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Part 1

Finite-Dimensional
Vector Spaces
and the Fourier Transform

In this part we develop the mathematical framework of finite-dimensional
Fourier transforms and give the basics of two fields where it has found
- fruitful application: in the analysis of coupled systems ar d in communication
theory and technology.

Chapter 1 deals with complex vector analy51s in N Jimensions and leads
rather quickly to the tools of Fourier analysis: unitary transformations and
self-adjoint operators. The uncoupling of lattices reoresenting one-dimen-
sional crystals and electric RLC networks is undertaken in Chapter 2. We
examine in detail the fundamental solutions, normal modes, and traveling
waves for first-neighbor interactions in simple crystal lattices and extend
these to farther-neighbor, molecular, and diatomic crystals. The Fourier
formalism is also used to describe the analytical mechanics of these systems:
phase space, energy, evolution operators, and other conservation laws.
Chapter 3 introduces convolution and correlation, sketching their use in
filtering, windowing, and modulation of signals and their detection in the
presence of background noisc. The workings of the fast Fourier transform
(FT) computation zlgoritkm are given in Section 3.3. Finally, in Section
3.4, some properties of Fourier series and integral transforms (Parts 11 and
III) are put in the form of corresponding properties of the finite Fourier
transform on vector spaces whose dimension grows without bound.

Chapters 2 and 3 are independent of each other and can be chosen
according to the reader’s interest.. With the first choice, Sections 1.6 and 1.7
will be particularly needed. The understanding of Chapter 3, on the other
hand, does not require basically more than Sections 1.1-1.4. Before going

1



2 Part I - Finite-Dimensional Fourier Transform

to the following parts in this text, the reader may find Section 3.4 useful. .
Table 1.1, which gives the main properties of the finite Fourier transform, is
placed at the end of Chapter 1.

Chapter 1

[ 1.0 =i 12 }——-|'1.3 }-——b{l 1.5 |—! 16 }—f 1.7 ]

| Chapter 2 v \ ,
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Chapter 3 !
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I

Concepts from Complex
Vector Analysis and the
Fourier Transform

In this chapter we present the basic properties of complex vector spaces and
the Fourier transform. Sections 1.1 and 1.2 prepare the subject through the
standard definitions of linear independence, bases, coordinates, inner
product, and norm. In Section 1.3 we introduce linear transformations in
vector spaces, emphasizing the conceptual difference between passive and
active ones: the former refer to changes in reference coordinates, while the
latter imply a “physical” process actually transforming the points of the
space. Permutations of reference axes and the Fourier transformation are
prime examples of coordinate changes (Section 1.4), while the second-
difference operator in particular and self-adjoint operators in general
(Section 1.5) will be important in applications. We give, in Section 1.6, the
elements of invariance group considerations for a finite N-point lattice.
Finally, in Section 1.7 we examine the axes of a transformation and develop
the properties of self-adjoint and unitary operators.

If the reader so wishes, he can proceed from Section 1.4 directly to
Chapter 3 for applications in communication and the fast Fourier transform
algorithm. The rest of the sections are needed, however, for the treatment of
coupled systems in Chapter 2.

1.1. N-Dimensional Complex Vector Spaces

The elements of real vector analysis are surely familiar to the reader, so
the material in this section will serve mainly to fix notation and to enlarge
slightly the concepts of this analysis to the field € of complex numbers.

- . 3



4 | Part I - Finite-Dimensioral Fourler Transform [Sec. 1.1

1.1.1. Axioms

Let ¢,, ¢3,. .. be complex numbers, elements of ¥, and let £, f,,... be
the elements of a set ¥~ called vectors and denoted by boldface letters. We
shall allow for two operations within ¥":

(a) To every pair f; and f; in ¥] there is an associated element l‘a in7,
called the sum of the pair: f, = f, + f,. .

(b) To every fe¥ (“f element of ") and every ¢ € %, there is an
associated element cf in 7] referred to as the product of f by c.

With respect to the sum, ¥" must satisfy the following:

(al) Commutativity: 1, + f; =, + f,

(a2) Associativity: (I, + ) + £ = f; + (2 + f,),

(a3) ¥ must contain a zero vector 0 such that f+0=1fforallfe?,
(a4) For every f e 7] there exists a (—f) € ¥ such that f + (=) = 0.

With respect to the product it is required that ¥~ satisfy

®1) 1.f=f .
(b2) cy(caf) = (crcalf.

Finally, the two operations are to intertwine distributively, i.e.,

(]) - elfy + ) = o, + oy,
(02) (Cl + Cg)‘ = c;f + CQf.

The last requirement relates the sum in € with the sum in ¥ We use the same
symbol “+” for both. Immediate consequemes of these axioms are Of = 0

and (~1)f =
1.1.2, Linear Independenee

Except‘for allowing the numbers ¢, ¢3,... to be complex; the main
cconcepts from ordinary vector anaiysis remain anhanged A set of (nonzero)

vectors fy, £y, . . ., fy is said to be Imearly independent when L
N . i . ) " 4
Zc,f,.=0oc,.=0, n=12...,N _~ (1.1)
=] - '// :

If the implication to the right does not hold the set of veétors is said to be
linearly dependent. A complex vector space ¥ is said to be N-dimensional
when it is possible to find at most N linearly independent vectors. We affix. -
N to ¥ as a superscript: ¥™. Let {e,}N., = {e;, &,,. .., &y} be a maximal ~
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set of linearly independent vectors, called a basis for ¥V, We can then express
any f e 7'V as a linear combination of the basis vectors as

f= i fnem ’ (1'2)

n=31
where f, € € is the nth coordinate of f with respect to the basis {e,}5-1. If f
has coordinates {f,}Y., and g coordinates {g,}Y.,, then the coordinates of a
vector b = of + bg will be 4, = af, + §g, for n = 1,2,..., N, as implied
by (1.1) and the linear independence of the basis vectors. The vector 0 has
all its coordinates zero.

1.1.3. Canonical Represenuﬁop

Any two N-dimensional vector spaces are isomorphic, as we need only
establish a one-to-one correspondence between the basis vectors. A most
convenient realization of {e,}Y., is given through the canonical column-vector
representation

1 0 0 i
0 1 ] Sa

€ = 0 , €3 = 0 yeo 8N = ? ’ i'e"t= ﬁ‘
0 0 0 Ju-a
0 0 1 Sv

. (1.3)
Throughout Part I, we shall consider finite-dimensional complex vector
.spaces.

Exercise 1.1. Map the complex vector space ¥~ onto a 2N-dimensional rea/
vector space (i.e., only real numbers aliowed). You can number the basis vectors
in the latter as s,* =c¢,and 8}, = ie,,n = 1,2,..., N. (Any other choice ?) How
‘do the coordinates of a vector f € ™V relate to the coordinates of the correspond-
ing vector in the real space?

For economy of notation we shall henceforth indicate summations as in
(1.2) by Z,, the range of the index being implied by the context. Double
sums will appear as >, x, etc. If any amblgumes should arise, we shall
revert to the full summation symbol

1.2. Inner Product and Norm in ¥~

In this section we shall generalize the inner (or “scalér”) preduct and
norm of ordinary vector analysis to corresponding concepts in complex
vector spaces,

<



6 Part I * Finite-Dimensional Fourier Transform [Sec. 1.2

1.2.1. Inner Product

To every ordered pair of vectors f, g in ¥V, we associate a complex
number (f, g), their inner product. It has the properties of being Jinear in the
second argument, i.e.,

€ i + ca0) = off, g1) + euff, 82), (1.4)

and antilinear in the first,
(@fy + cofy, 8) = c;(fl, g) + c3(fa, g) (L.5)

where the asterisk denotes complex conjugation. Such an inner product is
thus a sesquilinear (13 linear™) operation: ¥¥ x ¥¥ — €. We shall assume
that the inner product is positive; that is, (f, f) > O for every f # 0.

1.2.2. Orthonormal Bases

Two vectors whose inner product is zero are said to be orthogonal. A
basis such that its vectors satisfy '

(€ Bm) = Sy = {

1 ifn=m,

0 ifn#m (1.6)

is said to be an orthonormal basis. It can easily be shown as in real vector
analysis, by the Schmidt construction, that one can always find an ortho-
‘normal basis for V. Conversely, we can define the inner product by demand-
ing (1.6) for a given basis and then extend the definition through (1.4) and
(1.5) to the whole space ¥¥. For two arbitrary vectors f and g written in
terms of the basis, we have

te= (En:f..e.., 2.faea)  lfrom (1.2)]
= Z gm(Zf;tem 3m) [from (1.4)]
= z Sga(en, &n) * [from (1.5)]

=3 i [from (1.6)] .

It is now easy to verify that _
#4f =0, 1= 0¢f»-’-= 0, ' (1.8)
fg = (g0 , 1.9

fIn fact, Eqs. (1.4), (1.8), and (1.9) are Sometimes used to define the inner
product in a vector space: the two sets of axioms are equivalent whenever
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‘an orthonormal basis exists. This is the case for finite N-dimensional spaces
but not always when N is infinite. In the latter, the definition (1 4)-(1.8)«(1.9)
is used.]

1.2.3. Coordinates

The nth coordinate of a vector f in the orthonormal basis {e,}¥., is .
easily recovered from f itself through the- inner product: Performing the
inner product of a fixed s,, with Eq. (1.2), we find

@) = (o };f,e.) = Zf,.(c., &) =/ (1.10)

Hence, we can write

= z n(‘m f) ' (l'll)

1.2.4, Schwartz Inequality

Two vectors f, and f; were said to be orthogonal if (f,, f;) = 0. On the
other hand, two vectors g, and g; are parallelif g, = cgs, ¢ € €, in which case

(‘l’ gﬁ) = C.(ga, ‘2) = c—l(gla g!) = [c‘c-l(‘h &)(Sa, '2)]1/2’ (1'12)

.where, note, |c*c¢~!| = 1. For |(£, g)|, zero is a lower bound, while, in the
event f and g are parallel, |(f, g)] = [(f, fXg, @]V2. These are the extreme
values, as stated in the well-known Schwartz inequality:

I 21 < €18, 8)- ' (1.13)

We can prove (1.13) as follows Consider the vector f — cg. Then, because
of (1.8), |

0<(f- (cg.! ® =00 -cfg) - @D+ | 8) (114)
Now choose (for g % f }
H c = (f, 2"/ 2. (1.15
Replacement ia (1.14) and a rearrangement of terms yield (1.13).
125 Nom |
The norm '(or length) of a vector f € ¥¥ is defined as

Ifl:= @02 (1.16)
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It is a mapping from ¥¥ 6nto R* (the ndnnegative halfline), having the
properties

itl =0, [fl=0«1=0, (L.17)

let] = le| Bl (1.18)
If +-gl < I£] + fgl. , (1.19)

Equations (1.17) and (1.18) are easily proven from (1.8) and (1.4)~(1.5),
while Eq. (1.19) is the triangle inequality, which states, quite geometrically,
that the length of the sum of two vectors cannot exceed the sum of the
lengths of the vectors. It can be proven from (1.14), setting ¢ = —1, that

0 < If + g)* = [f]1* + 2Re(f, &) + [2]*
< If1° + 21, )| + lgl® (from Re z < |z])
< [€1* + 24f]-fel + lel*  [from (1.13)]. (1.20)

The square root of the second and last terms yields Eq. (1.19).

Exercise 1.2, Erom (1.14) show that
If —gl-= [ It} —- Ilgll [ ‘ (1.21)

This is another form of the triangle inequality.

We have obtained the properties of the norm, Eqgs. (J.17)(1.19), as
consequences  of the definition and properties of the inner product. The
abstract definition of a norm, however, is that of a mapping from ¥¥ onto
&+, with properties (1.17)—(1.19). It is a weaker requirement than that of an
inner product and quite independent of it. The definition (1.16) only repre-
sents a particular kind of norm. Again, in infinite-dimensional spaces one
may define a norm but have no inner product.

Exercise 1.3. Prove the polarization identity
(@, 8 = 3(f + gl — I = gl + iKIf - ig)® - If + ig}D. (1.22)

Note that this identity hinges on the validity of (1.16). It cannot be uscd to define
an inner product from a norm.

Exercise 1.4. Define the complex angle between two vectors by -
cos @=L, g)/if}-lel, © =0+ ib, (1.23)

Show that this restricts @ to a,région |sinh 8;] < |sin 0] <'1
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1.3. Passive and Active Transformations

In this section we shall introduce two kinds of transformations on the
coordinates of vectors in ™Y, those which arise from a change in the basis
" used for the description of the space, referred to as passive transformations,
and active transformations produced by operators which bodily move the
vectors in ¥V, Although the resulting expressions for the two kinds of
transformations are quite similar, the difference in their interpretation is
important.

1.3.1. Transformation of the Basis Vectors

Consider the complex vector space 7% and the orthonormal basis
{e,}}.1 (henceforth called the e-basis, for short). Out of the e-basis we can
construct the set of vectors ’

6= Vistns  n=12...N, (1.24)

where V,, €¥. The question of the linear independence of the vector set
(1.24) can be posed as follows. Let &,, €, . . ., ¢y be a set of constants such that

6 = Z Cmm = Z G VamEn = Z CnEn, (1.25)

where ¢, = Sp &nVam Now, the vectors of the e-basis are linearly indepen-
dent, so ¢, =0 for n = 1,2,..., N. For this to imply that all the &, = 0,
m=1,2,..., N, it is necessary that the matrix V = |V, have a non-
vanishing determinant. Thus, if det V # 0, the linear independence of the
e-basis implies the linear independence of the N vectors in (1.24). The latter
are then a basis as well. Henceforth it will be called the &-basis. The &-basis
- will not in general consist of mutually orthoganal vectors, but

(8, E) = 121; (aneja Vkmek)
=2V im = (Vs (1.26)
where V* = V7* is the transposed conjugate or adjoint of the matrix V and

(v')ﬁ- = VM'I

1.3.2. Passive Transformations

" We can regard the matrix V = || V,,| as effecting a change of basts for
¥"¥. a passive transformation whereby the description of the vectors of ¥
in terms of the e-basis is replaced by their description in terms of the &-basis.
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Fig. 1.1. Passive transformation V
of a (two-dimensional) vec-
tor space. Its description in
terms of a basis {e} is
replaced by its description
in terms of a transformed
basis {&,}. The vectors f in
the space are unchanged.

Let f e ¥N be a (fixed) vector with coordinates f,, n = 1,2, ..., N, relative
to the e-basis and coordinates f,, m = 1,2,..., N, relative to the &-basis.
Then (see Fig. 1.1)

DSt == fufn = > fuVunka  (passive). '» (1.27)

The first and last members of this equation, due to the linear independence .

of the basis vectors, yield
fo =2 Veadw  Fa= 2, (V" Vet (1.28)
m n )
The matrix V-1 exists as V is assumed to be nonsingular (det V + 0).

" Exercise 1.5. Let the coordinates of f relative to the &-basis be Ja lie., second
and third members of Eq. (1.27)]). Performing the inner product with €, and using
(1.26), find fy in terms of (3,, f).

»

Exercise 1.6. Using the result of Exercise 1.5, define the set of vectors E,°
(n =1,2,...,N)so that f, = .2, f ) Show that this defines a basis for ¥™~. It
is called the basxs dual to the e-basns, since (prove D) (Bn, En°) = 3,,m. If the &-basis
is orthonormal, then £,2 = ¢, (n = 1, 2,.

Exercise 1.7. Express (f, g) in terms of the coordmatw of f and g in the
&-basis. .

1.3.3. Active Transformations

Active transformations are produced by operators A mapping ¥ onto
¥V, which transform the vectors of the space as fr>{’ = Af. We shall
assume these operators to be linear, i.c. .

A(af + bg) = aAf + bAg. (1.29)

The lmearxty requirement allows us to find the transformation undergone by
every vector in the space when we know the way the vectors in a given basis -
(say, the e-basis) are transformed. Let

=Ae,, m=12..,N, (1.30)
and define the N2 constants | .
Apm = (&ns &n) = (ens Aey). (1.31)

aT
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Using Eq. (1. 11) with &g, in place of f, we find
= Z y (1.32)

which is formally identical to (1.24) with A4,, in place of V,m The inter-

- pretation of (1.32) as a linear active transformation, however, requires that

the vectors f€ ¥'¥ and the basis & undergo the same transformation; that is,

the coordinates of f’ m the new basis &’ continue to be f,, n = 1,2,..., N.

Now, denotmg by fa (n = 1,2,..., N) the coordinates of " with respect to
' the original e-basis, we have

Sfien=t' =73 foth = fahwss (active),  (1.33)
and this implies - ‘ o
' = ; Annfns (1.34)

so the coordinates of f transform as a column vector under the matrix
A = ||4,a].

1.3.4. Operators and Their Matrix Representatives

As a consequence of the construction (1.31), we see that any linear
operator A can be represented by a matrix A, acting on the column-vector
canonical realization (1.3). The matrix A was determined uniquely from the
linear operator A. Conversely, A is uniquely determined by A since the
transformation of the basis vectors (l 32) specifies the transformatlon of any
vector in the space. See Fig. 1.2,

We shall now see that this one-to-one correspondence between linear
operators and N x N matrices holds under sum and product of the corre-
sponding quantities. We define the linear combination of two operators

.Fig. 1.2. Active transformation A of a (two-dimensional) vector space. All vectors—
_basis vectors included—are changed. As the transformation is linear, however,
the coordinates of f* = Af in the transformed basis {¢;} = {Ae,} are the same

as those of f in the original basis.
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C = gA + BB, quite naturally, as _ ) A
| (A + BB) = oAf + bBI. ' (1.35)
Now let A, B, and C be the representing matrices. Then, using (1.31),
Con = (82, (@A + BB)e,) = afe,, Ae,) + blss, Bey)

= qAs + bB,, . 7 (1.36)
so that C = gA + bB. Similarly, for the product D < AB,
(AB)f = A(Bf). (1.37)

The correspén_dcnoe with the representing matrices D, A, and B can be
established using (1.31), (1.11) for Be,, and the linearity of the operators
involved,

D = o0, AB) = (50, A 3 eion Be,))

= Z (8, Asl;)(sk; Be,) = Z Apy Byy, (1.38)
so that D = AB.

1.3.5. Representations in Different Bases

We shall use passive transformations when a given system lends itself
to a more convenient description in terms of a new set of coordinates. Active
transformations, on the other hand, will describe, for instance, the time
evolution of the state vector of a system. Neote that active transformations of
¥¥ should not depend on the basis used for the description of the space.
Indeed, the representation of A by a matrix A = | Axn] in (1.31) was made
relative to the s-basis, but under any (passive) change of basis to, say, the

“&-basis, the same operator A would be described by a different matrix A =
[ Aaml| whose elements are

Zm = (€., AE,,) = z ( Vintss AVimes)
1k v
= 2 ViAuVin = (VIAV),,. (1.39)
!’k v N
Exercise 1.8. Show that -
(Af, Ag) = g‘/: (A'A) s 8n. (1.40)
Do the same in terms of coordinates in a nonorthonormal basis.

Exercise 1.9. Define the operator At as that having a matrix representation
At in some (orthonormal) basis. We call At the adjoint of A. Show that

@, A'g) = (Af, g). (1.41)



