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CHAPTER1
LINEAR
EQUATIONS

Linear algebra is concerned. primarily with mathematical systems of a parti-
cular type (called vector'spaces), functions of a particular type (called linear
mappings), and the algebraic Mpresentation of such functions by matrices. If
you have completed a course in calculus, you are already familiar with some
examples of vector spaces, such as the real number system R and the
Euclidean plane. You also have studied functions from R to R, so at least
superficially the study of linear algebra appears to be a natural extension
and generalization of your previous studies. But you should be forewarned
that the degree of generalization-is substantial and the methods of lmear
algebra are significantly different from those of calculus.

A glance at the Table of Contents will reveal many terms and topics that
" might be unfamiliar to you at this stage in your mathematical development.
. Therefore, as you study this material you will need to pay close attention to
the definitions and theorems, assimilating each idea as it arises, gradually
- building your mathematical vocabulary and your ability to utilize new con-
cepts and techniques. You are urged to make a practice of reading all the
exercises and noting the results they contain, whether or not you solve them
in detail. .



2 LINEAR EQUATIONS

The contents of this book are a blend of formal theory and computa-
tional techniques related to that theory. We begin with the problem, familiar
from secondary school algebra, of solving a systém of linear equations,
thereby introducing the idea of a vector space informally. Vector spaces are
not defined formally until Section 3 of Chapter 2. At that point, and from

“time to time thereafter, you are urged to study Appendix A.1, where alge-
braic systems: are explained briefly but generally. You might not need that
much generality to understand the concept of a vector space, but firm fami-
liarity with the notion of an algebraic system will greatly accelerate your
ability to feel comfortable with the ideas of linear algebra.

Individuals acquire mathematical sophistication and maturity at differ-

. ent rates, and you should not expect to achieve instant success in assimilat-

ing some of the more subtle concepts of this course. With. patience,
persistence, and plenty of practice with specific examples and exercises, you

- can . anticipate steady progress in developing your capacity for abstract

thought and careful reasoning. Moreover, you will greatly enhance your
insight into the nature of mathematics and your appreciation of its power
and beauty.

11 SYSTEMS OF LINEAR EQUATIONS

The central focus of this book is the concept of linearity. Persons who have
studied mathematics through a first course in calculus already are familiar -
with examples of linearity in elementary algebra, coordinate geometry, and
calculus, but they probably are not yet-aware of the extent to which linear
methods pervade mathematical theory and application. Such awareness will
develop gradually throughout this book as we explore the properties and
significance of linearity in various mathematical settings.

We begin with the familiar example of a line L in the real coordinate
plane, which can be described algebraically by a linear equation in two
variables:

L:ax +'by=4d.

A point (x4, yo) of the plane lies on the line L if and onlv if the real number
axe + by, has the value d. The formal expression

ax + by

is called a linear combination of x and y.
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By analogy a linear combination of three variables has the form
o ax + by + cz,

~where g, I;, and ¢ are constants. Any equation of the form

ax +by+cz=d

is called a linear equation in three variables. If you have studied the
-geometry of three-dimensional space, you will recall that the graph of a
lincar cquation in three variables is a plané, rather than a line. This is a
significant observation: the word linear refers o the algebraic form of an
equation rather than to the geometric object that is its graph. The two mean-

ings coincide only for the case of two variables—that is, for the coordinate
plane. In general, a linear equation in n variables has the form ‘

clx,+c2xz+c3x3+ ‘e x,=4d,

where at least one ¢; # 0. For n>3 the graph of this equatxon in n-
dimensional space is called a hyperplane.

Appllcatxons of mathematics to science and social science frequently
lead to the need to solve a system of several linear equations in several
variables, the coefficients being real numbers:

Ay Xy +8y2%; +° 0+ aX, =dy,
@21%Xy + az3% + 0 + azux. =d,,

(1.1)

A1 X1 + G2 Xy + T + U Xy = diy.

The number m of equations might be less than,vequalv to, or greater than the
number n of variables. A solution of the System 1.1 is an ordered n-tuple
(cy, - .., ¢,) of real numbers having the property that the substitution

Xy =Cy,
Xy = C3,
xll = cﬂ’

simultaneously satisfies each of the m equations of the system. The solution
of (1.1).is the set of all solutions, and to solve the system means to describe
the set of all solutions. As we shall see, this set can be finite or infinite.
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This problem is considered in algebra courses in secondary, school for -
the case m = 2 = n, and sometimes for other small values of m and n. But a
large scale linear model in contemporary économics might require the solu-
tion of a system of perhaps 83 equations in 115 unknowns. Hence we need to
~ find very efficient procedures for solving (1.1), regardless of the values of m
. and,n, in a finite number of computational steps. Any fixed set of instructions
that is guaranteed to solve a particular type of problem in a finite number of
steps is called an algorithm. Many algorithms exist for solving systems of
linear equations, but one of the oldest methods, introduced by Gauss, is also
one of the most efficient. Gaussian elimination, and various algonthms
related to it, operate on the principle of exchangmg the given system (1.1) for
another system (1.1A) that has precisely the same ‘set of solutions but one
that is easier to solve. Then (1.1A) is exchanged for still another system
(1.1B) that has the same solutions as (1.1) but is even easier than (1.1A) to
solve. By increasing the ease of solution at each step, after m of fewer
‘exchanges we obtain a system with the same solutions as (1.1) and in an
-algebraic form that easily produces the solution. For convenience, we say
that two systems of linear equations are equivalent if and only if each solu-
tion of each system is also a solution of the other. :
© We first illustrate this idea with a specific example. Soon we shall be able
to verify that the following two systems are equivalent, and for the moment
we shall assume that they are.

6x,+2x2.—x3+5x‘=—8, X, — X3+Xx,= -3
3, + 20, 4+ %3 +3x,=—1, and  x; +2x, = -4,
4XI+X2 -x;+3x4= —'6,‘ . . X3 —X4= 2.

Obviously, we would prefer to solve the second system. To doso we let x, be
any number, say c. Then

X4= C
Xx3= 2+ x4=2+¢’
Cxp= 4- 2,=4-22+0)= -2
xl——3+x3—x4=—3+(2+c)-—c——1
and we concludé that for any number c¢ the orderqd quadruple

-1 +0c
0-—2c
24 <] 7
0+ ¢
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is a solution of the second system and hence of the first. Furthermore, it is
easy to see that any solution Of the second system must be of that form, and
therefore we have produced the complete solution of the first system. There .
are infinitely many solutions because each value of ¢ produces a different
solution. When a system has infinitely many 'soluti;tms, a complete descrip-
tion of all solutions involves one, two, or more arbitrary constants.

The second system is easy to solve betause of its special algebraic form:
one of the variables (x,) appears with nonzero coefficient in the first equa-
tion but in no subsequent cquation, another variable (x,) appears with
" nonzero coefficient in the second equation. but in no subsequent equation,
and so on. A system of.this nature is said to be in echelon form. To solve a
system that already is in eclielon form we first consider the last equation; we
solve for the first variable of that equation in terms of the constant term and
the subsequent variables. Each subsequent variable may be assigned an
arbltrary value. In this case

x4=és

X3 =:2'+x4=2+_-c.

Then we consider the next to last equation;-We solve for the first variable
of that equation, assigning an arbitrary value to any subsequent variable °
whose value is not already assigxwd. For this example,

X;=4—-2x3=4-202+¢)= -2

Contmumg in the same way with each preceding equatlon we _eventually
obtain the complete solution of the system. :

What we need, therefore, is a process that leads from a glven system of
linear equations to an equivalent system that is in echelon form. And that is
precisely the process that Gaussian elimination provides, as we now shall
see. Beginning with a system in the form (1.1), we can assume that x, has a
‘nonzero coefficient in at ledst one of the m equations. Furthermore, because
the solution of a system does not depend on the order in which the equations
‘are written, we can assume further that a,; # 0. Thus we can solve the first
equation for x, in terms of the other variables:

_ a1 -
Xy =apy(dy — agax; — @y3X3 — 1 — GgX,)

We then replace x, by this expression in each of the other equations. The
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resulting equations then contain variables x, through x,,, and after collect-
ing the coefficients of each of these variables we obtain the equivalent system

ay1Xy + @13%; + ag3xs + -+ ax, =dy,
(l.lA) b22x2 + b23X3 +-+ bz,,x,, = e'z,

bm2x2 + bm3x3 + 0+ bmxu = On-

At this stage we need not be concerned with explicit formulas for the new
coefficient b;; and the new constants ¢;; where i > 2 and j > 2. Such formulas
result immediately from a bit of routine algebra, and we record the results
here for future reference. _ -

= -1
b= a;; — @, 81) 8y,

— -1
e.'—,di— a;yayy dy.

. The system (1.1A) is said to be obtained from (1.1) by means of a pivot
operation on the nonzero entry ay,. . .

The second stage of Gaussian elimination leaves the first equation of
(1.1A) untouched but repeats the pivot process on the reduced system of
m —.1 equations in n — 1 variables:

byzxs + by3xs +- - + by, x, = €5,
by2X3 + baaxy + -+ byx, = €3,

‘

bm2x2 + b‘m3x3 +- -+ bmxn = €y-

Cbnoéivably each coefficient b;; is zero; if so, we look at the coefficients b;3,
m order, and continue in this way until we find the first nonzero coefficient,
say b,,. Again because we can write these equations in any order without
changing the solutions, we can assume that r = 2. Then we pivot on b,,; that
is, we solve for x, as

— helo . !
x, = by, (€2 — by g4 Xpr1 — = banXa)

."and substitute this exprmsion.,for x, into each of the last m — 2 equations. -
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Together with the original first equatlon the new system, cqmvalent to (1.1)
and to (1.1A), is of this form:

Ay Xy + A X Gy a1 Xer o BLX = dy,
(1.1B) ' brox, + by g1 Xger + 0+ banXs = €2,
) V c3,s+1xs+l + 0 CapXy =sz

cm.:\+ 1Xs+1+ o .' + ConXn =fm'

Then the pivot process is repeated again on the last m - 2 equations of
(1.1B), leaving the first two equations untouched. Continuing in this manner,
we eventually obtain a system that is equivalent to (1.1) and is in echelon
form. ‘
To illustrate the method of Gaussian elimination we return to our
previous example of three equations in four unknowns. The first equation i |

6x, + 2xz.— X3 + Sx“ = —8 l
We pivot on the coefficient 6 by solving for x;,,
= V(=8 — 2x; + X3 — 5xa4),

substituting this expression in the last two equations, and collecting like
terms. The result, which you should verify on scratch paper, is the equwalent
system,

6x, + 2x;— X3+ §x4 = -8,
x; + Yx3 4+ Vaxa= 3,
— Yaxy— Yaxy — Yaxa= -
Now we pivot on the coefficient 1 by solving the second equation for x,,
x; =3 —%x3 - YaXa,

_ substituting this expression for x, in the third equation, and collecting like -
terms. Again you should verify that the result is

_6x1 + zX2 - X3 + SX4 = “"8,
| Xz + Yaxs + Yoxa= 3,

Yoxs — Vexa= A
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‘Although this new system is in echelon form, we can impto‘)é its ;ippearanoe
. by multiplying each side of the second equation by 2 and each side of the
third equation by 6, obtaining an equivalent system in echelon form:

-8,
2X2+3X3+ Xg = 6,;

6x1 +2xz - X3 +SX4

X3— Xg= .2

“The last-equation oontams two variables. We assign arbltrary values to all
but one, say x; = c. Then x3 = 2 + ¢. Using these values for x3 and x, in. the
second equation, we have x, = —2c, and then from-the first equation we
obtam x, = —1, which agrees. with our previous solution. ,

‘Suppose we now replace the second equation of this system with a new .
equation, obtained by adding the two left-hand members and the two nght-
hand members of the second and third equanons :

2-X2 + 4X3 = 8,
or equivalently -
. xz + 2x.3-'—' 4.

.- The resulting system 1s then

. . 6x1 +2xz - x3<b+ qu_ = —.8,
‘X2 + 2x3 = 4_‘a

X3 Xg = '2,

and it is equivalent to the preceding system. Now we replace the first equa-
tion by the equation obtamed by subtractmg the third equation from the
first equatlon

6x1+2x; 2x;+6X4=—10

and thcn immedlately replaee that equatlon by the equatlon obtained by
) twice subtractmg the second equat:on from it,

6x1" v—6X3+6X4='-"18,
or in simpler form .

Xy - — X3+ Xg=-3.
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Then the new system, also in echelon form, is

‘xl - — X3+ X4 = —3,
X, + ZX3 =. 4,
X3 — x; = 2

Note that this is precisely the system that we solved when this example was
originally introduced.
. Let us summarize what we have observed:

(1) A system of m linear equations in n variables is casxly solved if that
system is in echelon form.

(2) Gaussian elimination is a systematic procedure for replacing agiven .
system of linear equatlons by an equivalent system that is in echelon
" form.’

(3) Two equivalent systems of linear equations can both be in echelon
. form and still not be identical; that is, different methods of reducing
a system of linear equations to echelon form can produce different
(but equivalent) systems of equations in echelon form.

In the next section we shall use these observations to simplify and to
formalize Gaussian elimiriation as a practical computational method for
solving systems of linear equations. In Section 1.3 we shall analyze the var-
ious types of solutlons that can occur; thcsc types are illustrated in the
following exercises.

EXERCISES 1.1

1. Use the method of Gaussian elimination to solve each of the follow-
ing systems of linear equations.

) x + x+ 'x3.= 3,
2x2 + X3 = 2.

) X+ 20+ xp=—1,
6x1.+ X, + X3/='—4,

2%, —3x3— x3= 0,

—Xy —7x:—2xs= 7,

xl — X2 = 1
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(iii) 2xl + x2‘+ SX3 = 4,
3x1 - 2x2 + 2x3 2,
5x; — 8xy —dx; = 1.

(iﬁ) Xy — Xat X3— X4+ Xg5=1,

2x, - X3+ 3X3 + 4x$ = 2,
3 zxz+2x3+ X4 + x5=l,
xl + x;+2X4‘,*‘ X5=0T

(V) x;—=2x,+3xy3= 1,

—3x, 4+ 5x,= 4,

3x; — 2x; + 5x3 = 11.
(Vi) 2%, +2x; —3x3 +4x,= 1,
Xy =2X 4 X3 — X 2,
— 263 — X3+2x,=—1.

2. In the following system of linear equations the symbol b represents a
number whose value is unspecified.

xl +3x,2 +2.X3 =3,‘
=3, + x§+4x3= 1,
Sxy + Txy; +2x3=b.

(1) Use Gaussian elimination to find an equnvalent system that is in
echelon form.

(ii) What value must b have in order that the system have a
- solution?

(iii) If b is assigned the value determined in (ii), does the system have
more than one solution? Write the complete solution.

3. Consider the system (1.1) of m linear equations in n variables.

(i) Let (1.1C) denote the system obtained by replacing the first
equation of (1.1) by

kauxl + kalzxz +--+ kal,,x,, = kdl,

where k is any nonzero constant. Explain why (1.1} and (1.1C) are
equivalent. Also explain why (1.1)and (1.1C)are not necessarily equiva-
lent if k = 0.

-1
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(u) Let (1.1D) denote the system obtamed by replacing the first
equation of (1.1) by
(@11 + Koy -+ e + kaz) = (4, + k).

Explain why (1.1) and (1.1D) are equivalent.

(iii) Let (1.1E) denote the system obtained by interchanging the posi-
tions of the first two equations of (1.1). Explain why (1.1) and (1.1E) are
equlvalent

4 A system of two lmear eguations in two unknowns

ax +by=e,
ex +dy =1,

can be interpreted geometrically as two lines in the real coordinate plane.
The solution of the system consists of all points that lic simultaneously on
both lines. By considering the possible points of intersection of two lines,
show that this linear system can have no solutions, exactly one solution, or
infinitely many solutions. Are these the only possibilities?

5."As a special case of the system: (1.1), suppose that d, =d, = -:- =
d,, = 0; let the ordered n-tuples U = (uy, ..., ,) and V = (v,, ..., v,) denote
two ’sc?lutions. : .
(i) Show that (1, + vy, ..., u, +1,)is a solution.
(ii) Show that (bu,, .. bu,) is a solution for any constant b
(iii) Deduce that for any constants b and G

(bul' +cvy, ..., bu,, <+ Cv,,)

is a solution. (This last n-tuple can also be denoted by bU + c¥,and it is
therefore referred to as a linear combination of the solutions U and V') .

1.2 MATRIX REPRESENTATION OF A LINEAR
SYSTEM

After solving a few systems of linear equations by hand, we recognize that
a lot of unnecessary writing is involved, even for small values of m and n.
However, if we agree to arrange the work so that the symbols x ; for the n
variables always appear in the natural order, we can dispengg with writing
the symbols for those variables because the required computations involve



