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Preface

... the progress of physics will 1o a large extent
depend on the progress of nonlinear mathe-
matics, of methads to solve nonlinear dguations
... and therefore we can learn by comparing
different nonlinear problems.

WERNER HEISENBERG

{ undertook to write this book for two reasous. First, 1 wanted to make
easily available the basics of both the theory of hyperbolic conservation laws
and the theory of systems of reaction-diffusion equations, including the
generalized Morse theory as developed by C. Conley. These important
subjects seem difficult to learn since the results are scattered throughout the
research journals.! Second, I feel that there is a need to present the modern
methods and ideas in these fields to a wider audignce than just mathe-
maticians. Thus, the book has some rather sophisticated aspects to it, as well
as certain textbook aspects. The latter serve to explain, somewhat, the reason
that a book with the title Shock Waves and Reaction- Diffusion Equations bas
the first nine chapters devoted to linear partial differential equations. More
precisely, 1 have found from my classroom experience that it is far easier to
grasp the subtleties of nonlinear partial differential equations after one has
an understanding of the basic notions in the finear theory.

This book is divided into four main parts: linear theory, reaction-
diffusion equatiyns, shock wave theory, and the Conley index, in that order.
Thus, the text begins with a discussion of ill-posed problems. The aim here
was to show that partial differential equations are not divorced from side
conditions ; indeed specific side conditions are required for specific equations.
And in view of Lewy’s example, which is presented in its entirety, no side
conditions can force sofutions on some equations. We discuss an example of
a nonlinear scalar conservation law which has no global classical solution,
thereby foreshadowing the notion of “weak” solutibn. In Chapter 2 we
consider characteristics, an important notion which- comes up widely in
ponlinear contexts. Chapter 3 deals with the simple one-dimensional wave
equation. Here is where we introduce the reader to the important ideas of

- ! This is not guite true; there are some good survey articles on shock waves (e.g., {Lx 5]} but
these do not contain many proofs. Also in the theory of reaction—diffusion equations, there are
the books [Fi] and {Mu), but they both seem to me (o be research monographs.
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domains of dependence, energy integrals, and finite differences. The purpose
of the next chapter is to demonstrate the power, generality, and elegance of
energy integral methods. In the course of the development we present
several basic techniques for obtaining inequalities.

The next chapter is devoted to Holmgren’s uniqueness theorem. We view
it in a modern context, where we can use it later to motivate Oleinik’s
uniqueness theorems for conservation laws. In Chapter 6 we consider
general hyperbolic operators and show how energy integrals, together with
Fourier transform methods, are used to prove global existence theorems.
The uniqueness of these solutions is obtained via Holmgren’s theorem.
Chapter 7 is devoted to the theory of distributions. The importance of this
subject for linear operators is, of course, well known. This author firmly
believes that the great advances in ronlinear partial differential equations
over the last twenty years could not have been made were it not for
distribution theory. The ideas of this discipline provided the conceptual
framework for studying partial differential equations in the context of weak
solutions. This ““philosophy” carried over, rather easily, to many important
nonlinear equations. In Chapters 8 and 9 we study linear elliptic and
parabolic equations, respectively, and we prove the basic maximum
principles. We also describe the estimates of Schauder, as well as those of
Agmon, Douglis, and Nirenberg, which we need in later chapters. The
proofs of these important estimates are (happily) omitted since it is difficult to
improve upon the exposition given in Gilbarg-Trudinger [GT]. (We point
out here that the material in Chapters 1-9 can serve as an introductory
course in partial differential equations.)

A quick glance at the contents serves to explain the flavor of those topics
which form the major portion of the book. I have made a deliberate effort to
explain the main ideas in a coherent, readable manner, and in particular 1
have avoided excess generality. To be specific, Chapter 10 contains a
. discussion of how far one can go with the maximum principle for a scalar
nonlinear parabolic (or elliptic) equation. It is used to prove the basic
comparison and existence theorems the latter done via the method of upper
and lower solutions. The text contains several carefully chosen examples
which are used both to illustrate the theorems and to prepare the way for
some later topics; e.g., bifurcation theory. The next chapter begins with a
development of the variational properties of the eigenvalues for a linear
second-order elliptic operator on a bounded domain in R". There follows a
careful discussion of linearized stability for a class of evolution equations
broad enough to include systems of reaction—diffusion equations. In
Chapter 12, we give a complete development of degree theory for operators
in Banach spaces of the form (Id. +compact). The discussion begins with the
finite-dimensional case, culminating with Brouwer’s fixed point theorem.
This is applied to flows on Euclidean spaces; specifically, we give two
applications, one to flows on spheres and one to flows on tori. The
Leray-Schauder degree is then developed, and we illustrate its use in
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nonlinear elliptic equations. The second half of this chapter is devoted to
Morse theory. Our goal is to re-interpret the Morse index in an intrinsic
topological way (using the stable manifold theorem), as the homotopy type
of a quotient space. This is done in preparation for Chapters 22 and 23,
where we consider Conley’s extension of the Morse index. We give a proof
of Reeb’s theorem on the characterization of spheres in terms of Morse
functions. The chapter ends with an appendix on algebraic topology where
homotopy theory, homology theory, and cohomology theory are discussed.
The goal was to make these important ideas accessible to analysts,

In Chapter 13, some of the standard bifurcation theorems are proved;
namely, those which come under the heading “bifurcation from a simple
eigenvalue.”” We then use degree theory to prove the bifurcation theorems of
both Krasnoselski and Rabinowitz. Again, these theorems are illustrated by
applications to spectfic differential equations. In the final section we discuss,
with an example, another more global type of bifurcation which we term
“spontaneous” bifurcation. This is related back to earlier examples, and it is
also made use of in Chapter 24.

Chapter 14 may be considered the “high point” in this group. It is here
where the notion of an invariant region is defined, and all of the basic
theorems concerning it are proved. As a first application, we prove a
comparison theorem which allows us to obtain rather precise (but somewhat
coarse) qualitative statements on solutions. We then give a general theorem
on the asymptotic behavior of solutions. Thus, we isolate a parameter
which, when positive, implies that for large time, every solution gets close to
a spatially independent one; in particular, no bifurcation of nonconstant
steady-state solutions can occur. There follows a section which makes
quantitative the notion of an invariant region; the statement is that the flow
is gradient-like near the boundary of this region. This means that attracting
regions for the kinetic equations are also attracting regions for the full
system of reaction-diffusion equations, provided that the geometry of the
region under consideration is compatible with the diffusion matrix. In the
final section, these results are applied to the general Kolmogorov form of
the equations which describe the classical two-species ecological interac-
tions, where now diffusion and spatial dependence are taken into account
One sees here how the standard ecological assumptions lead in a fairly direct
way to the mathematical conditions which we have considered.

In Chapter 15, we begin to discuss the theory of shock waves. This is a
notoriously difficult subject due to the many subtleties not usuaily
encountered in other areas of mathematics. The very fact that the entire
subject is concerned with discontinuous functions, means that many of the
modern mathematical techniques are virtually inapplicable. 1 have given
much effort in order to overcome these obstacles, by leading the reader
gently along, step by step. It is here where I have leaned most upon my
classroom experience. Thus, the development begins with a chapter
describing the basic phenomena: the formation of shock waves, the notion
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of a weak solution and its consequences. the loss of uniqueness, the entropy
conditions, etc. These things are all explained with the aid of examples.
There follows next a chapter which gives a rather complete description of
the theory of a single conservation law: existence. uniqueness, and
asymptotic behavior of solutions. The existence proof follows Oleinik and is
done via the Lax-Friedrichs difference scheme. The reasons why | have
chosen this method over the several other ones available are discussed at the
beginning of the chapter: suffice it to say that it requires no sophisticated
background, and that the method of finite differences is, in principle,
capable of generalization to systems. The entrance -into systems of
conservation laws, is made via a discussion of the Riemann problem for the
“p-system.” Here it is possible to explain things geometrically, by actually
drawing the shock- and rarefaction-wave curves. We then develop the basic
properties of these waves, and following Lax, we solve the Riemann
problem for general systems. These ideas are applied in the next chapter to
the equations of gas dynamics, where we solve the Riemann problem for
arbitrary data. both analytically and geometrically. We prove Weyl's
entropy theorem. as well as von Neumann's shock-interaction theorem. The
next chapter, the Glimm Difference Scheme, is one of the most difficult ones
in the book (the others being Chapters 22 and 23 on the Conley index).
Glimm’s theorem continues to be the most important result in conservation
laws, and it must be mastered by anyone seriously interested in this field. |
feel that the proof is not nearly as difficult as is commonly believed, and |
have tried hard to make it readable for the beginner.

The final chapter in this group is designed to give the reader a flavor of
some of the general results that are known for systems. the emphasis being
on systems of two equations. 1 have also given a proof of Oleinik’s
uniqueness theorem for the p-system; her paper is available only in the
original Russian. Having been sufficiently “turned on™ by the superb
lectures of T. Nishida at Michigan (in academic year 1981/82), I was unable
to resist including a chapter on quasilinear parabolic systems. The main
result here is Kanel's existence proof for the isentropic gas dynamics
equations with viscosity.

With Chapter 22, I begin Part Four of the book. These last three chapters
deal mainly with the Conley index, together with its applications. Thus. the
first chapter opens with a long descriptive discussion in which the basic ideas
of the theory are explained ; namiely the concept of an isolated invariant set
and its index. together with their main properties. These are illustrated by an
easily understood example. in which things are worked out in detail and the
connections with the classical Morse index are noted. I have ajso included a
discussion of the so-called *““Hopf bifurcation,” from this point of view.
Although the sections which follow are independent of this one, 1 strongly
recommend that the reader not skim over it, but rather that he give it serious
thought. The remaining sections in this chapter contain ali of the basic
definitions, together with proofs of the existence of an isolating block, and
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the theorem that the index ts independent of the block which contains it.
This is all done for flows, where the reader can “see” the geometrical and
topological constructions. I have also given some applications to differential
equations in R", as wcll as a proof of the *‘connecting orbit™ theorem. In
Chapter 23, the theory is developed from a more general, more abstract point
of view, in a form suitable for applications to partial differential equations.
We define the notions of index pairs, and Morse decompositions of an
isolated invariant set. The concept of local flow 1s also introduced, again
with an eye towards the applications. We prove both the existence of index
pairs for Morse decompositions, as well as the well-definedness of the
Conley index. That is, we show that the index A(S) of an isolated invariant
set S, depends only on the homotopy class of the space N;/N,, where (N,
No) is any index pair for S. This result immediately puts at our disposal the
algebraic invariants associated with the cohomology groups which form
exact sequences on the Morse decomposition of S. These are powerful tools
for computing indices, in addition to being of theoretical use. They lead, for
example, to an easy proof of the * generalized™ Morse inequalities. We then
prove the continuation property of the Conley index, in a rather general
context. The final section serves both to illustrate some of the theorems, as
well as to derive additional results which will be used in the applications. We
point out that these two chapters monotonically increase in difficulty as one
proceeds. This is done by design in order to meet the needs of readers having
assorted degrees of mathematical maturity—one can proceed along as far as
his background will take him (and further, if he is willing to work hard!).

The last chapter contains a sample of the applications to travelling waves.
We first study the shock structure problem of the existence of an orbit
connecting two rest points, and in particular, we solve the shock structure
problem for magnetohydrodynamic shock waves having arbitrary strength.
We then prove the existence of a periodic travelling wave solution for the
Nagumo equations. An isolating neighborhood is constructed, and the
Conley index is explicitly computed, in order to demonstrate the different
topological techniques which are involved. We also show how to obtain the
desired information a different way by using an exact sequence of cohomology
groups in order (o determine the nontriviality of the index. Next follows a
long section, where we apply the theory to reaction-diffusion equations, and
we use the Conley index together with some previously obtained (global)
bifurcation diagrams, to study the stability of steady-state solutions, and to
determine in some cases, the entire global picture of the solution set. The
chapter closes with a section in which we give some instability theorems for

- nonconstant stationary solutions of the Neumann problem.

Each of the four sections in this book (in any order) is suitable for a one-
semester graduate course. In particular, as we have remarked earlier, the
first section can be used for an introductory graduate-level course in partial
differential cquations. The prerequisite for this 1s one of graduate-level
mathematics as given in the average American university.
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Basic Linear Theory



Our present analytical methods seem unsuitable for the solution of the
important problems arising in connection with nonlinear partial differential
equations and, in fact, with virtually all types of nonlinear problems in pure
mathematics. The truth of this statement is particularly striking in the field
of fluid dynamics. Only the most elementary problems have been solved
analytically in this field . . . .

The advance of analysis is, at this moment, stagnant along the éntire front
of nonlinear problems. That this phenomenon is not of a transient nature but
that we are up against an important conceptual difficulty . . . . yet no decisive
progress has been made against them . . . which could be rated as important
by the criteria that are applied in other, more successful (linear!) parts of
mathematical physics.

It is important to avoid a misunderstanding at this point. One may be
tempted to qualify these(shock wave and turbulence) problems as problems
in physics, rather than in applied mathematics, or even pure mathematics.
We wish to emphasize that it is our conviction that such an interpretation
is wholly erroneous.

JouN vON NEUMANN, 1946



Chapter 1

I1l-Posed Problems

Problems involving differential equations usually come in the following
form: we are given an equation for the unknown function u, P(u) = f, on a
domain Q together with some *‘side ” conditions on u. For example, we may
require that u assumes certain preassigned values on 8, or that u is in X(Q),
or that u is in class C* in Q. At first glance, it would seem that any of these
extra conditions are quite reasonable, and that one is as good as the other.
However, we shall see that this is far from being true, and that whichever
additional supplementary conditions one assigns is intimately connccted
with the form of equation.

In general, the equations come from the scicnces: physics, chemistry, and
biology, and the ‘“‘physical” equations come together with quite specific
“side’’ conditions. At least, this is the way the theory of partial differential
equations began. It is the purpose of this chapter to illustrate these ideas by
some examples. The chapter ends with the remarkable example of H. Lewy

[Le].
3A. Some Examples
1. Let Q be the region in R? defined by
Q= {(x.y):x? +y? < Ly>0}

and consider the ~Cauchy problem ™" in Q for Laplace’s equation

Atu A
Au= - — + (;—; = (. (x.v) €, (1.1)
oxc oy

together with the ““initial” conditions

u(x,0) =0, u,(x,0) = f(x), -l <x<l (1.2)

! This is often called an “initial-value " problem, for reasons to be made clear later.
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Suppose that u(x, y) is a C? solution of (1.1), (1.2) in Q. We extend u to be a
C? function in the unit disk by setting u(x,y) = —u(x, —¥), in the region
y < 0. Since the unit disk is simply connected, the function

(x,y)
v(x,y) = 5 u,dx —u,dy
(0,0)

is a harmonic conjugate of u (because u + iv satisfies the Cauchy—Riemann
eunations)_ Thus u + iv is an analytic function, so the same is true of u, and
in particular, u (x, 0) = f(x) must be a real analytic function. Thus the “‘data ™
f(x), assigned along y = 0 cannot be arbitrary; it must be a real analytic
function.

2. Consider the set of “‘initial-value” problems in the upper half-plane
inRZ forn=12...,

Au = 0, y > 09
| (P,)
Wx,00 =0, uyx,0) = Smn"x, xeR,
and
Au =0, y >0,
(P,)

u(x,00 =0, u(x,00=0 xe€R

The problems (P,) and (P,) have the solutions

(sin ny)(&"™ — e ™)

u'(x,y) = e

and
u°(x, y) = 0,

respectively. Observe that as n — o, the data for (P,) tends uniformly to
zero, the data of (P,). However, we have

lim [u(x, y) — ux, y)| = + o0,

n—+w

for each point (x, y). In fact, the functions 4" do not converge to u° in any
reasonable topology. Thus arbitrarily small changes in the data lead to large
changes in the solution ; the mapping from the “‘data space”’ to “solution

5 ~-Ifl
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