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CHAPTER 1

Trigonometric Series and Fourier Series

1.1 The Genesis of Trigonometric Series and Fourier Series

1.1.1. The Beginnings. D. Bernoulli, D’Alembert, Lagrange, and Euler,
from about 1740 onward, were led by problems in mathematical physics to
consider and discuss heatedly the possibility of representing a more or less
arbitrary function f with period 27 as the sum of a irigonometric series of the
form ’

Yeag + z (@, cos nx + b, 8in nx), (1.1.1)

2=l

or of the formally equivalent series in its so-called ““complex” form

D o, (1.1.1%)

n= -

in which, on writing b, = 0, the coefficients c, are given by the formulae
cn=%(a’n_ibn): C_p = %(an"'ibu) (n=0, 1121"')'

This discussion sparked off one of the crises in the development of analysis.

Fourier announced his belief in the possibility of such a representation in
1811. His book Théorie Analytique de la Chaleur, which was published in
1822, contains many particular instances of such representations and makes
widespread heuristic use of trigonometric expansions. As a result, Fourier’s
name is customarily attached to the following prescription for the coefficients
a,,b,, and ¢,:

a, = -:;fn f(x) cos nx dx, b, = }rfn J(z) sin nx dx, (1.1.2)

P 1 * —inx
Cn = 3~ qu(:c)e dz, (1.1.2%)

the a, and b, being now universally known as the “real,” and the c, as the
*“complex,” Fourier coefficients of the function f (which is tacitly assumed to
be integrable over (—, #)). The formulae (1.1.2) were, however, known
earlier to Euler and Lagrange.

1




2 TRIGONOMETRIC S8ERIES AND FOURIER SERIES

The grounds for adopting Fourier’s prescription, which assigns a definite
trigonometric series to each function f that is integrable over (—7, 7), will
be scrutinized more closely in 1.2.3. The series (1.1.1) and (1.1.1*), with the
coefficients prescribed by (1.1.2) and (1.1.2%), respectively, thereby assigned
to f are termed the ““real” and “complex” Fourier series of J, respectively.

During the period 1823-1827, both Poisson and Cauchy constructed proofs
of the representation of restricted types of functions J by their Fourier series,
but they imposed conditions which were soon shown to be unnecessarily
stringent.

It seems fair to credit Dirichlet with the beginning of the rigorous study of
Fourier series in 1829, and with the closely related concept of funetion in
1837. Both topics have been pursued with great vigor ever since, in spite of
more than one crisis no less serious than that which engaged the attentions
of Bernoulli, Euler, d’Alembert, and others and which related to the Pre-
vailing concept of functions and their representation by trigonometric series.
(Cantor’s work in set theory, which led ultimately to another major crisis,
had its origins in the study of trigonometric series. )

1.1.2. The rigorous developments just mentioned showed in due course
that there are subtle differences between trigonometric series which converge
at all points and Fourier series of functions which are integrable over (~=, ),
even though there may be no obvious clue to this difference. For example, the

trigonometric series
i 8in nz
log n

n=2

converges everywhere; but, as will be seen in Exercise 7.7 and again in 10.1.6,
it is not the Fourier series of any function that is (Lebesgue-)integrable over
(—m, m).

The theory of trigonometric series in general has come to involve itself
with many questions that simply do not arise for Fourier series. For the
express purpose of attacking such questions, many techniques have been
evolved which are largely irrelevant to the study of Fourier series. It thus
comes about that Fourier series may in fact be studied quite effectively
without reference to general trigonometric series, and this is the course to be
adopted in this book.

The remaining sections of this chapter are devoted to showing that, while
Fourier series have their limitations, general trigonometric series have others
no less serious; and that there are well-defined senses and contexts in which
Fourierseries are the natural and distinguished tools for representing functions
in useful ways. Any reader who is prepared to accept without question the
restriction of attention to Fourier series can pass from 1.! 3 to the exercises
at the end of this chapter.
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1.1.3. The Orthogonality Relations. Before embarking upon the
discussion promised in the Jast paragraph, it is necessary to record some facts
that provide the heuristic basis for the Fourier formulae (1.1.2) and (1.1.2%)
and for whatever grounds there are for according a special role to Fourier
series.

These facts, which result from straightforward and elementary calcula-
tions, are expressed in the following so-called orthogonality relations satisfied
by the circular and complex exponential functions:

. 0 (m#nmz20,n20),
2—f cos mx cos nx dr = { %% (m=mn>0),
T 1 (m = n = 0)
e 0 m#nm>z0n20)
2—[ sinmxsinnrdr = (1, (m =n > 0),
L 0 (m = n = 0) } (1.1.3)
%’J‘ cos mxsin nx dx = 0,
1 * imx o ~inz = 0 (m#n)
e =1 (m = n); ’

in these relations m and » denote integers, and the interval [ — =, »] may be
replaced by any other interval of length 2.

1.2 Pointwise'Repres'entation of Functions by Trigonometric
Series

1.2.1. Pointwise Representation. The general theory of trigonometric
series was inaugurated by Riemann in 1854, since when it has been pursued
with vigor and to the great enrichment of analysis as a whole. For modern
accounts of the general theory, see [Z,], Chapter IX and [Ba, ,}, Chapters
XII-XV.

From the beginning a basic problem was that of representing a more or
less arbitrary given function f defined on a period-interval I (say the interval
[ —=, 7]) ag the sum of at least one trigonometric series (1.1.1), together with a
discussion of the uniqueness of this representation. _

A moment’s thought will make it clear that the content of this problem
depends on the interpretation assigned to the verb “to represent’ or, what
comes to much the same thing, to the term “sum’ as applied to an infinite
series. Initially, the verb was taken to mean the pointwise convergence of the
series at all points of the period interval to the given function f. With the
passage of time this interpretation underwent modification in at least two
ways. In the first place, the demand for convergence of the series to f at all
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points of the period-interval I was relaxed to convergence at almost all
points of that interval. In the second place, convergence of th: series to f at
all or almost all points was weakened to the demand that the series be
summable to f by one of several possible methods, again at all or almost all
points. For the purposes of the present discussion it will suffice to speak of
just one such summability method, that known after Cesaro, which consists
of replacing the partial sums

8o(z) = Y2a,,

N .
sy(x) = Ypa, + Z (a, cos nx + b, sin nx) (N=1,2..1) (1.21)

nwel
of the series (1.1.1) by their arithmetic means

__80+"'+'9N

on =25 (N=0,1,2,-..). (1.2.2)

Thus we shall say that the series (1.1.1) is summable at a point z to the
function f if and only if

‘}im on(z) = f(2).

It will be convenient to group all these interpretations of the verb “to
represent’” under the heading of pointwise representation (everywhere or
almost everywhere, by convergence or by summability, as the case may be)
of the function f by the series (1.1.1).

In terms of these admittedly rather crude definitions we can essay a
bird’s-eye view of the state of affairs in the realm of pointwise repregentation,
and in particular we can attempt to describe the place occupied by Fourier
series in the general picture. ‘

1.2.2. Limitations of Pointwise Representation. Although it is
undeniably of great intrinsic interest to know that a certain function, or
each member of a given class of functions, admits a pointwise representation
by sore trigonometric series, it must be pointed out without delay that this
type of representation leaves much to be desired on the grounds of utility. A
mode of representation can be judged to be successful or otherwise useful as
& tool in subsequent investigations by estimating what standard analytical
operations applied to the represented function can, via the representation,
be expressed with reasonable simplicity in terms of the expansion coefficients
a, and b,. This is, after all, one of the main reasons for seeking a representation
in series form. Now it is a sad fact that pointwise representations are in
themselves not very useful in this sense; they are simply too weak to justify
the termwise application of standard analytical procedures.

Another inherent defect is that a pointwise representation at almost all
points of I is never unique. This is so because, as was established by Men’shov
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in 1916, there exist trigonometric series which converge to zero almost every-
where and which nevertheless have at least one nonvanishing coefficient;
see 12.12.8. (That this can happen came as a considerable surprise to the
mathematical community.)

1.2.3. The Role of the Orthogonality Relations. The a priori grounds
for expecting the Fourier series of an integrable function f to effect a point-
wise representation of f (or, indeed, to effect arepresentation in any reasonable
sense) rest on the orthogonality relations (1.1.3). It is indeed a simple
consequence of these relations that, if there exists any trigonometric series
(1.1.1) which represents f in the pointwise sense, and if furthermore the sy (or
the oy) converge dominatedly (see [W], p. 60) to f, then the series (1.1.1)
must be the Fourier series of f. However, the second conditional clause
prevents any very wide-sweeping conclusions being drawn at the outset.

As will be seen in due course, the requirements expressed by the second
conditional clause are fulfilled by the Fourier series of sufficiently smooth
functions f (for instance, for those functions f that are continuous and of
bounded variation). But, alas, the desired extra condition simply does not
obtain for more general functions of types we wish to consider in this book.
True, a greater degree of success results if convergence is replaced by summa-
bility (see 1.2.4). But in either case the investigation of this extra condition
itself carries one well into Fourier-series lore. This means that this would-be
simple and satisfying explanation for according a dominating role to Fourier
series can scarcely be maintained at the outset for functions of the type we
aim to study.

1.2.4. Fourier Series and Pointwise Representations. What has been
said in 1.2.3 indicates that Fourier series can be expected to have but
limited success in the pointwise representation problem. Let us tabulate a
little specific evidence:

The Fourier series of a periodic, function f which is continuous and of
bounded variation converges boundedly at all points to that function. The
Fourier series of a periodic continuous function may, on the contrary,
diverge at infinitely many points; even the pointwise convergence almost
everywhere of the Fourier series of a general continuous function remained
in doubt until 1966 (see 10.4.5), although it had been established much
earlier and much more simply that certain fixed subsequences of the sequence
of partial sums of the Fourier series of any such function is almost everywhere
oonvergent to that function (the details will appear in Section 8.8). The
Fourier series of an integrable Yunction may diverge at all points.

If ordinary convergence be replaced by summability, the situation
improves. The Fourier series of a periodic continuous function is uniformly
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summable to that function. The Fourier series of any periodic integrable
function is summable at almost all points to that function, but in this case
neither the sy nor the o need be dominated.

1.2.5. Trigonometric Series and Pointwise Representations. Having
reviewed a few of the limitations of Fourier series vis-a-vis the problem of
pointwise representation, we should indicate what success is attainable by
using trigonometric series in general,

In 1815 both Lusin and Privalov established the existence of a pointwise
representation almost everywhere by summability methods of any function f
which is measurable and finite almost everywhere. For 25 years doubts
lingered as to whether summability could here be replaced by ordinary
convergence, the question being resolved affirmatively by Men’shov in 1940,
This result was sharpened in 1952 by Bary, who showed that, if the function
J is measurable and finite almost everywhere on the interval I, there exists a
continuous function ¥ such that F'(x) = f(z) at almost all points of 7, and
such that the series obtained by termwise differentiation of the Fourier
series of F converges at almost all points x of I to f(z). Meanwhile Men’shov
had in 1950 shown also that to any measurable f (which may be infinite on a
set of positive measure) corresponds at least one'trigonometric series (1.1.1)
whose partial sums s, have the property that limy_ ., 8y = f in measure on
I. This means that one can write Sy = Uy + vy, where u, and v, are finite-
valued almost everywhere, lim,_, uy(%) = f(x) at almost all points z of J )
and where, for any fixed ¢ > 0, the set of points z of I for which [og(@)] > &
has a measure which tends to zero as N —00. (The stated condition on the
vy i8 equivalent to the demand that

i [ _

N—w d-)‘l + vy

0;

and the circuitous phrasing is necessary because J may take infinite values
on a set of positive measure.) This sense of representation is weaker than
pointwise representation. For more details see [Ba,), Chapter XV.

These theorems of Men’shov and Bary lie very deep and represent enormous
achievements. However, as has been indicated at the end of 1.2.2, the
representations whose existence they postulate are by no means unique.

Cantor succeeded in showing that a representation at all points by a
convergent trigonometric series is necessarily unique, if it exists at all.
Unfortunately, only relatively few functions f admit sueh a representation:
for instance, there are continuous periodic functions f that admit no such
representation. (This follows on combining a theorem due todu Bois-Reymond
and Lebesgue, which appears on p. 202 of [Ba,], with resuits about Fourier
series dealt with in Chapter 10 of this book.) It is indeed the case that, in a
sense, ‘‘most” continuous functions admit no representation of this sort.
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1.2.6. Summary. It can thus be said in summary that pointwise repre-
sentations are subject to inherent limitations as analytical tools, and that
Fourier series can be accorded a distinguished role in respect of this type of
representation only for functions of a type more restricted than one might
hope to handle.

This being so, it is natural to experiment by varying the meaning assigned
to the verb ““to represent’” in the hope of finding a more operationally effective
meaning and of installing Fourier series in a more dominating role.

Before embarking on this program, it is perhaps of interest to add that a
similar choice prevails in the interpretation of differentiation (which in fact
has connections with the representation problem). The pointwise everywhere
or almost everywhere interpretation of the derivative, if deprived of any
further qualification, is also not entirely effective operationally. A new
interpretation is possible and leads to distributional concepts; Chapter 12 is
devoted to this topic.

1.3 New Ideas about Representation

1.3.1. Plan of Action. In the preceding section we have recounted some
of the difficulties in the way of according a unique position to Fourier series
on the grounds of their behavior in relation to the traditionally phrased
problem of representing functions by trigonometric series. We have also
indicated the shortcomings of this type of representation.

To this it may be added that in cases where the mathematical model of a
physical problem suggests the use of expansions in trigonometric series,
pointwise representations frequently do not correspond very closely to the
physical realities.

Faced with all this, we propose to consider new meanings for the verb “to
represent’’ that are in complete accord with modern trends, and which will in
due course be seen to justify fully a concentration on Fourier series as a
representational device.

1.3.2. Different Senses of Convergence and Representation. In
recent times analysts have become accustomed to, and adept at working in
diverse fields with, other meanings for the verb “to represent,” most of
which (and all of which we shall have oceasion to consider) are tantamount
to novel ways in which a series of functions may be said to converge. Such
ideas are indeed the concrete beginnings of general topology and the theory
of topological linear spaces.

Thus encouraged, we contemplate some possible relationships between an
integrable function f on (—=, #) and a trigonometric series (1.1.1) or (1.1.1%)
expressed by each of equations (A) to (D) below.
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TFor this purpose we write again

N
so(z) = Vauy, sy(x) = Yoay + Z {a, cos nx + b, sin nx),
n=]
8o that

sy(x) = z c ez, b(l.3.l)
In|< N
and also
oylz) = L?O(x) “;—V +T SN(I).

The r'elationships referred to are (compare 6.1.1, 6.2.6, 12.5.3, and 12.10.1):

n

(). lim | |f(@) = ox(a)| dz = 0; .
(B) tim [*1f() - syl dz = 0;
N—owo J_g
(©) Tim sup, |f(z) ~ oufa)] = 0;
(D) lim Jm u(z)sy(x) dz = Jw u{z)f(x) dz
Now J_g -=

for each indefinitely differentiable periodic function w.

If any one of these relations holds for a given f and a given trigonometric
series, one may say that the trigonometric series represents f in the corre-
sponding sense: in case (A) it would be usual to say that the trigonometric
series 13- Cesdro-summable tn mean with exponent (or index) 1 fo f; in case (B)
that the trigonometric series is convergent in mean with exponent (or index) p
to f; in case (C) that the trigonometric series is uniformly Cesaro-summable to
f; and in case (D) that the trigonometric series is distributionally convergent
to f.

1.3.3. The Role of Fourier Series. It is genuinely simple to verify that,
given f, there is at most one trigonometric series for which any one of relations
(A) to (D) is true, and that this only contender is the Fourier series of f (see
the argument in 6.1.3). Moreover, it is true that the relations do hold if the
trigonometric series is the Fourier series of f, provided in case (B) that either
1l <p<owand feL? or p =1 and flog* |f| e L! (see 8.2.1, 12.10.1, and
12.10.2); and in case (C) that f is continuous and periodic. (The symbols
L! and L? here denote the sets of measurable functions f on (—=, #) such -
that |f| and |f|®, respectively, are Lebesgue-integrable over (—u, w). A
tiny modification to this definition is explained in detail in 2.2.4 and will be
adopted thereafter in this book.)
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Each of the relations (A) to (D) can, therefore, be used to characterize the
Fourier series of f under the stated conditions, and each provides some
justification for singling out the Fourier series for study. (There are, by the
way, numerous other relationships that might be added to the list.)

It turns out that the weakest relationship (D) is suggestive of fruitful
generalizations of the concept of Fourier series of such a type that the
distinction between Fourier series and trigonometric series largely disap-
pears. It suggests in fact the introduction of so-called distributions or
generalized functions in the manner first done by L. Schwartz [S, g]. It will
then appear that any trigonometric series in which ¢, = O(|n|¥) for some
k may be regarded as the Fourier series of a distribution, to which this
series i8 distributionally convergent. These matters will be dealt with in
Chapter 12.

1.3.4. Summary. The substance of Section 1.2 and 1.3.3 summarizes the
justification for subsequent concentration of attention on Fourier series in
particular, at least insofar as reference is restricted to harmonic analysis in
its classical setting. We shall soon embark on a program that will include at
appropriate points a verification of each of the unproved statements upon
which this justification is based. As for trigonometric series in general, we
shall do no more than pause occasionally to mention a few of the simpler
results that demand no special techniques.

A bird’s-eye view of many of the topics to be discussed at some length in
this book is provided by the surveg’ article G. Weiss [1].

1.3.5. Fourier Series and General Groups. There are still other reasons
in favor of the chosen policy which are based upon recent trends in analysis.
Harmonic analysis has not remained tied to the study of Fourier series of
periodic functions of a real variable; in particular it is now quite clear that
Fourier-series theory has its analogue for functions defined on compact Abelian
groups (and even, to some extent, on still more general groups); see, for
example, [HR], [Re], [E;]. While the level at which this book is written
precludes a detailed treatment of such extensions, we shall make frequent
reference to modern developments. However regrettable it may seem, it is a
fact that these developments cluster around the extension of precisely those
portions of the classical theory which do not depend upon the deeper properties
of pointwise convergence and summmability, and that a detailed treatment of
the analogue for compact groups of the theory of general trigonometric series
appears to lie in the future. Moreover, the portions of the classical theory that
have so far been extended appear to be those most natural for handling those
problems which are currently the center of attention in general harmonic
analysis. Of course, these prevailing features may well change with the passage
of time. While they prevail, however, they add support to the view that it is
reasonable 7o accord some autonomy to a theory in which the modes of
ropresentation mentioned in 1.3.2 taks precedence over that of pointiwise
reprogentat.on.
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EXERCISES

1.1. Establish the formulae

nz _ BIN(N + L)z
Do) = 2 ™ =
Fuyz) = (N + 1)" 1 [Do(x) +--- + Dy(x)]

i 2
— (N +1)-! [sm ?llgl\;/z-; l)a:]

for N > 0 an integer and z # 0 modulo 2x, where the equality signs im.
mediately following Dy(x) and F(z) are intended as definitions for all real z.

1.2. Prove that if pand g areintegersand p < ¢, and if z # 0 modulo 27,
then

| z ¢"*| < |cosec Ypz|.
PEnKyq

By using partial summation (see 7.1.2 and [H], p. 97 f.) deduce that if
Cp 2 Cpyy 2+ 2 €¢g 2 0, then, for z # 0 modulo 2,

| Z cae™®| < ¢, |cosec Y4z|.
ren<q .

1.3. Assume that ¢, > c,,, and lim, . ¢, = 0. Show that the series

L)
Z c.einT
n

n=Q

is convergent for z # 0 modulo 27, and that the convergence is uniform on
any compact set of real numbers x which contains no number =0 modulo 2a.
1.4. Assume that ¢, > c,,, > 0 and nc, < 4. Show that

N
> ¢, 8in nx < A{m + 1).
I,;l " |

Hints: One may assume 0 < z < 7. Put m = min (¥, [=/x]) and split

the sum into 3T + I¥,,, an empty sum being counted zero. Estimate the
partial sums separately, using Exercise 1.2 for 3¥_ .

L.5. Assume that the c, are as in Exercise 1.4. Show that the series -

2.a=1 ¢y 8in nx is boundedly convergent, and that the sum function is con-

tinuous, except perhaps at the points z = 0 modulo 27. (More general
results will appear in Chapter 7.)

/et

h Ve 4
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1.6. Compute the complex Fourier coefficients of the following functions,
each defined by the prescribed formula over [—w, 7) and defined elsewhere
so0 a8 to have period 27:

M flz) = =;

2) f(z) = |sin z|;

(3) flz)y =zfor —r <x<0,f(x)=0for0 <z <

1.7. By a trigonometric polynomial is meant a function f admitting at
least one expression of the form

fl@) = z cnemzs
In|&N
where the ¢, are f-dependent complex numbers.
(1) Use the orthogonality relations to show that, if f is a trigonometric
polynomial, then

fn) = -2-1; Ij‘f(x)e“"‘ dz

vanishes for all but a finite number of integers # and that f(z) = 5.2 f(n)e=.
- Show also that

1 3 — Fim)|2
5 | \@irdz = 3 |

whenever f is a trigonometric polynomial. (This is a special case of Parseval’s
formula, to which we shall return in Chapter 8 and Section 10.5; see also
Remark 6.2.7.)

A trigonometric polynomial f such that f(n) = 0 for |n] > N is said to be
of degree at most N.

(2) Verify that the set Ty of trigonometric polynomials of degree at most
N forms a complex linear space of dimension 2N + 1 with respect to point-
wise operations, and that if f € Ty, then also Re fe Ty and Im fe Ty.

(3) Show that if fe Ty, f # 0, then f admits at most 2N zeros (counted
according to multiplicity) in the interval [0, 2=) (or in any interval congruent
modulo 27 to this one).

1.8. (Stedkin’s lemma) Suppose f e Ty is real-valued, and that

Iflo = sup |f(2)] = M = f(z).
Prove that :
f(®o + y) > Mcos Ny  for |y| < _1’\’7
Hints: Put g(y) = f(xo + y) — M cos Ny. Assuming the assertion false,

we choose i, 80 that |yo| < /N and g(y,) < 0. We assume 0 < yo<n/N;
otherwise the subsequent argument proceeds with the interval [—2m, 0) in
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place of [0, 27). By examining closely the signs of ¢ at the points kn/N
(k= 0,1,2, .. 2N), show that g admits at least 2N + 1 zeros in [0, 2#). A
contradiction resuits from Kxercise 1.7.

1.9. (Bernstein’s inequality) Prove that if f & Ty, then 1F Mo € N | fllo
(the notation being as in the preceding exercise).

Hints: 1t suffices, by Exercises 1.7 and 1.10, to prov: the inequality for
real-valued f e Ty. If f'(x5) = m = |if’||, (Which can be arranged by changing
Jinto —fif necessary) and M = 7l Kxercise 1.8 gives f'(xo + y) > mcos
Ny for |4| < o/N. Integrate this irequality.

Notes: Many cther proofs are known; the above, due to Stedkin, ia perhaps
the gimplest. For a proof based upon interpolation methods, see [Z,], p. 11.
More general results, also due to Bernstein, apply to entire funcsions of order
one and exponential type; see [Z,], p. 277.

See also the approach in [Kz], p. 17; W. R. Bloom [1]. [2]; MR 51 # 1239;
52 ## 6288, 11446; 53 # 11289; 54 # 829.

The inequality has also been extended in an entirely different way by
Privalov, who showed that if I = (a’, %) and J = (a, b) are any two sub-
intervals of {—m, n] satisfying @ < @’ < &’ < b, then there exists 8 number
¢(1, J) such that

sup |f(®)] < e, J)N " sup |f()]

for any f € Ty. It is furthermore established that similarly (but perhaps with a
different value for ¢(Z, J)) one has

@ sy < o, 9N - ([ L@ depe

for any f € Ty and any p satisfying 1 < p < w. Both inequalities are also valid
when I =J = [~=, n] and ¢(I,J) = 1, the first reducing to that of Bernstein
and the second being in this case due to Zygmund. For more details, see [Bag],
pp- 458-462. See also [L;], Chapter 3. :

1.10. Suppose that E is a complex linear space of complex-valued
functions on a given set (pointwise operations), that E = E, + tE, where
E, is the set of real-valued functions in E, that ! is a complex-linear functional
on E which is real-valued on E,, and that p is a seminorm on E (see Appendix
B.1.2). Suppose finally that p(z) < p(y) whenever z,y € E and 2] < |yl
and that |I(z)| < p(z) for z € E,. Prove that |l(z)| < p(z) for z € E.

Hints: Write z'= a + ib with a, b € E, and l{z) = r(a + i8) with r > O,
« and S real, and «® + §2 = 1. Then

[U2)| =7 = (« — iB)2) = l[(= — if)(a + ib)];

expanding and taking real parts: |l(2)| = l(aa + Bb) < p(aa + Fb), and so
forth.
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1.11. Prove that, if a trigonometric polynomial f is real-valued and
nonnegative, then f = |g|? for some trigonometric polynomial g (Fejér
and F. Riesz).

Hints: Suppose f(z) = 3, < ncne™* and consider first the case in which
fiz) > O for all z. Assume (without loss of generality) that ¢_y # 0 and
examine the polynomial P(z) = 2% 5, c xta2"™ Observe that P{z) = 22¥P(z-1)
and f(z) = e~ V¥ P(e'*). Verify that the zeros of P are of the form ay, a,,- - -,
and 47t a;%,-- ., where 0 < |a,| < 1, and factorize P accordingly.

In case one knows merely that f > C, apply the above to the f, = f + 1/k
(k =1,2,. ) and use a limiting argument.

Remarks, The theorem does not extend in the expected way to other
groups; sce [R], 8.4.5. )




