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Preface

The purpose of this four volume series is to make available for” college
teachers and students samples of important and realistic applications of
mathematics which can be covered in undergraduate programs. The goal is
to provide illustrations of how modern mathematics is actually employed
to solve relevant contemporary problems. Although these independent
chapters were prepared primarily for teachers in the general mathematical
sciences, they should prove valuable to students, teachers, and research
scientists in mauy of the fields of application as well. Prerequisites for each
chapter and suggestions for the teacher are provided. Several of these
chapters have been tested in a variety of classroom settings, and all have
undergone extensive peer review and revision. Illustrations and exercises
are included in most chapters. Some units can be covered in one class,
whereas others provide sufficient material for a few weeks of class time.

Volume 1 contains 23 chapters and deals with differential equations and,
in the last four chapters, problems leading to partial differential equations.
Applications are taken from medicine, biology, traffic systems and several
other fields. The 14 chapters in Volume 2 are devoted mostly to problems
arising in political science, but they also address questions appearing in
sociology and ecology. Topics covered include voting systems, weighted
voting, proportional representation, coalitional values, and committees.
The 14 chapters in Volume 3 emphasize discrete mathematical methods
such as those which arise in graph theory, combinatorics, and networks.
These techniques are used to study problems in economics, traffic theory,
operations research, decision theory, and other fields. Volume 4 has 12
chapters concerned with mathematical models in the life sciences. These
include aspects of population growth and behavior, biomedicine (epidemics,
genetics and bio-engineering), and ecology.
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These four volumes are the result of two educational projects sponsored
by The Mathematical Association of America (MAA) and supported in
part by the National Science Foundation (NSF). The objective was to
produce needed material for the undergraduate curriculum. The first pro-
ject was undertaken by the MAA’s Committee on the Undergraduate Pro-
gram in Mathematics (CUPM). It was entitled Case Studies and Resource
Materials for the Teaching of Applied Mathematics at the Advanced Under-
graduate Level, and it received financial support from NSF grant SED72-
07370 between September 1, 1972 and May 31, 1977. This project was
completed under the direction of Donald Bushaw. Bushaw and William
Lucas served as chairmen of CUPM during this effort, and George Pedrick
was involved as the executive director of CUPM. The resulting report,
which appeared in late 1976, was entitled Case Studies in Applied Mathe-
matics, and it was edited by Maynard Thompson. It contained nine chapters
by eleven authors, plus an introductory chapter and a report on classroom
trials of the material.

The second project was initiated by the MAA’s Committee on Institutes
and Workshops (CIW). It was a summer workshop of four weeks duration
entitled-Modules in Applied Mathematics which was held at Cornell Uni-
versity in 1976. It was funded in part by NSF grant SED75-00713 and a
small supplemental grant SED77-07482 between May 1, 1975 and September
30, 1978. William F. Lucas served as chairman of CIW at the time of the
workshop and as director of this project. This activity lead to the produc-
tion of 60 educational modules by 37 authors.

These four volumes contain revised versions of 9 of the 11 chapters from
the report Case Studies in Applied Mathematics, 52 of the 60 modules from
the workshop Modules in Applied Mathematics, plus two contributions
which were added later (Volume 2, Chapters 7 and 14), for a total of 63
chapters. A preliminary version of the chapter by Steven Brams (Volume 2,
Chapter 3), entitled “One Man, N Votes,” was written in connection with
the 1976 MAA Workshop. The expanded version presented here was pre-
pared in conjunction with the American Political Science Association’s
project Innovation in Instructional Materials which was supported by
NSF grant SED77-18486 under the direction of Sheilah K. Mann. The unit
was published originally as a monograph entitled Comparison Voting, and
was distributed to teachers and students for classroom field tests. This
chapter was copyrighted by the APSA in 1978 and has been reproduced
here with its permission.

An ad hoc committee of the MAA consisting of Edwin Beckenbach,
Leonard Gillman, William Lucas, David Roselle, and Alfred Willcox was
responsible for supervising the arrangements for publication and some of
the extensive efforts that were necessary to obtain NSF approval of publica-
tion in this format. The significant contribution of Dr. Willcox throughout
should be noted. George Springer also intervened in a crucial way at one
point. It should be stressed, however, that any opinions or reccommendations
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are those of the particular auihors, and do 1ot necessarily reflect the vievrs
of NSF, MAA, the editors, or any others iavolved in these project activities.

There are many other individuals who contributed in some way to the
realization of these four voluines, and it is impossible to acknowledge all
of them here. However, there are two individuals in addition to the authors,
editors and people named above who should receive substantial credit for
the ultimate appearance of this publication. Katherine B. Magann, who had
provided many years of dedicated service to CUPM prior to the closing of
the CUPM office, accomplished the production of the report Case Studies
in Applied Mathematics. Carolyn D. Lucas assisted in the running of the
1976 MAA Workshop, supervised the production of the resulting sixty
modules, and served as managing editor for the publication of these four
volumes. Without her efforts and perseverance the final product of this
major project might not have been realized.

July 1982 W.F. Lucas



Preface for Volume 1

Yolume 1 consists of twenty-three chapters concerned with mathematical
modeling and problem solving using differential equations. The chapters
in Part I deal with the very beginning, and often the most important part
of the modeling process: how to translate the given problem into a
mathematical problem. The first chapter by Henderson West shows how
to translate various word problems into differential equations, while
Chapter 3 by Frauenthal deals with the special case of population growth
models, a subject of much current interest. The second chapter, also by
Henderson West, describes how to analyze a differential equation, and how
to draw qualitative conclusions from it. These three chapters were written
with a clarity and painstaking attention to detdil that is not often found
in textbooks, and thus are “must reading” for the beginning student of
modeling. : '

The three chapters by Braun in Part II deal with three diverse and
important problems that can be modeled, and completely solved, by first
order differential equations. It is interesting to note that the work described
in these units (and indeed, many of the modules in this volume) was originally
done not by mathematicians, but by chemists, biologists and sociologists.

Part III is essentially a continuation of Part II, the difference being that
the problems in this section are modeled by higher order linear equations
and by solvable systems of first order equations. Systems of differential
equations can be used to model very complex and even esoteric problems,
and the results obtained are often very exciting, as seen in the three modules
by Braun, Coleman, and Powers.

The five chapters by Baker and Drew in Part IV describe some applica-
tions of mathematics to problems in traffic theory, another popular
source of interesting modeling problems. The results obtained are not
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as powerful and spectacular as the results obtained in the previous chapters.
Nevertheless, they are still extremely important as they illustrate how
mathematical modeling can often aid in our understanding of complex and
even uncontrollable and unsclvable problems.

The five chapters by Braun and Coleman in Part V deal with systems
of non-linear equations and their application to important problems in
biology and ecology. Powerful results are obtained via the methods of the
qualitative theory of differential equations. It is interesting to note that
the qualitative theory of differential equations evolved, originally, from
problems in physics and astronomy. These same techniques have had
important applications to problems in the biological sciences. Indeed,
the existence of such a powerful and polished theory has motivated many
mathematicians to undertake the study of several outstanding problems
in biology and ecology.

The chapters in Part VI deal with systems that can be modelled by partial
differential equations, one of the more difficult areas of mathematical
analysis. The unit by Borrelli is-basic in that it carefully describes the theory
and the actual modeling. The remaining three chapters by Drew, Meyer
and Porsching deal with concrete and important real life applications.

July 1982 MARTIN BRAUN
CoURTNEY S. COLEMAN
DoNALD A DREW
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CHAPTER |
Setting Up First-Order Differential
Equations from Word Problems

Beverly Henderson West*

1. Introduction

“Word problems” are sometimes troublesome; but you have learned that
most noncalculus applied problems can be conquered with careful trans-
lating and attention to the kinds of units involved. A trivial illustration of
this type is as follows.

ExAMPLE 1. One Sunday a man in a car leaves 4 at noon and arrives at B at
3:20 p.m. If he drove steadily at 55 mi/h, how far is B trom 47
Solution : e distance = rate x time
(55 mi/h)(34 h)
= (55(H mi
1334 mi.

Note: 1n this and the other examples of this chapter, the key mathe-
matical statements (equations, solutions, initial conditions, answers, ¢tc.)
are preceded by bullets (o) to stand out among the calculations. An even
better way to emphasize the key statements, especially in handwritten work.
would be to draw boxes around them or to use color highlighting.

Word problems involving differential equations may be more difficult

than the applied problems you have dealt with heretofore. Contrast Example
1 with Example 2. ’

* Department of Mathematics, Cornell University, Ithaca, NY 14853
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ExaMPLE 2. One Sunday a man in a car leaves A4 at noon and arrives at B at
3:20 p.m. He started from rest and steadily increased his speed. as indicated
on his speedometer, to the extent that when he reached B he was driving at
60 mi/h. How far is B from 47

Solution.: An inexperienced student might suspect that not enough in-
formation is provided. However, the steadily increasing speedometer reading
means that the man’s speed or velocity is a linear function of time, and
velocity is the derivative of distance S as a function of time. So,

.‘2—*? —ar+b (mi/h)
and, by integration,
S = 4ar’ + bt + ¢ (mi).

If 1 is measured in hours, the remaining information in the problem tells us
that

@50 -0: @80y =0, @By —0; @sep -

The first three conditions are enough to evaluate the three constants a, b, c,
and the fourth will then give us the answer to the question in the problem:

c=0 (from Q)
b=0 (from @)
a=18 (from Q)

50
S(3%) = 912 = 9(22)* = ¢ 100 mi, the distance from A4 to B.

Now, you may well have solved this problem differently, but all these in-
gredients must have been implicit in your solution. For instance, you might
have realized that starting from rest would immediately give dS/dt = at,
but you would still have been using information from the problem (con-
dition (2)) to evaluate a constant which would otherwise have been there.

Consider -another simple differential equation word problem which is
commonly encountered.

EXAMPLE 3. The growth rate of a population of bacteria is in direct propor-
tion to the population. If the number of bacteria in a culture grew from 100
to 400 in 24 h, what was the population after the first 12 h?

Solution: The first sentence tells what is true at any instant; the second
gives information on specific instants. If we denote the population by y(1),
the first tells us that

dy
&k
o= =k,



