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Classification of Magnetic Substances

WHEN a substance is placed in a magnetic field H, this field will
mduce ms1de the substance a field B whlch is glven by

B=H+dnM = pH.

Here M is the magnetisation of the substance and 4 is its permeability.
The magnetisation is due to the external field H. It is an empirical
fact that, to a good approximation, M (with the exception of some
special cases) is a linear function of H and we can put :

M=yH

where y is called the magnetic susceptibility. Susceptibility is a para-
meter characteristic of the substance considered, which, in general,
depends on its temperature. According to sign and order of magni-
tude of y substances are subdivided into three large classes:

Ly<0 Diamagnetic substances\
ILx=0 Paramagnetic substances.

Ill. y =  Ferromagnetic substances.

Class I is largest as almost all organic molecules belong to it, as
well as all noble gases, several metals such as the noble metals, bis-
muth, zinc, mercury, ... and non-metals such as sulfur, iodine, sili-
con, ... (Bates, 1961). In principle also all superconductors belong
to this class, since below the transition point in a superconductor
B = 0 (Meissner effect) so that y = —1/4x. Since, however, such a
behaviour is due to quite different physical causes than normal dia-
magnetism, superconductors are not considered in this book. How-
evet, it should be mentioned that the “diamagnetic conception™ of
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INTRODUCTION TO THE THEORY OF MAGNETISM

superconductors was important for the development of the theory of
superconductivity (Bardeen, 1963).

The second class comprises all substances which possess a perma-
nent magnetic moment, such as the transition elements of the periodic
system and their compounds, as well as the rare earths, and the alkali
metals, .

A few substances belonging to Class II are ferromagnetic below a
certain characteristic temperature, the Curie point; these substances
represent Class III, which also comprises the antiferromagnetic and
ferrimagnetic substances. The property of being ferromagnetic (anti-
ferromagnetic, ferrimagnetic) is linked with definite crystalline struc-
tures so that this class comprises only solids.

The following treatment of the theories of magnetlsm is based on
this classification of the substances.



I. Diamagnetism

1. The Bohr-van Leeuwen Theorem

In order to understand the fundamental effects of diamagnetism,
one may be tempted first to develop a classical description and then
to complete it with the necessary quantum-mechanical corrections.
However, both diamagpnetism and paramagnetism proved to be incom-
prehensible within the framework of an exact classical theory based
on the magnetism of moving charges. This fact is sometimes called
the Bohr-van Leeuwen theorem (Van Vleck, 1932a). If, for example,
an electron with the charge e (e =—eo; €0 = 48X 107 es.u) is
assumed to travel along a circular orbit (e.g. in 8 constant magnetic
field), a magnetic moment a given by '

m =-'£—.A' = —[rA0]. (1.1)

will correspond to the circular current j obtained in this way; here ¢
is the velocity of light, r the radius vector of the electron, v its velocity,
and A is a vector, the magnitude of which is the area enclosed by the
current and the direction of which is given by the right-hand rule.
When the electron is assumed to move in the x, y-plane, only the z
component of moment m will be non-zero:

my = o () —y5).

This formula was given only to show that there is a linear relation
between the magnetic moment and the velocity of the charge. This
linearity remains unchanged even if we have complex trajectories and
many electrons. Consider, for example, a system of N electrons which
are described by their coordinates ¢; ... g,y and the corresponding
canonical momenta p, ... p,y. For this system the z component of
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INTRODUCTION TO THE THEORY OF MAGNETISM

the magnetic moment will be given by
3” 0
m; = ‘Z ai(q - - - qanXi» (1.2)
=1 R }

where a; depends only on the position coordinates, g;. The thermal
mean of (1.2) is obtained when this function is provided with a weight
factor (the Boltzmann function) and integrated over the whole of
phase space:

—%Ik
M= I m, .. dosw dp . (13)

Dis the Hamiltonian of the system generally given by

. w

N / =‘Zl o (p;———Ag) +eV(gy : .., qan);
here m is the mass of the charge carriers, 4 is the yectdf potential, and
V is the interaction potential. Z is the classical partition function,

Z = je‘%”‘r dq, ... dpsy,

k is Boltzmann’s constant, and T is the absolute temperature. Substi-
tuting (1. 2) in (1.3) we obtain

N 1
M ———IZ If(ql, . ,qm)q:e"’% dql dpm, B =07

By virtue of the canonical equations of motion we have
G2 A . oH

kR i

and, integrating over the momenta, we obtain

1 (3N oH
— 2 . . a—-Bd L.
= j’; aiq, . .- 9sN) ap: ¢ dg, dpsn

1 ] _
= —-EZ—J-’ZI"?(% ‘e %N)‘a—e"% dqy ... dpsy

Py + oo

_ . e—8H dg, ..
73 J. 2-1 aj(q - - - 9an) [ ]m__._ )
dgsy dpy ... dpi-1dpis1 ... dpsy = 0.



- 1. DIAMAGNETISM

Thus we see that diamagnetism is not'a classical but a quantum-
mechanical effect; when the susceptibility formula is derived in a
classical way, the derivation is always based on assumptions involving
quantum-mechanical results in a more or less implicit form.

2..‘Diamgg‘neﬁsm i)f’Atoms and Ions

The classical dérivation of diamagnetic susceptibility according to
Langevin (1905) and Pauli (1920) is based upon ‘the assumption of an
electron moving in a fixed orbit (frequency wo) around a nucleus,
i.e. it is based on a quantum-mechanical assumption. In this case the
centrifugal force and the Coulomb force acting on the electron must
be in equilibrium. When the nuclear charge is equal to Zeo we have

" za
'?ﬁ" )
r being the distance between electron and nucleus. Hence we obtain
for the orbital frequency ‘

ma)%r =

wo = Z_e?;-
mr

If now a magnetic field H is applied parallel to the z-axis, the
Lorentz force

e

will act on the electron in addition to the other forces. The condition
of equilibrium for the forces in the plane perpendicular to the field
is now given by

Ze"' €0
mo?r = Tzo += wrH,

where H is the niagnitude of the magnetic field and w is the orbital
frequency of the electron, which has changed by wo.
This new frequency is given by
eH \? eH
o) + e (1.4)

@ = l+(2mca>

1LT.M. 2 3



INTRODUCTION TO THE THEORY OF MAGNETISM

With field strengths achievable in practice, eoH/2me is much
smaller than wo and we have in a good approximation

W= wo+§% = Wo+WL.

Thus the application of the magnetic field has changed the orbital
frequency by @y, which is usually called the Larmor frequency. This
additional Larmor frequency gives rise to an additional current and
an additional magnetic moment induced by the field. As there is an
additional number, @, /2%, of revolutions of the electron, per unit
time, the current due to the Larmor frequency is given by

= &0
J= o
The magnetic moment m, induced by it will then be

—J g
my = cA chA'

Here A is the circular area bounded by the electron’s orbit in the x,
y-plane: A =a(x2+3?). Averaging over many identical electron
orbits, we have

B-F=P=in

r being the distance between electron and nucleus. Thus the mag-
netic moment of a diamagnetic substance consisting of N, identical
atoms per cm?, each possessing one electron, will be given by

M= —Nog;gz re,

If several electrons are bound to the nucleus, in addition to the
electrostatic interaction between electrons and nucleus, there will
also exist an electrostatic interaction between the electrons. Since
this interaction is spherical-symmetric, the Larmor theorem remains
unchanged, as can be easily verified: the.orbital frequency of each
electron will be changed by ;. Hence it follows that in the case of

6



1. DIAMAGNETISM

N, identical atoms with Z electrons the mean magnetic moment is
given by '

M= —N --i—zr"f-ﬂ (1.5)
. 6me ,;, ’ '
so that the susceptibility per unit volume is equal to
I I
v =—Nog—3 Elf?, (1.6)
and the atomic or molar susceptibility will be given by
_ ye 5
%A = —N m Z re. (1.7)

(223 1
N is the Avogadro number, equal to 6:0022X10® mole™1,

This calculation is based on the assumption of atoms which do not
influence one another.

We have seen from the theorem by Bohr and van Leeuwen that a
classical derivation of susceptibility will always be inconsistent. We
therefore need a quantum-mechanical basis for eqn. (1.5).

The Hamiltonian of an atom with Z electrons in an external mag-
netic field is given by . _

, 1 Z e 2 Z 1
B =5 3 (P AC)) + 3 Uedtg E VmnD.
Here U(r)) is the interaction of the ith electron with the nucleus and
V(lr,—rl)is the ordinary electrostatic interaction between an electron
at r, and an electron at r,. As these interactions are unimportant for
what follows, we shall ignore them. The magnetic field is assumed to
be constant, uniform, and parallel to the z-axis; the vector potential
is then given by

4= %’(-y. %, 0).
The éibeCtatiOn value of 70 is then obtained as
Z s z z
Z_ A _eH§5o—~ el & ———
H = E’l 2m 2mc ,Z:l (xpy—ypsh + Smc® 1?1 2+

2¢ 7



INTRODUCTION TO THE THEORY OF MAGNETISM

Hence we obtain for the magnetic moment of the atom

— oH _ eh &
= - — _ 2 2 V2
e oH = 2mc ;1 4mc2 (x s
where
Aily = xpy — yps

is the z-component of the orbital angular momentum of an electron,
due to its motion around the nucleus. When the first term is diffe-
rent from zero, the atgm has a permanent magnetic moment which
is the cause of its paramagnetic behaviour, as this term as a rule
exceeds the second, the diamagnetic term. As to the order of mag-
nitude, in cgs units,

#l; = mor = 107 and H(x’+y2 = ~2~5°~H t = 107%H,

i.e. for practical field strengths and usual electron orbit radii, the -
diamagnetic term can be neglected in the expectation value for the
magnetic moment. Thus, the diamagnetism of an atom can only be
measured if the atom has no permanent magnetic moment. It is well
known that only atoms with closed shells, i.e. noble gases, satisfy this
condition. (Although the expectation value of the angular momentum
vanishes alsp for s-electrons, for example, the diamagnetism of an
atom with one s-electron is masked by the weak paramagnetism of
the spin of this electron.) For such electron configurations we there-
fore obtain for the mean magnetic moment of the atom

- _65‘%)‘5 = A (1.5)
{=1

where we can put x2 = 32 = 3 r? because of the spherical symmetry
of the Hamiltonian. (In the case of a crystal this would be generally
inadmissible.) Hence we obtain for the molar or atomic susceptibility

as before
= Z 1.7
y 7 6 cz r,’ ( . )

imel



1. DIAMAGNETISM

which 13 the same as the previous formula. Tt is an advantage of the
quantum-mechanical derivation, compared with the classical deriva-
tion by Langevin, that it reveals the conditions under which the dia-
magnetism of an atom can be observed, as the presence of closed
shells cannot be understood within the framework of the classical
concept. With the more exact derivation of eqn. (1.7), however, we
did not achieve very much; the dlfﬁcultles in the calculation of sus-
ceptibility consist of the determination of the expectation values of
r2, The simplest case to be cons1dered is that of a hydrogemc atom
with nuclear charge Z.

If the electron is in a state with principal quantum number » deter-
mining the energy of the electron, and the orbital quantum number, /,
(because of spherical symmetry the magnetic quantum number plays
no part), we obtain with the exact eigenfunctions of the hydrogen
atom, according to Bethe and Salpeter (1957),

F,‘e,, = 2z= {5n’+l 31(1+1)}

where a; = ﬁzlmeo 529X 107% cm (Bohr radius); thus we obtain for
the susceptibility

_y_ a3 (5 31+ 1) 2n2)’. 1.8

I = 6Z’mt:2 2 2

i.e. x is proportional to the fourth power of the principal quantum
number. When we apply (1.8) to the ground state - of the hydrogen
atom (n = 1, / = 0)'we obtain °

Aa = —238X10°% cm?/mole.

Because of the electron spin this result cannot be verified by
experiment. It is, however, known empirically that in larger atomic
complexes the spin becomes saturated; it was therefore tried to draw
conclusions from measurements on organic substances about the
susceptibility of the hydrogen atom. In this way Pascal (1920) obtained

xa = —2:93X 108 cm?/mole.



INTRODUCTION TO THE THEORY OF MAGNETISM

Although this result is rather satisfactory, other experimenters
arrived at quite different values so that this method is not well suited
to check the theoretical result. -

The calculation of 7% for atoms with two or more electrons imme-
diately entails considerable difficulties, which are due to the mutual
influence of the electrons. An electron at a distance r from the nucleus
(charge Z) is not exposed to the action of the whole nuclear charge
but to this charge minus the electron charge inside the sphere of radius
r around the nucleus, i.e. to Zg(r) = Z—Z/(r), where according to
the usual laws of electrostatics, Z,,(r) is given by

Zulr) = 4 [ o(r)r* db,

where p(r) is the electron density at point r. (Here we tacitly assume
a spherical-symmetric density distribution which strictly applies only
to closed shells,) In a very rough approximation Z_, can be replaced
by a constant which will depend on the principal quantum number
n and the orbital quantum number / (Van Vleck, 1932a):

Zot = Z—0n1. (1.9

One could try to calculate the screening constants o, ; (cf. Van
Vleck, 1932a); in our rough approximation, however, it is better to
take the screening constants as parameters to be obtained from, for
example, the ground states of the atoms or ions, or their susceptibili-
ties. In this case each electron in a shell with quantum numbers n
and / moves in a Coulomb potential Z4eo/r and, according to (1.8),
r is obtained for this electron in the form of

= %(WH 310+ 1)).

As éach encrgy level displays a 2(2/+ 1)-fold degeneracy, we have
for an atom or ion with closed shells

e} e B (U+D)P(SA+1-30+D)
6mc? 2 (Z—-041)? (1.10)

Ia=-N

nm0 im0

10



I. DIAMAGNETISM

where the double sum is to be taken over all occupied states, i.e. the
electron configuration of the atom or ion.

Another method of calculating 72 is based upon approximate analy-
tical expressions for the radial part of the electron wave function
which, besides the effective nuclear charge, also contains an effective
principal quantum number n*. (An effective quantum number is
known to appear in the optical terms of the alkali metals; see, for
example, Slater, 1960.)

Slater (1930; see also Angus, 1932) wrote the radial part in the form

Z—2q,; 1

wr)~rm-1e " @ (1.11)
and gave simple rules as to the attribution of n* and s, , to the electron
configurations in the atom (Slater, 1930; Angus, 1932). The form of
(1.11) corresponds to the asymptotic behaviour of the hydrogen eigen-
functions for large distances from the nucleus, see, for example, the
text by Landau and Lifshitz (1958).

Using (1.11) we then obtain

AP (o 1)
= o (7 7) 0D

and for the molar susceptibility

*p(n* +5) 5+ 1)
ey 4l

el I=0 (Z—sa10*

The methods sketched in this way are more or less semi-empirical
methods as the final formulas contain parameters obtained by choos-
ing them in agreement with other data on the atom. Theoretically

r3 can be calculated in three ways. One of them is the Thomas-Fermi
method for statistical treatment of the atom (Gombds, 1956). The
other two ways are the Hartree method and the Hartree—Fock method.
Both are based on a variational principle for the electron wave func-
tions with the approximation of replacing the interaction potential
between the atomic electrons and all other electrons by its mean value
averaged over all angles, where the still unknown wave functions are
used in the averaging. In this way, we obtain from the Schrodinger

(1.12)

11



INTRODUCTION TO THE THEORY OF MAGNETISM

equation for the many-electron problem an integro-differential equa-
tion which can only be solved numerically (Slater, 1960; Hartree,
1957). Unlike the Hartree method, the Hartree-Fock method takes
the Pauli principle into account ; for most atoms it is the best and most
exact way of determining the physical quantities of an atom (Slater,
1960).

TABLE 1
Hartree—
Exper. Eqn. Eqn. | Thomas- Hartree Fock
Ele- |(Landolt- (1.10) 1.12) Fermi Stoner. | (Hartree
ment |Bémnstein,| (Van Vleck, (Slater, |(Gombis, ( 1629) ’ and
1950) 1932a) 1930) 1956) Hartree,
1938)
He - 193] —-1-54-11-85 - 164 - - 190
Ne - 72 - 57 - - 56 |- —128 — 86 _
Ar —-19-4 —-136 215 —18-5 -182 —-248 |. —206
Kr -28 -17'2 —42 -31 -~283
Xe -43 —-254 —66 —-47 —473

The table contains data on the atomic susceptibility x4 X 10° mole/cm? for noble
gases. The first values of the third column are the susceptibilities obtained with
the theoretical screening constants; the second values of this column were obtained
by means of empirical screening constants. The values of the fourth column were
calculated according to Slater’s rules.

Table 1 gives the molar susceptibilities of the noble gases as ob-
tained by means of various methods and compared with the experi-
mental results. With almost all elements the agreement between
theoretical and experimenta] values is rather good.

The He atom is a special case since for this atom the wave function
is known relatively exactly (Slater, 1960; Hylleraas, 1929; Kinoshita,
1957; Pekeris, 1958). The accuracy is essentially better than using the
Hartree-Fock method. Using the results by Pekeris (1959; Stewart,
1963), for helium a value of ng = —1-8905X%107% is obtained, while
the experimental value obtained by Havens (1933) is

xa = —(1-906 10-006) X 10-8.
sothat in this case we can speak of a very good agreement.

12



1. DIAMAGNETISM

A comparison between theory and experiment is more difficult in
the case of ions with noble-gas electron configurations (closed shells).
First of all, the susceptibilities of these ions can only be measured in
solutions or crystals, e.g. Na*Cl~, as these icns do not exist in the
gaseous phase; secondly, there is a decisive uncertainty to be taken
into account, which is due to the fact that the noble-gas configuration
of ions is essentially less stable than that of the noble gases. Their
susceptibility will therefore depend on thé partner of the ion to be
measured, on the structure of the crystal, or on the solvent. It is there-
fore difficult to conclude from the susceptibilities measured, the sus-
ceptibilities of the free ions which were calculated theoretically
(Myers, 1952).

TABLE 2
Eqn. Edn. | Thomas- Hartree-
Ele- | Exper. (Myers, | (1.10 (1.12) Fermi | bartree | Fock
ment|  1952) | (Pauling, | SIater (e¢| (Gombgs,| (Hlartree, | (Hartree
1927) Myers, 1956) 1928) and Har--
. 1952) tree, 1938)
F- - 94; —121 | - 81 - 81 —244 | <170
cr- <183, -2651 -29 -252 | —346 | —-41-3 | —304
Br- -30:°" —54 —54 -392 ] —512
J- —47-7;, —554 | -80 —-585 | —637 |
Lit +01;, — 67| — 063 — 07 - -07 ] - 07
Nat | — 525;-125 | — 42| - 41 - 73| -56| — 49
Kt —134; -2111| —-167 | —-14-1 ~144 | —-173 | —183
Rbt | —204 ;—282] -35° 2251 —268 | —29'5
Cst —351: —443 | =55 —387 | =372} —-415
Mgtt| - 1.6; =136 - 32| - 31 —~ 58] —42| - 374
Catt | - 45; -185| -133 | —-111 - 90 | —-131
srtt | —14; -—-285| -~28 =210 | =210
Bat™t | —253; —41-1| 46 | -326 | -305

The table contains data on the atomic susceptibilities (x4 X 10* mole/cm?) of
soime ions with noble-gas configurations. The second column gives the largest and
smallest experimental values (after Myers). In the fifth column the susceptibility
of Mg*+¥ was calculated by Hirone (1935), and that of Ca*+, Srt+, and Bat+* by
Jensen (1936). The value for Mg++ in the seventh column was calculated by Yost
(1940).

13



INTRODUCTION TO THE THEORY OF MAGNETISM

Naturally the values of y compiled in Table 2 show a considerable
spread. Given the spread in the experimental values we cannot say
much about the agreement between theory and experiment. However,
all theoretical methods yield a qualitative agreement.

3. The Fermi Gas

Passing over from substances whose atoms have a noble-gas con-
figuration to the alkali metals, we see that the alkali ions also have
noble-gas configurations; however, each of them has also an electron

_which, in the metallic state, is more or less separated from the atom.
The appearance of free charges is a characteristic phenomenon of con-
ductors and semiconductors. Like the ions they contribute to the mag-
netic behaviour of the substance. This behaviour depends partly on
the temperature; in the following we shall therefore consider the ther-
modynamic properties of such an electron gas as far as they are essen-
tial for the magnetism. We shall neglect the electron-¢lectron Coulomb
interaction: this corresponds to the old Sommerfeld treatment of
the electron gas in metals. (The influence of temperature on the dia-
magnetism of atoms and ions could be neglected because the noble-
gas configuration is very stable and cannot be changed by tempera-
ture effects.) We now determine the (Helmholtz) free energy F of the
electron gas with a given number of electrons and given energy:

F = E-TS. (1.13)
Here E is the energy, T is the temperature, and S is the entropy. When

the electrons are assumed to possess a discrete spectrum of states
(marked by a subscript i), the energy is given by

E= ; Ei-f(E), (1.14)

where E, is the energy of the ith state and f(E) is the mean number of
electrons in this state. As in quantum mechanics, the subscript i
characterises a whole set of variables determining the properties of the

14



