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part | |
Heat Conduction

In the next several ﬁhapfers we shall ‘examine the physical phenomena,
the fundamental laws, the thermophysical properties, and the charac-

“teristic mathematical formulations that are significant to the process of ‘

heat conduction in matter. The flow of heat in opaque solids takes place
exclusively by the conduction process. In transparent or translucent
solids conduction and radiation transfer can oceur, and in liquids and
_gases the transfer processes of conduction, convection, and radiation can
occur simultaneously. In the developments that follow the major interest
will be with solids, and the results of the problems considered in the
chapters on heat conduction can be applied to all solid bodies. In those
specific cases where heat exchange by convection is prevented and
exchange by radiation minimized, the principles of heat conduction can
be applied to liquids and gases as well.

The treatment of heat conduetion has been separat,ed into five
specific topics® (1) theory of heat conduction and heat-conduction equations,
(2) thermal conductivity and its measurement, (3) sleady heat conduction, (4)
unsteady hegt conduction, and (5) heal conduction with moving boundaries.
These subdivisions are necessarily arbxtrary but serve as an aid in the
presentation of the material.

Heat conduction from the macroscoplc, phenomenological point of
view can be understood without a companion understanding of the mecha~
nism of heat conduction as proposed by the theories of modern solid-state
physics and kinetic theory. However, today, an acceptable understand-
ing of the science of heat and heat transfer requires a familiarity with
both the microscopic and macroscopic points of view, Many of the
advances in technology from which we benefit today have been the result
of intelligent application of knowledge of the behavior of materials ou a
microscopic as well as on a macroscopic seale. To note two examples:
the effect of alloying on the reduction of thermal conductivity of metals
has been used to advantage in the selection of materials for low-tempera-
ture work, and knowledge of the material behavior on a microscopic segle
has been of major importance in the development of heat-shield matenals
for atmospheric reentry.

‘Within the section on heat conducﬁon it is a;Spropnate to treat ift
some detail, from both microscopic and’ macroscoplc points of view, tHe
important transport property thermal, conducthty In the dlscusslomoi
. heat donduotmn it isthe thermal conduot‘lvxty of solids thet appears most

1



2 HEAT CONDUCFION

important; however, heat conduction is an ever-pregent process in nomi-
nally heat-convection processes, and for this reason~the discussion of. '
thermal conductivity ineludes the liquid and gas as well as-the solid
phases of matter. “

In the other chapters, where heat conduction is treated from the
macroscopic, phenomenological sense, the thermophysical properties,
such as the thermal conductivity, are presumed to be known. In such &
treatment it is well to realige that although the physical notions may be
slmple, the mathematical techniques required to obtsin ugable résults,
i.e., temperature distributions, heat rates, temperature-time 'hlstones,
etc., are generally complex and in many cases quite difficult; In the
treatment here, the mathematical complexities have not been, avoided;
however, an attempt has been made to keep the presenitation frqm beconi
ing & mathematical treatise. For more complicated priblems and' prabs:,
lems with diverse boundary conditions the reader is refetred to the exeei-ﬂ
lent book by Carsiaw and Jaeger.!

Certain elementary problems in heat conduction have been tteated
only briefly in this edition. The reader wishing more detail than shown
here should consult the introductory volume by Eckert and Grosst or the
more advanced work by Eckert and Drake.? - .

With some exceptions, the thermophysical propertigs whieh occur
in the heat-conduction problems have been considered to be independent
of temperature. Such practice not only simplifies the mathematical
treatment but also is a reasonable approximation in many physical prob-
lems where the temperature variation is nat large. In problems involving
large temperature differences, chemical reactions, or phase changes, the
neglect of temperature dependency of the thermophysical properties may
be a serious omission. Therefore, each problem must be earefully con-
sidered physically before the assumption of constant properties is applied.

Certain heat-conduetion problems involve the convection (or the
radiation) mode of heat transfer, usually in the statement of some bound-
ary condition. In the consideration of,heat-conduction problems in
which heat convection (or radiation) plays a part, it will be assumed that
the heat-transfer coefficients are known. The nature of these heat-
transfer coefficients as well as the methods for their determination are
considered in the chapters on convection heat transfer and thermal
radiation.

*H 8 Carslaw and J. C. Jaeger, “Conduction of Heat in Solids,” 2d ed., Oxford
University Press, New York, 1959.

*E. R. G Eckert and J. F. Gross, ‘Intrdduction to Heat and Mass Transfer,”
McGraw-Hill, New York, 1963.

*E R.G. Eckert and R. M. Drake, Jr., “Heat and Mass Transfer,” 2d ed., McGraw-
Hill, New York, 1959.
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Theory of Heat Conduction and
Heat-conduction Equations '

1-1 THE CONCEPT OF HEAT CONDUCTION

The currently accepted theory of heat is-closely associated with the inter-
nal energy of matter, which in thermodynamics is referred to as the energy
related to the physical and chemical state of the body—the orientation
and motion of the molecules and atoms within the body. Although
incamplete, the dynamic theory of heat permits some important conclu-
sions to be drawn which are quite generally confirmed by experiment:

1. Since heat as energy is associated with translational, rotational, and
vibrational motions of the molecules, atoms, and their components,
heat transfer by conduction must be strictly related to these
motions. ’ ’

2. Increased - temperature increases the intensity and frequency of
molecular and atomic motions; therefore, the conduction of heat
should increase: with increasing temperature. (There are excep-
"tions to this statement.)

4



] * :  HEAT CONDUCTION

3. Changes from the denser solid bhases to the liquid and gaseous phases
result in lower thermal conductxwtles and thus smaller hea.t—conduc—
tion eﬁects

These general patterns'of the behavior of materials are discussed
in considerable detail in Chap. 2 in terms of the modern theories of the
solid state and the kinetic theory of matter. The description of the heat-
transfer mechanism by mesns of a dynamic theory and in terms of a
;meaningful molecular model has presented the physicist with some of the
most complicated pro,blems in theoretical physics. In recent years
improvement of the fundamental theories and implementation of the
theoretical treatment by means of accurate and detailed calculations
made possible by modern computers have greatly advanced the knowl-
edge and understanding of the transport propertics. And while there
remain large gaps in knowledge in certain areas, liquids in particular, the
general understanding of these properties is fairly complete. In fact, in-
the case of gases at high temperatures the calcula.ted results are superlor
to the experimental measurements. :

While there remains some conjecture in regard to the precise physi-
cal model for the mechanism of the transfer of heat energy, for any event
and for any theory the erergy in transition is referred to as heat and the
process of energy transfer is known as conduction.

It is not necessary to understand fully the mechanism of heat
conduction in matter to proceed with the mathematical developments .
which lead to practical results. For even though the physicomathemati-
cal models representing the microscopic behavior are not yet perfect, one
relies upon the faet that the practical developments of the heat-conduc-
tion processes resulted from a hypothesis based upon experimental
observations. Subsequent use of this hypothesis as a basis for mathe-
matical analysis to obtain results which have been experimentally verified
is sufficient to establish the particular law which is characteristic of the
transfer itself. The basic law so established is entirely ¢onsistent with
the laws of thermodynamics.

1-2 THE FUNDAMENTAL LAW OF HEAT CONDUCTION

To be consistent thermodynamically is to require, by virtue of the second
law of thermodynamics, that heat will be transferred from one body to
another body (or from one part of a body to another part of the same
body) only when the bodies are at different temperatures and that the
heat will flow from the location of the highest temperature to the location
of the lowest temperature; ie., a temperature gradient exists, ‘and the
energy in the form of heat ﬂows in the direction of decreasing tempera-
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ture. The first law of thermodynamics states that the flowing thermal
energy is conserved in the absence of heat sources or sinks. To thisend a
body may have a temperature distribution which is dependent upon the -
space coordinates and time of observation:

t = f (:r:,y,z,*r)

One may suppose that within this body is a surface such that, when
observed at a .certain time, each point on it has an identical temperature.
Such a surface is called an isothermal surface. One can further visualize
other isothermal surfaces wjthin this body which differ from one another
by being hotter or colder by temperature increments + &, respectively.
These isothermal surfaces never intersect, because no point in the body
can exist at two different temperatures at the same time. The body is
"thus visualized as bemg composed of & number of a.rbltranly thin, iso-
thermal shells that, of course, vary with time.

In the discussion which follows, unless stated differently, we shall
consider only isotropic solids, i.e., solids whose properties and constitution

" in the neighborhood of any point are invariant with the direction from
the point. In such a case, and because of the symmetry involved, the
heat flow at a point is along a path perpendicular to the isothermal surface
through the point. For s nonisotropic solid the heat flow is not neces-
sarily in a direction perpendicular to the isothermal surface through the
point, a situation which will be discussed in a subsequent paragraph.

" The hypothesis which forms the basis for the mathematical formula- -
tion of the law of heat conduction had its foundation in the results of a
simple experiment. A plate of some solid is bounded by planes suffi-
ciently large to be supposed infinite in extent. The bounding planes are
. maintained experimentally at different but uniform temperatures, the
temperature difference being not so great as to measurably change. the
thermophysical properties of the plate material.  After some sufficient
time the heat flow and temperature distribution in the plate become
invariant with time, or steady. The heat flow can then be measured to be

Q= M _ ) 1-1)

where @, the heat flow, is shown to be proportional to the area A of the ,
plate surface and to the temperature difference f; — ¢, of the plate surface
and inversely proportional to the plate thickness d. The constant of
proportionality is the thermal conductivity k. Strictly speaking, the
- thermal conductivity is not a constant but depends upon temperature
and to some extent pressure. Thermal conductivity is a transport prop-
erty of the material. The nature of the thermal eonductivity and its
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_ “variation w1th physical parameters such as material compos:tnon, pres-
sure, and tempera.ture will be discussed in Chap. 2.

At a point in the interior of the plate, Eq. (l-l) ean be wntten more
" generally as

AT " T (1-2)

where H is the heat-flow vector field. Equation (1-2) can be interpreted
with the aid of Fig. 1-1. The heat flux Q/A flows along the normaln to
the area A in the direction of the decreasing temperature, i.e., the nega-
tive thermal gradient. The negative sign in Eq. (1-2) indicates that the
heat flow is in the direction of the negative gradient and serves to make

* the heat flux positive in that sense. Again, the proportionality factor
is the thermal conductivity k, a property of the material through which
the heat flows. ‘

* The form of Eq. (1-2), which in fact serves to define the thermal
conductivity, implies that the process of heat conduction is a random
process, a diffusion of energy. The heat energy does npt enter one side
of the plate and travel directly to the other side but rioves randomly
through the plate as the result of frequent collisions. If the heat were
propagated through the plate without the random character, the expres-
sion for the heat flux in Eq. (1-2) would show a dependence only on the
temperature difference and not on the'tempera.tm gradient, thus being
independent of the thickness of the plate d. It is the random nature of -
the conduction process that bnngs the temperature gradient into the
expression for the heat flux.

The random nature of the conduction process can be demonstrated
in the following way: In the kinetic theory of gases under certain approxi-
mations, as will be shown elsewhere in this text, the thermal conductivity
of certain solids can be shown as

Ny

—eidn fa—

k= %P’“-)xcv (1‘3)

Fig. -1 Heat-conduction aystem.
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where ¢, = heat capacxty a.t constant volume

W = average carrier velocity

p = mass density -

) = mean free path of carrier between collisions
If Egs. (1-1) and (1-3) are combined,

0= F =m0 o

i

The expression for the thermal flux as shown by Eq. (1-4) can be
interpreted as follows: pc,(t; — 12) is the excess energy on one side of the
plate over that of the other side. This energy is propa.gated across the
" plate at an effective transport velocity %)/d, which is just the carrier
. velocity reduced by the ratio of the mean free path to the significant
dimension of the plate d. As will be shown in Chap. 2, the carriers are
the individual molecules in the case of a gas; in the case of solids (and to-
a great extent liquids) the carriers are free electrons and phonons.

Equation (1-2) can be rewritten for the case of an infinitesimal area
as

a. :
dQ = —kdA (1-5

Equations (1-2) and (1-5) are generally attributed to the French -
mathematician Jean Baptiste Fourier and in his honor are desngnated the
Fourier heal-conduclion equations.

. The heat flow per unit area per unit time across any surface is
called the heat flux ¢ and has units of watts per square meter. - The
heat flux is a vector; i.e., its magnitude and direction must be specified.
The heat flux can be calculated for any point in reference to any arbi-
trary direction through the point if the area normal to the desired direc-
tion is considered.

In Fig. 1-2 are shown the isotherms  and ¢ + d¢ in a body. The
normal to these isotherms is designated by the axis n, which is also nor-
mal to the differential area dA. The heat flux can be calculated in the
direction of the normal n and in the arbitrary direction s as shown below:

aQ . at
=T~ " 5m
| Q _ &
*=ddcosa kas

Since n = 8 c0s a,

9 = —k—a—:-l cos a ' | (1-6)
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Fig. 1-2 Direction of heat flow.

or, in other words, ¢, is a component of the heat-flux vector ¢,. From -
Eq. (1-6) it can be seen that the greatest heat flux is that which is cal-
culated along the normal to the isothermal surfaces. In particular, if
the component fluxes are related to the planes of the (z,y,2z) coordinate
system, the heat fluxes are '

a a a .

" The heat fluxes shown in Eq. (1-7) are components of the heat-flux
vector

q=1q:+ jg, + kq. - " (1-8) .

" Effect of variable thermal conductivity It should be noted here that the
thermal conduectivity k is not a constant but, in fact, is a function of
the temperature for all phases and in hqmds and gases depends also upon
the pressure, gspecially when near the critical state. The thermal con-
ductivity in wood and crystals also varies markedly in direction.

 The dependence of thermal conductivity on temperature for small,
select temperature ranges can be acceptably expressed in a linear form:

k = ko(1 + af) b

where k, is the value of the thermal conductivity at some reference con-
dition and a is the temperature coefficient and is positive or negative
‘depending upon the material in question. Figure 1-3 shows the effect
on the temperature gradient in a body as a result of the positive or
negative characteristic of a.

It can readily be seen that a linear temperature gradient exlsts only
when the thermal conductivity is a constant.



