infinity.

Ahlfors’s proof uses the Euler index, i.e. the number of corners minus the
number of lines plus the number of triangles in a triangulation of a two-dimensional
set. The Euler index is known to be a topological invariant. For a bounded set in
the plane it equals 1 — g where ¢ is the number of holes in the set.

The basis of the proof is a theorem by Hurwitz about covering maps T : S — S
of two-dimensional compact manifolds. If T'S covers S N times, the theorem says
that

X(8) = Nx(8) =Y (v(P) - 1)
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where x is the Euler index, P runs through the points of S and v(P) is the number
of points of S over P. The proof? is immediate if we use all multiple points as
corners in a triangulation of S . It follows as a special case that

x(S) < Nx(S).

Imagine now f as a map from the region Sp : R < |z| < oo to aregion S consisting of
the complex plane C minus ¢ points. We then have x(S) =1 —q. Also, x(So) =0,
and this is also the Euler index of the image S = f(S;). Hence, if we apply
Hurwitz’s theorem to this non-compact situation, we get

0<N(1-gq)

with some large N, perhaps infinity, and this means that ¢ < 1. This reasoning is of
course complete nonsense, but in (1935b) Ahlfors got precisely this last inequality
as a special case. Roughly speaking he arrived at this result by taking restrictions
of f to ring-shaped regions ro < |z| < 7 with a large r, by taking boundaries
into account and by replacing N by a quotient of spherical areas. A fuller but
not complete account of Ahlfors’s arguments is given at the end of the chapter on
Nevanlinna theory.
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CHAPTER 2

On Holmgren’s Uniqueness Theorem

Introduction

The basic result about analytic solutions of partial differential equations with
analytic coefficients is the Cauchy-Kovalevskaya theorem. Although it applies in
great generality for non-linear equations, let us state it for the first order linear
operator

P(z,D) = A\ (x)D1 + - -- + An(z)Dp + B(z), Dy = 8/0xx,

where A;(z),..., An(z) are m X m matrices which are analytic in the real variables
z = (%1,.-.,Zn). Let Py = > AxDy be the principal part of P. A hypersurface
S : s(z) = 0 is said to be characteristic for P at a point « if Pi(z,s;) is not
invertible. By the Cauchy-Kovalevskaya theorem, the boundary problem

Pu=v, u=w when s(z)=0

has a local analytic solution u at non-characteristic points of S when P, w,s are
analytic. In a sense, this result parametrizes the solutions of P(x, D)u = v close to
a non-characteristic point of S.

On the turn of the century there was a growing interest in classes of functions
which are not analytic, only sufficiently differentiable in some sense, for instance
those with continuously differentiable derivatives up to some order. One math-
ematician working in this area was the Swede Erik Holmgren, later professor at
Uppsala university. He had the bright idea to ask himself what happens in the
finear Cauchy-Kovalevskaya theorem when the solution u is not analytic and only
sufficiently differentiable. The answer is given by Holmgren’s uniquenss theorem
(1901): if the solution exists, it is unique.

This lecture gives the simple proof of Holmgren’s theorem followed by an ex-
ample that it fails for non-analytic coefficients and a simple, recent example by
Meétivier that it fails also for non-linear systems with analytic coefficients. In a
final section, the theorem is extended to non-analytic operators of the above form
which are elliptic and almost commute with their adjoints. It illustrates the use of
weight functions first introduced by Torsten Carleman (1939) in a uniqueness proof
for first order systems in two variables. His result was extended to several variables
by Calderén (1958). We shall follow the treatment in Hérmander (1985 III) which
is close to Carleman’s. Hormander’s complete presentation of Calderén’s theorem
(1985 IV) is beyond the scope of a simple lecture.

At present, Holmgren’s uniqueness theorem is just a convenient heading for
various developments connected with the original result (see Hormander (1994)).

9



10 SOME POINTS OF ANALYSIS

Proof of Holmgren’s uniqueness theorem

By an analytic change of the variables x and a linear change of the unknown
function u we may assume that the coefficients of P(x, D) are analytic at the origin,
that Sis given by z1 = 23+ --+z2 and that A;(z) is the unit matrix E. It suffices
to prove that u vanishes close to the origin when Pu =0, u =0 on S. Let (u,v)
be the Euclidean scalar product and let

P'(z,D) = - > DpAi(z) + B’

be the adjoint of P so that (Pu,v) — (u, P'v) = Y Dr(Aku,v). If we integrate over
aregion K = K(c): ¢ > z1 > 23 +-- -+ x2 with upper boundary K, where ¢ = 1,
and put &’ = (z2,...,an), wWe get

/K+ (u, v)dz' =‘/K(u7 P'y)dz.

Here we can let v be an analytic solution of P'v = 0 with data on K. Since these
quantities can be given arbitrarily, v must vanish on every K. Varying the size
and position of K (c) shows that u = 0 close to the origin.

No uniqueness

For non-analytic coefficients Holmgren’s uniqueness theorem is no longer true
and several counterexamples were constructed in the 1950’s. A general construction
is presented in Hérmander (1983), a simple example of which is the following: there
is a C* function a(t,z) which vanishes for ¢ < 0 and whose support contains the
origin such that the equation

u+adu=0

has a solution u = f(¢, ) # 0 which vanishes for ¢ < 0. It was remarked by Métivier
(1993) that this permits construction of a non-linear analytic system of equations

Ou+vdu=0, OGv+duv=0

for which Cauchy’s problem with data on ¢t = 0 has two different solutions u,v
which coincide for t — 0. It suffices to put either

u:g(y)f(t—y,x), v:a(t—y,x)
where g € C*™ is supported in y 2 0 and vanishes otherwise, or
u=0, v=a(t-y,x).

The two solutions are smooth and different, but they are equal when ¢ = 0. Hence
Holmgren’s theorem cannot be true for non-linear analytic systems. Métivier also
has a couple of other counterexamples.



2. ON HOLMGREN’'S UNIQUENESS THEOREM 11

Uniqueness for non-analytic coefficients

Holmgren’s result is much more difficult to prove for operators with non-
analytic coefficients. The first proof in this case is due to Carleman (1939). He
treated linear first order operators in two variables of the form

P(.’E,D) = Dyu + Ag(l‘)Dz + B(l’), Dy = B/ialk,

(since we shall use the Fourier transform later, we now use the imaginary gradient
D). It is important that the square matrix A;(z) may be uniformly diagonalized
so that, by a change of variables, Carleman could assume that A;(z) is already
diagonalized. This implies in particular that

(1) [P(z, D), P* (x, D)] = O([u(z)|| Du(z)l), P*(z,D)=P'(z,D),

provided the coefficients are uniformly Lipschitz continuous. We shall assume (1)
also in the general case where

P(z,D) = Zn:Ak(a:)ka + B(z)
1

and the coeflicients are m x m Lipschitz continuous matrices. When the coefficients
of P(z, D) = P(D) are constant and (1) holds, the right side vanishes, so that P(D)
and P*(D) commute. When n > 2 it seems difficult to imitate Carleman by making
preliminary changes of the coefficients in order to achieve (1).

Our proof of the uniqueness theorem below is parallel to the proof in Hérmander
(1985 I1I) of a corresponding result in the scalar case where the analogue of (1) is
automatic.

Outline of the theorem and a proof for constant coefficients

Let K be the region
K:c>x >b(xi+--+12), 1>b,c>0.
We shall consider solutions u of the inequality
*) |P(z, D)ul = O(lul), ze€K,

for small z,. Here u with locally square integrable derivatives is assumed to van-
ish below the lower boundary S : 2y = b(z% + --- + x2) of K. The coefficients
Ai(z), B(x) are supposed to be bounded and Lipschitz differentiable in K. We
shall find conditions under which such a u vanishes for small z;. The main tool of
the proofis the use of a function h(z) = z; —2? for small z; > 0 and a corresponding
change of the unknown function,

u, u=e ¥y,

Then Djehv = €*(D; — ih;)v where h; = 8,k and

/e‘zhgp(x,p)mzdz: /[P(I,D—iah)vlzdx.
K Jk
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12 SOME POINTS OF ANALYSIS

Estimates referring to such norms were first called Carleman’s estimates by Lars

Hérmander.
Let us now note that the commutator

[D; — ihj(x), Dx + thi(x)]

vanishes unless j = k = 1, in which case it equals h;;(z) = —2. From this simple
formula and (1) follows the main ingredient of our future proof, namely the identity

@) ]K |P(2, D — rik!(z))o(x)[2dz = /K \P*(, D + 7ik(x))o(z) 2dz

2 v v I
+2r/K|v<z>| dx+/K0<|b( )l Du(z)))d

where 7 > 0. When P has constant coefficients, this holds without an error term
and the desired uniqueness follows by inserting (*). In fact, then

2r / 3 o (z) dr < / e~ ¥ O (u(z) 2} de.
K

Hence, letting 7 tend to infinity, it follows that ¥ = 0 in K.

Permitted simplifying assumptions

In the general case, one can try to find properties of P(x, D) besides (1) which
make the first integral on the right in (2) so positive for large 7 that the kind of
argument just given goes through. Before proceeding further we shall now state
some permitted simplifications which influence neither the assumption (*) nor the
conclusion of the theorem.

1) B(z) = 0.

2) The solution u has compact support close to the origin.

3) P(z, D) is replaced by

P.(z,D) = eP(ex, D;) = ZAk(sx)Dk, e>0.

To see 2), replace u by ku where x(z) € C§ equals 1 for small z. The effect of
3) is to make the error term of (1) small when P is replaced by P.. In the sequel
we shall make tacit use of these assumptions.

Ellipticity assumption and the full proof
Besides (1) we now assume that P(0, D) is elliptic at the origin, i.e. that

(1) IP(0,€)af* 2 Cl¢P|af*, aeC™
With N = A’(0) = (1,0,...,0), this means in particular that
|P*(0,€ +iTN)a|* + 7%la|* 2 'C(I€|* + 7°)|af?

with another constant C' > 0. In fact, the left side vanishes only when a = 0 and
it is homogeneous of order two in a and (£, 7). By a Fourier transformation, some
easy estimates and a passage to P}, this shows that

/ (1P (@, D + irk(2))v()[? + r2|v|2)dz > C / (1Dv[2 + 72Jv]2)de



