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A Survey OF METHODS FOR MINIMIZING
SuMs OF SaUARES OF NONLINEAR FUNCTIONS

Shirley A. Lill

(University of Liverpool)

SUMMARY

The survey classifies the types of sums of
squares problems that arise, according to the com-
plexity of the function to be minimized and the
available level of function information. An out-
line of methods for each class of problem is given
with an indication of readily available algorithms.

1, INTRODUCTION

The problem of minimizing a nonlinear func-
tion that has the form of a sum of squares of other
functions is one of the most commonly occurring
types of minimization problem. It frequently
arises in the fields of engineering and applied
science where the theory predicts that a certain
process should satisfy some functional relationship
or model and the experimenter obtains data in order
to ascertain the values of the variable parameters
of this -model. Such problems are essentially curve
fitting problems, where the form of the function
is known, Other problems which can result in a
sum of squares formulation are the solution of sim-
ultaneous nonlinear equatiens and the more general
parameter estimation problems such as those des-
cribed by Bard (1970).

Once a problem has been posed as finding the

minimum of a sum of squares it can be tackled by
either using a straightforward minimization tech-
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nique (Murray (1972)) or the minimization process
can be adapted to exploit the special nature of
the function., It is this latter approach which is
described in this paper.

Section 2 introduces notation and shows how
a sum of squares function arises from a curve fit-
ting problem., It also indicates points for consi-
deration when minimizing sums of squares functions.
Section 3 describes the basic approaches for solving
this type of problem, whilst section 4 examines the
central issue of solving the linear least squares
equations at each iteration. In section 5 the ques-
tion of use of derivatives of the function is con-
sidered and in section 6 some special problems are
discussed. Finally, some suggestions for choosing
methods are given in section 7.

Surveys of methods for minimizing sums of
squares problems are also given by Powell (1972},
Bard (1970), Dennis (1972) and Brown (1972). Some
comparative numerical results are given by Bard
(1970), Box (1966), Brown and Dennis (1972) and
McKeown (1974).

2. A DISCUSSION OF THE PROBLEM -

Consider determining the values of the para-
meters £ = (&,,%,,%55e040,2,) L which satisfy the
relationship:

y = F(t,2), (2.1)

where y is the dependent variable, and

t = (t,,t,,...,tg}T are the independent variables
for a cerfain process modelled by the function F.
A set of m experiments or observations is made to
obtain values of y for different values of ¢, and
these satisfy the equations:

¥y, = F(E‘L;f) t e Z =1(1)m, (2.2)

where the e; are randomly distributed independent
experimental errors. The problem is to find those
values of g which give the experimental data the
best fit to (2.1).
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The best fit in the least squares sense 1is
obtained by defining residuals:

fﬁ(f) = F(E’L’f) - Yy 7 = 1(1)m, (2.3)

and minimizing the sum of squares of these residuals:
m ) 7
S(z) = ‘Zlfi(f) = f(a) fl=), (2.4)
z':

where f(g) = (fl(g),fz(fJ,...fﬁ(f))T, with respect
to x.

Note that it is possible to solve this type
of problem by obtaining the best fit in some other
sense such as by minimizing the maximum residual
(for example Osborne (1971)) or by using a combina-
tion of least squares and minimax. It is also pos-
sible to fit smooth curves to experimental data
when there is no known model function and thus
interpolate intermediate values. Such techniques
known as data fitting are described by Cox and
Hayes {(1973).

When m is greater than =n, that is, there are
more observations than parameters, the nonlinear
least squares problem is said to be over-determined,
and in many curve fitting applications for example,
m will be significantly larger than n. However a
very important class of problems is that of finding
the solution of a set of n simultaneous equations
in n unknowns (Z.e., m = n). This particular prob-
lem is covered here only as a special case of the
over—determined type, and the reader is referred
to Ortega and Rheinbolt (1970) for a full exposi-
tion. Similarly, the solution when the model 1is
linear is not explicitly discussed here, except
that the methods are essentially the same as those
described in section 4. TFinally, when m is 1less
than » the system is said to be under-determined
and only certain of the methods can be applied.

_Points for consideration when choosing an
algorithm for solving nonlinear least squares prob-
lems are introduced as appropriate in the text.
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However, certain key points are listed here because
of their underlying importance in the discussion of
the methods:

(a) Can the problem be expressed as a simple sunm
of squares, or are there further considerations
such as constraints, errors in the t; and so on?
Can it be broken down into a simpler form?

(b) Is the model a good one and are the experimen-
tal errors €; in equations (2.2) small so that the
minimum of S(g) is zero (Z.e., are the equations
(2.3) consistent)?

’

(¢) = Can analytical partial derivatives (no more
than second order) of the functions f:(x) be evalu-
ated, and at what cost, in terms of effort in
obtaining the formulae and computer time in calcu-
lation?

(d) Is a good estimate of the solution available?
Is the sum of squares function well-behaved in the
region of search, that is, are there other local
minima, is the function singular and so on?

(e) Are the residuals f;(g) expensive to calculate,
in terms of computer time? Are any of them linear?

(f) What are the sizes of m and n?

3. METHODS OF SOLUTION

3.1 Gauss-Newton method

The problem is to find the least value of
the function:

s(x) = .f(ag)Tf(:f), m 3 n.
Now it is well known that a stationary point of
any function S(z) occurs when the gradient YS(z) = O
and for that stationary point to also be a local
minimum of the function the Hessian matrix of
second derivatives V2s(g) must be positive definite.
One way of locating such a point is to use Newton's
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classical minimization method (Barnes (1965)) where,
starting from an initial estimate of the minimum

Lo, @ correction gy is applied iteratively,

kK =0,1,2,..., until convergence:

Tye1 T Tk k0 (3.1)
The correction dK is the solution to the equations:
2 o= o
Vs () dy Vslzy)

derived from the Taylor series expansion of the
function about &y

When S(z) is a sum of squared terms and f(z)
is twice differentiable then the gradient can be
expressed in terms of f(z) and its derjvatives as:

vs(z) = 27(2) (), (3.2)

where J(z) is the m x n Jacobian matrix with <jth
element:

Tegte) T e

The Hessian of S(z) is given by:

m

V2s(z) = 20() 0 (2) * 2 ] VF(=)f(x), (3.3)
- S 73 A

where V?f.(x) is the second derivative matrix of

fi(f)-

A justification for using special methods to
exploit the form of S(z), rather than carrying out
a straightforward minimization, can at once be
seen from these equations since a substantial part
of the Hessian (3.3) is obtained by using only
first derivatives of the residuals (7Z.e., J(z)Td(g))
thus removing the need for explicit second deriva-
tives of the residuals which may be expensive to
calculate. This observation, and the fact that
near the solution, if the residuals are small
(which they are for many practical problems) or
nearly linear, then the second term in (3.3) is
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negligible, has led to many algorithms using the
approximation:

v25(z) = 2J(2) 7 (2) = 24(z) . (3.4)

Substituting (3.4) and (3.3) Newton's method gives
a correction dy which is calculated from equations
conventionally known as the normal equations:

Hep i@ )d, = - Iz ). (3.5)

This algorithm may be derived directly by expanding
the residuals f in a Taylor series about zxy
(Kowalik and Osborne (1968)), and was first put
forward by Gauss (1809). It is usually referred

to as the Gauss-Newton method.

The solution of the normal equations obviously
breaks down if any JxlJyx is singular. However, in
practice, and especially when m >> n the eigenvalues
of JTJ are usually bounded away from zero so this
problem does not arise and convergence for a region
near a solution can be proved (Fox (1964), Meyer
(1970) and Pereyra (1967)). Now the rate of con-
vergence for Newton's method is second order, but
in the Gauss-Newton method the error incurred by
neglecting the term Y?f in (3.3) reduces the rate
of convergence to no more than linmear unless S(g*)=0
(Brown and Dennis (1972), Meyer (1970) and Osborne
(1972)). Osborne (1972) shows that the reduction
in dy at each iteration is given by:

_ T -1dJ 2y
ligzKﬂl,l = | (JK+1JK+1) 'd'EfK" lliixu + o(ﬂgKll ) (3.6)

where d/dt denotes differentiation with respect to
any direction ¢ and J indicates mean values. This
demonstrates that for all x > k,, if the series is
convergent and 0 <y <1 where: \

T _-1dd -
the rate of convergence is linear, whereas if y > 1
the method is actually divergent. Obviously if

S(z*) = 0,y is zero so that convergence is ultimately
second order. Powell (1972) and Osborne (1972) give

6
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simple numerical examples demonstrating the conse-
quences of different values of y.

This deficiency has, in practice, led to a
wide variety of modifications and improvements to
the basic Gauss-Newton algorithm. Several suggested
alternatives are discussed below. They are intro-
duced in the sense of development from the basic
algorithm rather than in chronological order.

3.2 Modified Gauss-Newton or Hartley method

The Gauss-Newton is often modified to prevent
divergence by using dyp as a direction along which
to search for a lower value of S, so that (3.1)
becomes

=z, + o,d,. (3.7)

Tk+1
ay is a scalar which may be chosen so as to mini-
mize S(xx + agxdyg) with respect to oy, or simply to
ensure that S(zx+1) € S(xy). Kowalik and Osborne
(1968) argue that since the cost involved in cal-
culating ¢, is substantial, the further cost in
function evaluations of carrying out an accurate
linear search is justified, and for J7J bounded
above and below, Hartley (1961) proves convergence
for this version of the method. However, it 1is
often the case that function evaluations are at a
premium and several efficient schemes for calcula-
ting a suitable oy to reduce the sum of squares have
been suggested. Efficient searches for nonlinear
least squares in particular are investigated by
Bard (1970) and Osborne (1972) who also supplies a
proof of convergence. However near the solution
oy set to unity is usually successful so the con-
vergence is ultimately that of the Gauss-Newton
method.

Although these modifications do prevent
divergence they do not overcome the problem of
solving the normal equation when JTJK 1s singular,
nor do they ensure convergence to a solution. In
fact they may appear to converge to a point which
is not a local minimum of S and Powell (1970) gives
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such an example., The method apparently converges
to a point where J7J is singular so that J7f = 0,
even though it may not be singular elsewhere. The
difficulty is that near such points the directions
dxg are almost orthogonal to the descent direction
of 5(-VS) so that little reduction in the value of
S can be made.

3.3 Methods interpolating between Gauss-Newton and
steepest descent

Powell's hybrid method (1970) was devised to
solve this problem by introducing a search along
the steepest descent direction whenever the Gauss-
Newton correction is unsuccessful, so that:

Terl = Tre1 b OgPyo

where Py = Bxdy = Yx¥5 »

dg 1s the solution to (3.2), and ay, Byx and vy are
suitable step lengths. The algorithm is briefly
as follows. :

The Gauss-Newton correction, dg, is calcula-
ted, but if this is deemed too large or does not
give a reduction in the sum of squares S, then the
predicted minimum of S along the steepest descent
direction VS is calculated. A search for a reduced
S 1is then made along -Y$ and the line joining the
predicted minimum to the end point of the Gauss-
Newton correction, as in Fig. 1. .

predicted minimum
along steepest descent

A
Ly d; Gauss-Newton point

Fig. 1. Powell's hybrid algorithm
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Thus, the method interpolates very simply between
the Gauss-Newton and steepest descent directions.

An alternative approach, due to Levenberg
(1944) and Marquardt (1963), of introducing a bias
towards steepest descent whilst at the same time
guaranteeing the calculation of dg is to add some
positive definite matrix Dy to JyTdy in (3.5) and
solve:

7 7 .
(Fy Tx * AyPpldy = = Iy Fxo (3.8)

where Ap > O is some variable parameter.

Providing A, is chosen large enough the com-
posite matrix wilf be positive definite so that dy
can be calculated and in addition, as AgxDg is
increased, dg is forced towards the descent direc-
tion so that a reduction in S can always be
achieved. AgDg cam also be considered as an appro-
ximation to the term in Y?f which is ignored in
(3.3). For simplicity Dy is usually chosen to be

a constant diagonal matrix, either the unit matrix
or a mgtrix which reflects the scaling of the
variables (Marquardt (1963)).

The methods suggested by Levenberg and Mar-
quardt differ slightly but the main idea behind
them is that at each iteration, given a value JXg,
the equations (3.8) are successively solved for
increasing values of Ay until a dy is obtained
such that S(zg+1) < S(zgx) (Levenberg actually sug-
gests finding the minimum § with respect to Ax)
when gy+] is accepted as the new iterate and Xy is
decreased by some constant factor. It is easy to
show that, as A§ > Of d% tends to the Gauss-Newton
correction -(Jxldg) ' JIxlfk, and as Ay + » , dy
tends to the descent direction -VS and the trajec-
tory of the end point of dp for varying My is as
shown in Fig. 2.

From Fig. 2 it can be seen that increasing
‘¢ has the effect of reducing the size of ¢, as
well as altering its direction, thus ag may in
theory be set to unity in calculating xy+] (3.7).
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the descent _vg
direction ~ trajectory of end points of
d, for varying 1, X, > X,

2

L 4

T the Gauss-Newton point
Fig. 2. Levenberg-Marquardt algorithm

However against this simplification must be mea-
sured the cost of re-solving (3.8) every time A

is altered, and so it is usually more efficient to
vary ay. A sensible strategy for choosing iy is

to let A, be some significant value, thus ensuring
a reduction in S at points far removed from the
solution, and to employ an over-all reduction
philosophy (although A may be temporarily increased)
so that A -~ 0 as g » g* and the second order conver-
gence of Gauss-Newton (for S(g*) = 0) can be
attained (Brown and Dennis (1972), Meyer (1970)

and Osborne (1972)). Computational schemes for
calculating Ay are given by Fletcher (1971), Meyer
(1970) and Osgorne (1972) together with limited
numerical results.

To avoid the work involved in the recalcula-
tion of dyp when Ap is changed Bard (1970) calculates
the elgenvalues ot (JgTJdyx + AxDy) at each iteration
and uses them to evaluate ¢dy. This allows the
smallest possible Ay to be chosen initially so
that the condition number of the composite matrix
1s limited to lie within specified bounds and
ensures that it can be adjusted at little extra
cost 1f the resulting sum of squares is not accep-
table. However the cost of the eigensolutions is
high and a simpleér method is suggested by Jones
(1970) where the trajectory of Levenberg and Mar-
quardt is replaced by a spiral which has the same

10
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end points, but is of constant slope so that points
along it are simple to obtain. See Fig. 3.

steepest descent

direction -V§S

~ K VZ,Spiral trajectory of

end points for 4
el #F———M—%\\\\\\\\ >

Gauss-Newton point

x
~K
Fig. 3. Jones's spiral algorithm

Once the spiral is set up discrete points along it
can be calculated simply by vector additions,

4, SOLUTION OF THE NORMAL EQUATIONS

This section outlines possible approaches to
the solution of the normal equations which are cen-
tral to most of the nonlinear least squares tech-
niques discussed so far., Dropping the subscript
for convenience, equation {(3.5) becomes: '

glod = - 757 . (4.1)

~

The efficiency and accuracy of the solution of
these equations are crucial since they have to be
solved at every iteration of the nonlinear least
squares algorithm.

Traditionally (4.1) is solved by evaluating
JT7 and performing a Cholesky factorization (see
Fox (1964)) to obtain LLT where L is a lower tri-
angular matrix and then carrying out back substi-
tutions to obtain d. However, forming the product
JTJ worsens the conditioning of the problem and
leads to a loss of accuracy (Businger and Golub
(1965)), and recently algorithms have been given
(Gill and Murray (1972)) which avoid the explicit
calculation of J7J by performing instead an ortho-
gonal triangularization of J.

An alternative method which avoids the compu-

11
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tation of JT7 is due to Businger and Golub (1965).
Reposing the problem as solving:

Jd = - f (4.2)

in the least squares sense and factorizing ¢J into
Q [g where ¢ is an m x m orthogonal matrix and R

is n x n right triangular, reduces (4.2) to:

Be- -

since the problem is invariant to orthogonal trans-
forms. The solution is obtained by setting 5 to
the first n elements of -@QTf and then solving the
triangular system Rd = b to obtain ¢. The factori-
zation of J into QR is very stable and an important
implementation detail is that @, which may be very
large, need not be stored since b can be built up
simultaneously.

A third method, which should be used when
the matrix J is of rank less than n, or cannot be
guaranteed to be of full rank, is the singular
value decomposition due to Golub and Reinsch (1970).
Again this uses (4.2), but J is factorized into
upvT where: '

U - m x n orthogonal matrix made up of the eigen-
vectors of the n largest eigenvalues of JIT.

D - n x n diagonal matrix of singular values of
JTs (non-negative square roots of the eigen-
values) .

V — n x n orthogonal matrix made up of the eigen-
vectors of JIJ,

so that d is obtained by setting:

d=- v uly

/D, D;y 2 0,

Tt
=0 , otherwise,

+
where D ..
17

In addition to dealing with J of rank < 7,
this method is also useful if information on the

12



